用户名: 密码: 验证码:
基于光化学高级氧化技术降解水中典型卤代酚类污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,具有“三致”效应和遗传毒性的溴代阻燃剂及氯酚类防腐剂在生产、使用及废弃处理过程中导致的水环境污染问题日益加剧,严重威胁了人类的生活和健康。因此,开发新型、绿色、高效的处理技术去除水环境中典型卤代污染物的研究具有重要意义。本文以典型溴代阻燃剂四溴双酚A(TBBPA)和氯代防腐剂2,4,6-三氯酚(2,4,6-TCP)为研究对象,利用基于光化学的高级氧化技术开展其降解研究,主要开展了以下几个方面的工作:
     (1)为了克服TBBPA水中难溶性问题导致的向传统高级氧化体系加入甲醇等有机溶剂增溶,产生二次污染及自由基湮灭降低反应效率等缺陷。利用TBBPA在强碱性水溶液可溶及persulfate (PS)可同时被碱及紫外光激活生成硫酸根自由基的双重特性,开展了碱性UV/PS体系降解TBBPA的研究,考察pH、TBBPA和PS初始浓度、溴离子对于TBBPA降解动力学的影响。结果表明,TBBPA的降解动力学符合准一级动力学模型;TBBPA的降解速率随着溶液的初始pH和PS初始浓度升高而增大,随着TBBPA初始浓度的升高而下降;外加Br-与否对TBBPA的降解和多溴代有机物的生成几乎没有影响;TBBPA的矿化率随着反应时间而增大,但4h的总矿化率只有25%左右;TBBPA在降解过程中,生成大部分的中间产物是单苯环溴代有机物,脱溴产物较少;通过对降解中间产物的分析,对TBBPA在碱性UV/PS体系中的降解途径进行了推测,提出了TBBPA中异丙基和苯环之间化学键的断裂为主导反应的反应机理。
     (2)因还原脱溴是提高TBBPA矿化反应的限速步骤,为进一步提高TBBPA的降解效率,采用环境友好、兼具还原和氧化能力的Ti02光催化体系开展降解TBBPA的研究。考察了通气环境、底物初始浓度、溶液pH、常见氢供体及电子受体对Ti02光催化技术降解TBBPA动力学的影响,通过反应产物分析,提出了改变通气环境引导的还原-氧化分段式光催化技术降解TBBPA的反应机理。结果表明,TBBPA初始浓度对其自身还原降解和脱溴速率均呈现先上升后下降双重影响;在强碱性条件下,TBBPA的还原降解与脱溴速率随着溶液初始pH的升高而增大;甲醇作为氢供体作用于TBBPA还原降解和脱溴的效果更佳; NO3-、SO42-等常见电子受体会抑制TBBPA还原降解和脱溴;体系在通氮气条件下,光生电子对TBBPA的还原脱溴是主导反应,通氮气后接着通空气或自始至终通空气,光生空穴或羟基自由基对TBBPA的氧化反应是主导反应。本研究为利用UV/TiO2体系通过改变通气条件实现含TBBPA污水的“还原脱溴-氧化分解”分段式过程预处理提供了一定的理论依据。
     (3)为避免传统高级氧化技术降解氯酚类有机污染物的氧化剂投入成本高、催化剂二次污染等局限性,采用铁-硫光化学循环原理耦合高级氧化技术,提出了新型photo-sulfite体系,并以2,4,6-TCP为模型污染物,开展其降解机制研究。考察了pH、紫外光、S(Ⅳ)剂量、铁(Ⅲ/Ⅱ)配体等因素2,4,6-TCP降解的影响;同时,考察了反应过程中铁的物种形态变化及S(Ⅳ)和pH的变化情况;通过特定醇类自由基捕获实验初步揭示了photo-sulfite的反应机制。结果表明,photo-sulfite体系对2,4,6-TCP等有机污染物具有很高的降解效果;pH3-4利于photo-sulfite反应的进行;铁配体的影响依赖于Fe(Ⅲ)配合物的光化学行为及中间产物的性质;紫外光在反应体系中促进起着Fe(Ⅲ)/Fe(Ⅱ)循环的作用,即(a)当S(Ⅳ)足量的初始反应阶段,FeSO3+是主要活性物种,经光解生成Fe2+和SO3·-,接着进一步被生成SO5·-和S04·-,氧化降解有机物;(b)随着S(Ⅳ)的消耗和pH下降,铁的光活性物种由FeSO3+自发地换为FeOH2+,光解生成·OH,继续降解有机物。同时,水中S02无机污染物被氧化去除。通过中间产物和降解产物分析,初步提出了2,4,6-TCP在photo-sulfite高级氧化体系中降解反应机理:首先2,4,6-TCP在硫酸根自由基作用下逐级脱氯;随后,脱下的氯离子会在硫酸根自由或羟基自由基的氧化作用下继续参与到2,4,6-TCP的转化反应中,生成毒性更强多氯代酚类有机化合物。此外,脱氯产物苯酚等也可能会在抽氢作用下生成二苯并呋喃等毒性更强的有机物。Photo-sulfite体系成功实现了水中无机二氧化硫与氯代酚等无机/有机卤代酚类污染物同时转化。本研究比较适合无机亚硫酸盐和持久性有机污染物共污染水体的修复,同时也可用于工业脱硫废水与其他有机废水混合废水的治理,但反应过程中毒性副产物的生成问题在实际工程中需予以重视。
Recently, the production, use and disposal of brominated flame retardants and chlorophenols preservatives with teratogenicity, carcinogenicity, mutagenicity and genetoxicity have caused more and more serious water pollution problems, which threaten the human life and health. Therefore, it is very important to explore novel, green, and efficient techniques to remove the typical halogenated organic pollutants from water environment. In the present studies, the degradation of tetrabromobisphenol A (TBBPA), one of typical brominated flame retardants, and2,4,6-trichlorophenol (2,4,6-TCP), one of typical chlorinated preservatives, selected as model pollutants, are investigated by the photochemical advanced oxidation processes (AOPs). The main studies are as followed:
     (1) TBBPA with limited water solubility can only dissolve in alkaline aqueous solution and the available AOPs for TBBPA degradation almost performed in acidic or neutral conditions. As such, some common organic solvents were employed to be added into water to increase the solubility of TBBPA, which can lead to both secondary pollution problems and lower degradation caused by quenched radicals with organic solvent, such as methanol. In order to overcome the abovementioned problems, the degradation of TBBPA by alkaline UV/PS system was carried out owing that both base and ultraviolet irradiation can simultaneously activate persulfate (PS) to generate sulfate radicals. The effects of pH, initial concentrations of TBBPA and PS, and the bromide ion on degradation kinetics of TBBPA were examined. The results showed that the degradation of TBBPA was fitted for the pseudo-first-order kinetic model, and the degradation efficiency was significantly enhanced with the initial pH and initial concentration of PS increase, decreased with the increase of initial concentration of TBBPA instead. There were no significant influences of addition of Br-on the degradation of TBBPA and polybrominated organics production. The mineralization of TBBPA increased as the reaction time prolonged, but the total mineralization of4h was only about25%, and most of the intermediate products of TBBPA were single benzene ring-brominated organic compounds, and less debromination products. Ultimately, the pathway of cleavage between the isopropyl group and one of the benzene rings of TBBPA was regarded as the main step for the degradation of TBBPA in the alkaline UV/PS system.
     (2) C-Br bond cleavage is considered as a key step to reduce their toxicities and increase degradation rates for TBBPA. To further improve the degradation efficiency of TBBPA, photocatalytic degradation of TBBPA by the environment-friendly UV/TiO2system, with both reduction and oxidation capacities was investigated. The influences of atmospheres, initial concentration of TBBPA, pH, common hydrogen donors and electron acceptors on the degradation kinetics of TBBPA were examined. Moreover, the major reaction products were identified and a possible pathway of sequential reduction-oxidation for photocatalytic degradation of TBBPA by changing atmospheres was proposed. The results indicated that the degradation and debromination of TBBPA were declined with decreasing or increasing the initial concentrations of TBBPA; and that methanol, a hydrogen donor, had a better performance for the reductive degradation and debromination of TBBPA. Furthermore, the common electron acceptors, such as NO3-, SO42-, inhibited the degradation and debromination of TBBPA. Reductive debromination for TBBPA was the dominant reaction with N2-saturated and photo-induced holes or hydroxyl radicals involving the oxidation reaction played a significant role as soon as air saturated into the reaction system. This study provided some fundamentals for the pretreatment of TBBPA-contaminated wastewater by a two-stage reductive debromination/subsequent oxidative decomposition process in the UV-TiO2system by changing the reaction atmospheres.
     (3)To avoid the limitations of high input costs of oxidants and secondary pollution caused by catalysts from traditional AOPs for the degradation of chlorophenols organics, a novel photo-sulfite system based on the photochemical cycle theory of iron-sulfur coupled with AOPs, was proposed to examine the mechanism from the degradation of2,4,6-TCP selected as a model pollutant. This study examined the photo-sulfite system and its capacity to degrade aqueous organic contaminants. The changes in concentrations of Fe(II), sulfite, model pollutant molecule and proton were measured over reaction time, with different dosages of Fe(III) and sulfite. As such, the dynamic speciation profiles for Fe(III/II) species were established by MEDUSA software to give insights into the photochemistry of iron species. The experiments of pH effect, additions of iron ligands and radicals scavenging were used to probe the underlying reaction mechanism. It was evident that the photo-sulfite system had good performances for the decomposition of2,4,6-TCP and other organic pollutants, and pH3~4was favorable for the photo-sulfite reaction. Under UV irradiation, the effects of the ligands depended on the photochemistry of their Fe(III) complexes and nature of degradation byproducts. And UV irradiation enables to activate two Fe3+/Fe2+cycle-relevant reactions:(a) initially, FeSO3+is the dominant Fe(III) species as sulfite is sufficient, and the photolysis of FeSO3+to produce Fe2+and SO3·-subsequently promotes the generation of reactive SO5·-and SO4·-;(b) photochemically active species spontaneously switch from FeSO3+to FeOH2+, with the depletion of sulfite and the decrease in solution pH. FeOH2+is photolyzed to produce highly reactive oxidant-·OH, which continues to degrade organic pollutants. S(Ⅳ), acting as a iron ligand and inorganic pollutant, is simultaneously oxidized with the degradation of organic contaminants.
     The degradation mechanism of2,4,6-TCP in photo-sulfite system was proposed based on the identification of intermediates. Initially, phenol was formed via the dechlorination of2,4,6-TCP step by step due to the oxidation of sulfate radicals; and then, the freedom chloride ions taken off from2,4,6-TCP would continue to be involved2,4,6-TCP conversion reaction to generate more toxic polychlorinated phenols compounds by the oxidation of sulfate or hydroxyl radicals. In addition, more toxic dibenzofuran could be formed by hydrogen abstraction of sulfate or hydroxyl radicals from dechlorination products, such as phenol. The proposed photo-sulfite process should be ideally suited for sulfite contaminated wastewaters with recalcitrant organic compounds or the mixed industrial wastewaters from desulfurization wastewater and other organic wastewaters. However, the generation of toxic byproducts must be attached importance in practical engineering.
引文
[1]张文兵.均相和非均相高级氧化技术处理水中有机污染物的研究.中国博士学位论文广州:中国科学院广州地球化学研究所,2003.
    [2]Prengle, J. H. W. Experimental rate constants and reactor considerations for destruction of micropollutants and trihalomethane precursors by ozone with ultraviolet radiation. Environ. Sci. Technol.1983,17 (12),743-747.
    [3]Hoigne, J.; Bader H. The role of hydroxyl radical reaction in ozonation processes in aqueous solutions. Water Res.1976,10 (5),377-386.
    [4]Glaze, W. H. Drinking-water treatment with ozone. Environ. Sci. Technol.1987, 21 (3),224-230.
    [5]张璇,王启山.高级氧化技术在废水处理中的应用.水处理技术2009,35(3),18-22.
    [6]陈晓肠.基于硫酸自由基的高级氧化技术降解水中典型有机污染物研究.中国博士学位论文大连:大连理工大学,2007.
    [7]Pera-Titus, M.; Garcia-Molina, V.; BaNos, M. A.; Gimenez, J.; Esplugas, S. Degradation of chlorophenols by means of advanced oxidation processes:A general review. Appl. Catal. B-Environ.2004,47,219-256.
    [8]Konstantinou, I. K.; Albanis, T. A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:Kinetic and mechanistic investigations:A review. Appl. Catal. B-Environ.2004,49,1-14.
    [9]祝万鹏,杨志华,王利.臭氧氧化法处理染料中间体1-氨基葱醒和DSD酸生产废水.化工环保1994,14(5),268-273.
    [10]许芝.臭氧氧化难生化降解有机物的研究.大连铁道学院学报2001,22(4),82-86.
    [11]皮运正,王建龙.臭氧氧化水中2,4,6-三氯酚的反应机理研究.环境科学学报2005,25(12),1619-1623.
    [12]张林生,杨广平,王薇.臭氧氧化法在水处理中的应用.净水技术2003,22(1),9-12.
    [13]Peyton, G. R.; Huang, F. Y.; Burleson, J. L.; Glaze, W. H. Destruction of pollutants in water with ozone combination with ultraviolet radiation.1. General principles and oxidation of tetrachlorethylene. Environ. Sci. Technol.1982,16 (8), 448-453.
    [14]李静,刘国荣.臭氧高级氧化技术在废水处理中的应用.污染防治技术2007,20(6),55-58.
    [15]石荣.高级氧化技术与难降解毒性有机物污染处理.辽宁师专学报2005,7(1),95-97.
    [16]Tezcanli, G. G.; Ince, N. H. Individual and combined effects of ultrasound, ozone and UV irradiation:a case study with textile dyes. Ultrasonics 2004,42,603-609.
    [17]Nilsun, H. I.; GOkce, T. Reactive dyestuff degradation by combined sonolysis and ozonation. Dyes Pigments,2001,49,145-153.
    [18]Zeng, L.; James, W. M. Degradation of pentachlorophenol in aqueous solution by audible-frequency sonolytic ozonation. J. Hazard. Mater.2006,135 (1-3), 218-225.
    [19]Devulapelli, V. G.; Sahle-Demessie, E. Catalytic oxidation of dimethyl sulfide with ozone:Effects of promoter and physico-chemical properties of metal oxide catalysts. Appl. Catal. A-Gen.2008,348 (1),86-93.
    [20]颜高锋,杨哲,陈力行,史惠祥.吸附-催化臭氧氧化去除造纸废水中特征污染物的研究.水处理技术2010,36(4),89-92,96.
    [21]王利平,汪亚奇,胡德飞,刘兵昌,陆雷.催化臭氧氧化预处理垃圾渗滤液.环境科学与技术,2009,32(11),160-162,205.
    [22]胡俊生,任雪冬,郝苓汀,邹文基,刘键.臭氧高级氧化技术处理印染废水.沈阳建筑大学学报:自然科学版2009,25(4),747-752.
    [23]蒲丽媛,郑广宏.Fenton试剂处理含难降解有机物污水的研究进展.中国科技信息2008,(19),26-27,29.
    [24]Habe, F.; Weiss, J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. Lodon (Ser.A),1934,147 (51),332-345.
    [25]Bossmann, S. H.; Oliveros, E.; Gob, S.; Siegwart, S.; Dahlen, E. P.; Jr., Payawan, L.; Straub, M.; Worner, M.; Braun, A. M. New evidence against hydroxyl radicals as reactive intermediate in the thermal and photochemically enhanced Fenton reaction. J. Phys. Chem. A 1998,102 (28),5542-5550.
    [26]Chen, R.; Pignatello, J. J. Role of quinone intermediates as electron shuttle in Fenton and photoassisted Fenton oxidations of aromatic compounds. Environ. Sci. Technol.1997,31 (8),2399-2406.
    [27]张平凡,王一平,李韡,郭翠梨,那永良.H2O2-Fe2+氧化法处理对氨基酚工业废水的研究.化学工业与工程1999,16(6),330-334.
    [28]Mallk, P. K.; Saha, S. K. Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Sep. Purif. Technol.2003,31 (3),241-250.
    [29]朱秀华,张诚,丁珂,沙宇. Fenton氧化技术处理硝基苯废水的实验研究.工业安全与环保2007,33(1),30-33.
    [30]李宏. Fenton高级氧化技术氧化降解多环芳烃类染料废水的研究.中国博士学位论文重庆:重庆大学,2008.
    [31]孙德智.环境工程中的高级氧化技术.北京:化学工业出版社,2002.
    [32]张捷鑫,熊如意.湿式空气氧化技术的发展.广东化工2009,36(8),95-119.
    [33]Katsoni, A.; Frontistis, Z.; Xekoukoulotakis, N. P.; Diamadopoulos, E.; Mantzavinos, D. Wet air oxidation of table olive processing wastewater: Determination of key operating parameters by factorial design. Water Res.2008, 42(14),3591-3600.
    [34]钱胜华,张敏华,董秀芹,姜浩锡.影响超临界水氧化技术工业化的原因及 对策.化学工业与工程2008,25(5),466-469.
    [35]Cui, B.; Cui, F.; Jing, G.; Xu, S.; Huo, W.; Liu, S. Oxidation of oily sludge in supercritical water. J. Hazard. Mater.2009,165 (1-3),511-517.
    [36]Gong, W.; Li, F.; Xi, D. Supercritical water oxidation of acrylic acid production wastewater in transpiring wall reactor. Environ. Eng. Sci.2009,26 (1),131-136.
    [37]Stuar, F. E. Electronic water purification progress report on the electronic coagulator-a new device which gives promise of unusually speedy and effective results. Water Sewage 1946,84 (5),24-26.
    [38]Comninellis, C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for wastewater treatment. Electrochim. Acta 1994,39 (11-12), 1857-1862.
    [39]缪娟,符德学.电化学技术在废水处理中的应用.化学时刊2005,19(9),4649.
    [40]Zhu, X.; Ni, J.; Lai, P. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes. Water Res.2009,43 (17),4347-4355.
    [41]Radha, K. V.; Sridevi, V.; Kalaivani, K. Electrochemical oxidation for the treatment of textile industry wastewater. Bioresource Technol.2009,100 (2), 987-990.
    [42]Panizza, M.; Cerisola, G Applicability of electrochemical methods to carwash for reuse, part 2:electrocoagulation and anodic oxidation integrated process. J. Electroanal. Chem.2010,638 (2),236-240.
    [43]Yang, X.; Zou, R.; Huo, F.; Cai, D.; Xiao, D. Preparation and characterization of Ti/SnO2-Sb2O3-Nb2Os/PbO2 thin film as electrode material for the degradation of phenol. J. Hazard. Mater.2009,164 (1),367-373.
    [44]Chen, X.; Yao, P.; Wang, D.; Wu, X. Antimony and cerium co-doped tin oxide electrodes of pollutant degradation. Chem. Eng. J.2009,147 (2-3),412-415.
    [45]Anipsitakis, G P.; Dionysiou, D. D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ. Sci. Technol.2003,37 (20),4790-4797.
    [46]Chen, X.; Chen, J.; Qiao, X.; Wang, D.; Cai, X. Performance of nano-Co3O4/peroxymonosulfate system:Kinetics and mechanism study using Acid Orange 7 as a model compound. Appl. Catal. B-Environ.2008,80 (1-2), 116-121.
    [47]Yang, Q.; Choi, H.; Al-Abed, S. R.; Dionysiou, D. D. Iron-cobalt mixed oxide nanocatalysts:Heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications. Appl. Catal. B-Environ. 2009,88 (3-4),462-469.
    [48]Yuan, R.; Ramjaun, S. N.; Wang, Z.; Liu, J. Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: Implications for formation of chlorinated aromatic compounds. J. Hazard. Mater. 2011,196,173-179.
    [49]Neta, P.; Huie, R. E.; Ross, A. B. Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data 1988,17 (3),1027-1284.
    [50]Antoniou, M. G.; de la Cruz, A. A.; Dionysiou, D. D. Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e transfer mechanisms. Appl. Catal. B-Environ.2010,96 (3-4),290-298.
    [51]Waldemer, R. H.; Tratnyek, P. G; Johnson, R. L.; Nurmi, J. T. Oxidation of Chlorinated Ethenes by Heat-Activated Persulfate:Kinetics and Products. Environ. Sci. Technol.2007,41 (3),1010-1015.
    [52]Anipsitakis, G. P.; Dionysiou, D. D. Radical Generation by the Interaction of Transition Metals with Common Oxidants. Environ. Sci. Technol.2004,38 (13), 3705-3712.
    [53]Anipsitakis, G. P.; Dionysiou, D. D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ. Sci. Technol.2003,37 (20),4790-4797.
    [54]Anipsitakis, G P.; Stathatos, E.; Dionysiou, D. D. Heterogeneous Activation of Oxone Using Co3O4. J. Phys. Chem. B 2005,109 (27),13052-13055.
    [55]Tracking the acute toxicity of potassium persulfate; http://www.chemcas.com/material/cas/archive/7727-21-1.asp (accessed September 27,2013).
    [56]Zuo, Y.; Hoigne, J. Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(Ⅲ)-oxalato complexes. Environ. Sci. Technol.1992,26 (5),1014-1022.
    [57]Klamerth, N.; Malato, S.; Aguer, A.; Fernandez-Alba, A. Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents:A comparison. Water Res.2013,47 (2), 833-840.
    [58]Pigllatello, J. J. Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ. Sci. Technol.1992, (26),944-951.
    [59]郁志勇,王文华,彭安.紫外光作用下氯酚的矿化程度比较.环境化学1998,17(5),490-493.
    [60]AlHamedi, F.H.; Rauf, M.A.; Ashraf, S. S. Degradation studies of Rhodamine B in the presence of UV/H2O2. Desalination,2009,239 (1-3),159-166.
    [61]Muruganandham, M.; Swaminathan, M. Photochemical oxidation of reactive azo dye with UV-H2O2 process. Dyes and Pigments 2004,62 (3),269-275.
    [62]张晖,程江,杨卓如,陈焕钦.O3/UV法降解水中对硝基酚.环境化学1996,15(4),313-319.
    [63]薛向东,金庭奇.水处理中的高级氧化技术.环境保护2001,6,104-106.
    [64]Jeong, J.; Yoon, J. Dual roles of CO2·- for degrading synthetic organic chemicals inthe photo/ferrioxalate system. Water Res.2004,38 (16),3531-3540.
    [65]Balmer, M. E.; Sulzberger, Ba. Atrazine Degradation in Irradiated Iron/Oxalate Systems:Effects of pH and Oxalate. Environ. Sci. Technol.1999,33 (14), 2418-2424.
    [66]Anipsitakis, G. P.; Dionysiou, D. D. Transition metal/UV-based advanced oxidation technologies for water decontamination. Appl. Catal. B-Environ.2004, 54(1-2),155-163.
    [67]Rezaee, A.; Ghaneian, M. T.; Khavanin, A.; Hashemian, S. J.; Moussavi, Gh. Photochemical oxidation of reactive blue 19 dye (RB19) in textile wastewater by UV/K2S2O8 process. Iran J. Environ. Health. Sci. Eng.2008,5 (2),95-100.
    [68]Soleymani, A. R.; Saien, J.; Bayat, H. Artificial neural networks developed for prediction of dye decolorization efficiency with UV/K2S2O8 process. Chem. Eng. J.2011,170(1),29-35.
    [69]刘守新,刘鸿.光催化及光电催化基础与应用.北京:化学工业出版社,2005.
    [70]席北斗,刘纯新,孔欣,周岳溪,刘鸿亮,邱熔处.负载型催化剂光催化降解五氯苯酚钠效果.环境科学2001,22(1),41-44.
    [71]李景印,郭玉风,张亚通,王继芝.玻璃负载TiO2膜光催化降解2,4-二氯苯酚.应用化学2002,19(5),494-496.
    [72]蒋伟川,王琪全,余传明.半导体光催化降解分散染料溶液的研究.上海环境科学1995,14(5),8-10.
    [73]孙尚梅,康振晋,魏志仿.Ti02膜太阳光催化氧化法处理毛纺染整废水.化工环保2000,20(1),11-13.
    [74]Sclafani, A.; Palmisano, L.; Davi, E. Photocatalytic degradation of phenol in aqueous polycrystalline titanium dioxide dispersions:The influence of Fe3+, Fe2+ and Ag+ on the reaction rate. J. Photochem. Photobiol. A-Chem.1991,56 (1), 113-123.
    [75]崔高峰,王伯勇,王清,杜高英,王磊,王寿峰,郑以详,买光听.负载型Ti02光催化剂降解甲基橙研究.山东科学2000,13(4),26-27.
    [76]魏凤玉,彭书传,崔鹏,何建波.非均相光催化氧化法处理含酚废水.合肥工业大学学报(自然科学版)2002,25(4),565-568.
    [77]张光明,张盼月,张信芳.水处理高级氧化技术.哈尔滨:哈尔滨工业大学出版社,2007.
    [78]张峰,李庆霖.Ti02光催化剂的可见光敏化研究.催化学报1999,20(3),329-332.
    [79]Guo, Y.; Chen, L.; Ma, F.; Zhang, S.; Yang, Y.; Yuan, X.; Guo, Y. Efficient degradation of tetrabromobisphenol A by heterostructured Ag/Bi5Nb3O15 material under the simulated sunlight irradiation. J. Hazard. Mater.2011,189 (1-2), 614-618.
    [80]Xu, J.; Meng, W.; Zhang, Y.; Li, L.; Guo, C. Photocatalytic degradation of tetrabromobisphenol A by mesoporous BiOBr:Efficacy, products and pathway. Appl. Catal. B-Environ.2011,107 (3-4),355-362.
    [81]Vallack, H. W.; Bakker, D. J.; Brandt, I.; Brostrom-Lunden, E.; Brouwer,A.; Bull, K. R.; Gough, C.; Guardans, R.; Holoubek, I.; Jansson, B.; Koch, R.; Kuylenstierna, J.; Lecloux, A.; Mackay, D.; McCutcheon, P.; Mocarelli, P.; Taalman, R. D. F. Controlling persistent organic pollutants-what next? Environ. Toxicol. Phar.1998,6 (3),143-175.
    [82]Jones, K. C.; de Voogt, P. Persistent organic pollutants (POPs):state of the science. Environ. Pollut.1999,100 (1-3),209-221.
    [83]谢武明,胡勇有,刘焕彬,许振成.持久性有机污染物(POPs)的环境问题与研究进展.中国环境监测2004,20(2),58-61.
    [84]Kuchler, T.; Brzezinski, H. Application of GC-MS/MS for the analysis of PCDD/Fs in sewage effluents. Chemosphere 2000,40 (2),213-220.
    [85]Horstmann, M.; McLachlan, M. S. Concentration of polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) in urban runoff and household waste waters. Chemosphere 1995,31 (3),2887-2896.
    [86]Belluccia, L. G.; Frignania, M.; Raccanellib, S.; Carraroc, C. Polychlorinated dibenzo-p-dioxins and dibenzofurans in surficial sediments o f the Venice Lagoon (Italy). Mar. Pollut. Bull.2000,40 (1),65-76.
    [87]张祖麟,洪华生,余刚.闽江口持久性有机污染—多氯联苯的初步研究.环 境科学学报2002,22(6),778-791.
    [88]Yuan, D.; Yang, D.; Wade, T. L.; Qian, Y. Status of persistent organic pollutants in the sediment from several estuaries in China. Environ. Pollut.2001,114 (1), 101-111.
    [89]Muller, J. F.; Gaus, C.; Prange, J. A.; Papke, O.; Poon, K. F.; Lam, M.H.W.; Lam,P. K. S. Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in sediments from Hong Kong. Mar. Pollut. Bull.2002,45 (1-12), 372-378.
    [90]Wallenhorst, T.; Krauβ, P.; Hagenmaier, H. PCDD/F in ambient air and deposition in Baden-Wurttemberg, Germany. Chemosphere,1997,34 (5-7),1369-1378.
    [91]Kouimtzis, T. PCDD/Fs and PCBs in airborne particulate matter of the great Thessaloniki area, N. Greece. Chemosphere,2002,47,193-205.
    [92]Manz, M.; Wenzel, K.-D.; Dietze, U.; Schuurmann, G. Persistent organic pollutants in agricultural soils of central Germany. Sci. Total Environ.2001,277 (1-3),187-198.
    [93]Eljarrat, E.; Caixach, J.; Rivera, J. Level of polychlorinated dibenzo-p-dioxins and dibenzofurans in soil samples from Spain. Chemosphere,2001,44 (6), 1383-1387.
    [94]龚钟明,曹军,朱雪梅,崔艳红,郭丽青,陶澍,沈伟然,赵喜梅,韩兰香.天津市郊污灌区农田土壤中的有机氯农药残留.农业环境保护2002,21(5),459-461.
    [95]Choi, J.; Matsuda, M.; Kawano, M.; Wakimoto, T.; Iseki, N.; Masunaga, S.; Hayama, S.; Watanuki, Y. Chlorinated persistent organic pollutants in black-tailed gulls (Larus crassirostris) from Hokkaido, Japan. Chemosphere 2011,44 (6), 1375-1382.
    [96]Brunstrom, B.; Halldin, K. Ecotoxicological risk assessment of environmental pollutants in the Arctic. Toxicol. Lett.2000,112-113,111-118.
    [97]Kostamo, A.; Viljanen, M.; Pellinen, J.; Kukkonen, J. EOX and organochlorine compounds in fish and ringed seal samples from Lake Ladoga, Russia. Chemosphere 2000,41 (11),1733-1740.
    [98]Schuhmacher, M.; Domingo, J. L.; Llobet, J. M.; Kiviranta, H.; Vartiainen, T. PCDD/F concentration in milk of nonoccupationally exposed women living in Southern Catalonia, Spain. Chemosphere,1999,38 (5):995-1004.
    [99]Yang, J.; Shin, D.; Park, S.; Chang, Y.; Kim, D.; Ikonomou, M.G PCDDs, PCDFs, and PCBs concentrations in breast milk from two areas in Korea:Body burden of mothers and implications for feeding infants. Chemosphere,2002,46 (3), 419-428.
    [100]李建增.能净化环境的植物.云南农业1999,11,23.
    [101]安凤春,莫汉宏,郑明辉,张兵.DDT污染土壤的植物修复技术.环境污染治理技术与设备2002,3(7),39-45.
    [102]Ahmed, M.; Focht, D. D. Degradation of polychlorinated biphenyls by two species of achromobated. Canadian Microbiol.1973,19,47-52.
    [103]李国学,孙英.高温堆肥对六六六和滴滴涕的降解作用.农业环境保护2000,19(3),141-144.
    [104]Miiller, T. S.; Sun, Z.; Kumar, G.; Itoh, K.; Murabayashi, M. The combination of photocatalysis and ozonolysis a new approach for leaning 2,4-Dichlorophenoxyacetic acid polluted water. Chemosphere,1998,36 (9), 2043-2055.
    [105]Gullett, B. K.; Touati, A. PCDD/F emissions from forest fire simulations. Atmos. Environ.2003,37 (6),803-813.
    [106]Schrank, S. G.; dos Santos, J. N. R.; Souza, D. S.; Souza, E. E. S. Decolourisation effects of Vat Green 01 textile dye and textile wastewater using H2O2/UV process. J. Photochem. Photobiol. A-Chem.2007,186 (2-3),125-129.
    [107]Wu, C. H. Adsorption of reactive dye onto carbon nanotubes:Equilibrium, kinetics and thermodynamics. J. Hazard. Mater.2007,144 (1),93-100.
    [108]Padmanabhan, P. V. A.; Sreekumar, K. P.; Thiyagarajan, T. K.; Satputea, R. U.; Bhanumurthyb, K.; Senguptab, P.; Deyb, G. K.; Warrierc, K. G K. Nano-crystalline titanium dioxide formed by reactive plasma synthesis. Vacuum, 2006,80(11-12):1252-1255.
    [109]Lucarelli, L.; Nadtochenko, V.; Kiwi, J. Environmental photochemistry: Quantitative adsorption and FTIR studies during the TiO2-photocatalyzed degradation of orange II. Langmuir 2000,16 (3),1102-1108.
    [110]Gaya, U. I.; Abdullah, A. H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide:A review of fundamentals, progress and problems. J. Photochem. Photobiol. C-Photochem. Rev.2008,9 (1),1-12.
    [111]于立娟,孙鹏,李广义,马西忠,吕会霞.阻燃剂的研究进展.上海塑料2013,3,21-24.
    [112]张帆,余应新,张东平,吴明红,盛国英,傅家谟.溴系阻燃剂在环境及人体中的存在和代谢转化.化学进展2009,21(6),1364-1372.
    [113]Andersson, O; Blomkvist, G. Polybrominated aromatic pollutants found in fish in Sweden Chemosphere 1981,10 (9),1051-1060.
    [114]魏爱雪,王学彤,徐晓白.环境中多溴联苯醚类(PBDEs)化合物污染研究.化学进展2006,18,1227-1233.
    [115]Hites, R. A. Polybrominated diphenyl ethers in the environment and in people:A meta-analysis of concentrations. Environ. Sci. Technol.2004,38, 945-956.
    [116]Wu, J.; Luo, X.; Zhang,Y.; Luo,Y.; Chen, S.; Mai, B.; Yang, Z. Bioaccumulation of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in wild aquatic species from an electronic waste (e-waste) recycling site in South China. Environ. Int.2008,34 (8), 1109-1113
    [117]Chen, L.; Mai, B.; Bi, X.; Chen, S. Concentration levels, compositional profiles, and gas-particle partitioning of polybrominated diphenyl ethers in the atmosphere of an urban city in South China. Environ. Sci. Technol.2006,40, 1190-1196
    [118]Qu, W.; Bi, X.; Sheng, G.; Lu, S.; Fu, J.; Yuan, J. Exposure to polybrominated diphenyl ethers among workers at an electronic waste dismantling region in Guangdong, China. Environ. Sci. Technol.2007,41, 5647-5653
    [119]Meng, X.; Zeng, E.; Yu, L.; Guo, Y. Assessment of human exposure to polybrominated diphenyl ethers in China via fish consumption and inhalation. Environ. Sci. Technol.2007,41,4882-4887.
    [120]Yang, F.; Zhang, Q.; Xu, Y.; Jiang, G.; Wang, Y.; Wang, D. Preliminary hazard assessment of polychlorinated biphenyls, polybrominated diphenyl ethers, and polychlorinated dibenzo-p-dioxins and dibenzofurans to yangtze finless porpoise in dongting lake, china. Environ. Toxicol. Chem.2008,27,991-996.
    [121]Wan, Y.; Hu, J.; Zhang, K.; An, L. Trophodynamics of polybrominated diphenyl ethers in the marine food web of Bohai Bay, North China. Environ. Sci. Technol.2008,42,1078-1083.
    [122]Sellstrom, U.; Kierkegaard, A.; de Wit, C.; Jansson, B. Polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from a Swedish River. Environ. Toxicol. Chem.1998,17,1065-1072.
    [123]Ueno, D.; Alaee, M.; Marvin, C.; Muir, D. C. G.; Macinnis, G.; Reiner, E.; Crozier, P.; Furdui, V. I.; Subramanian, A.; Fillmann, G; Lam, P. K. S.; Zheng, G J.; Muchtar, M.; Razak, H.; Prudente, M.; Chung, K.; Tanabe, S. Distribution and transportability of hexabromocyclododecane (HBCD) in the Asia-Pacific region using skipjack tuna as a bioindicator. Environ. Pollu.2006,144,238-247.
    [124]Covaci, A.; Gerecke, A. C.; Law, R. J. Hexabromocyclododecanes (HBCDs) in the environment and humans:A review. Environ. Sci. Technol.2006,40, 3679-3688.
    [125]Hoh, E.; Hites. R. A. Brominated flame retardants in the atmosphere of the east-central United States. Environ. Sci. Technol.2005,39,7794-7802.
    [126]李亚宁,周启星.四溴双酚-A的代谢转化与生态毒理效应研究进展.生态学杂志2008,27,263-68.
    [127]彭浩.环境及生物样品中溴代阻燃剂四溴双酚-A(TBBP-A)水平的研究.中国硕士论文北京:中央民族大学,2007.
    [128]Zhang, F.; Yu, Y.; Zhang, D.; Wu, M.; Sheng, G. Metabolism and transformation of brominated flame retardants existing in environment and human body. Progr. Chem.2009,21 (6),1364-1372.
    [129]Morris, S.; Allchin, C. R.; Zegers, B. N. Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea estuaries and aquatic food webs. Environ. Sci. Technol.2004,38,5497-5504.
    [130]Ashizuka, Y.; Nakagawa, R.; Hori, T.; Yasutake, D.; Tobiishi, K.; Sasaki, K. Determination of brominated flame retardants and brominated dioxins in fish collected from three regions of Japan. Mol. Nutr. Food Res.2008,52 (2), 273-283.
    [131]Johnson-Restrepo, B.; Adams, D. H.; Kannan, K. Tetrabromobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDs) in tissues of humans, dolphins, and sharks from the United States. Chemosphere 2008,70,1935-1944.
    [132]Thomsen, C.; Lundanes, E.; Becher, G. Brominated flame retardants in archived serum samples from Norway:A study on temporal trends and the role of age. Environ. Sci. Technol.2002.36,1414-1418.
    [133]Thomsen, C.; Lundanes, E.; Becher, G Brominated flame retardants in plasma samples from three different occupational groups in Norway. Environ. Monit.2001,3,366-370.
    [134]He, J.;Robrock, K. R.; Alvarez-Cohen, L. Microbial reductive debromination of polybrominated biphenyl ethers (PBDEs). Environ. Sci. Technol.2006,40 (14),4429-4434.
    [135]Davis, J. W.; Gonisor, S. J.; Marty, G.; Friederich, U.; Hunziker, R. W.; Ariano, J. M. Investigation of the biodegradation of [14C]Hexabromocyclododecane in sludge, sediment, and soil. In:The third international workshop on brominated flame retardants.2004.
    [136]Nyholm, J. R.; Lundberg, C.; Andersson, P. L. Biodegradation kinetics of selected brominated flame retardants in aerobic and anaerobic soil. Environ. Pollu. 2010,158 (6),2235-2240.
    [137]Li, Y.; Zhou, Q.; Wang, Y.; Xie, X. Fate of tetrabromobisphenol A and hexabromocyclododecane brominated flame retardants in soil and uptake by plants. Chemosphere 2011,82 (2),204-209.
    [138]Fasfous, I. I.; Radwan, E. S.; Dawoud, J. N. Kinetics, equilibrium and thermodynamics of the sorption of tetrabromobisphenol A on multiwalled carbon nanotubes. Appl. Surf. Sci.2010,256 (23),7246-7252.
    [139]Luijk, R.; Wever, H.; Olie, K.; Govers, H. A. J.; Boon, J. J. The influence of the polymer matrix on the formation of polybrominated dibenzo-p-dioxins (PBDDs) and polybrominated dibenzofurans (PBDFs). Chemosphere 1991,23 (8-10),1173-1183.
    [140]Luda, M.P.; Balabanovich, A. I.; Homung, A.; Camino, G. Thermal degradation of a brominated bisphenol A derivative. Polym. Adv. Technol.2003, 14 (11-12),741-748.
    [141]Marsanich, K.; Zanelli, S.; Barontini, F.; Cozzani, V. Evaporation and thermal degradation of tetrabromobisphenol A above the melting point. Thermochim. Acta.2004,42 (1-2),195-103.
    [142]Barontini, F.; Marsanich, K.; Petarca, L.; Cozzani, V. The thermal degradation process of tetrabromobisphenol A. Ind. Eng. Chem. Res.2004,43 (9), 1952-1961.
    [143]Barontini, F.; Cozzani, V. Formation of hydrogen bromide and organobrominated compounds in the thermal degradation of electronic boards. J. Anal. Appl. Pyrol.2006,77 (1),41-55.
    [144]Barontini, F.; Cozzani, V.; Marsanich, K.; Rafffac, V.; Petarcac, L. An experimental investigation of tetrabromobisphenol A decomposition pathways. J. Anal. Appl. Pyrol.2004,72 (1),41-53.
    [145]Barontini, F.; Marsanich, K.; Petarca, L.; Cozzani, V. Thermal Degradation and Decomposition Products of Electronic Boards Containing BFRs. Ind. Eng. Chem. Res.2005,44 (12),4186-4199.
    [146]Rzyman, M.; Grabda, M.; Oleszek-Kudlak, S.; Shibata, E.; Nakamura, T. Studies on bromination and evaporation of antimony oxide during thermal treatment of tetrabromobisphenol A(TBBPA). J. Anal. Appl. Pyrol.,2010,88 (1), 14-21.
    [147]Huang, A.; Wang, N.; Lei, M.; Zhu, L.; Zhang, Y.; Lin, Z.; Yin, D.; Tang, H. Efficient oxidative debromination of decabromodiphenyl ether by TiO2-mediated photocatalysis in aqueous environment. Environ. Sci. Technol.2013,47 (1),518-525.
    [148]S. K. Han, P. Bilski, B. Karriker, Sik, R. H.; Chignell, C. F. Oxidation of flame retardant tetrabromobisphenol A by singlet oxygen. Environ. Sci. Technol. 2008,42(1),166-172.
    [149]Lin, K.; Liu, W.; Gan, J. Reaction of tetrabromobisphenol A (TBBPA) with manganese dioxide:Kinetics, products, and pathways. Environ. Sci. Technol. 2009,43,4480-4486
    [150]Sun, C.; Zhao, D.; Chen, C.; Ma, W.; Zhao, J. TiO2-Mediated photocatalytic debromination of decabromodiphenyl ether:Kinetics and intermediates. Environ. Sci. Technol.2009,43 (1),157-162.
    [151]Sun, C.; Zhao, J.; Ji, H.; Ma, W.; Chen, C. Photocatalytic debromination of preloaded decabromodiphenyl ether on the TiO2 surface in aqueous system. Chemosphere 2012,89,420-425.
    [152]Sun, C.; Chen, C.; Ma, W.; Zhao, J. Photocatalytic debromination of decabromodiphenyl ether by graphitic carbon nitride. Sci. China Chem.2012,55 (12),2532-2536.
    [153]Sun, C.; Chang, W.; Ma, W.; Chen, C.; Zhao, J. Photoreductive debromination of decabromodiphenyl ethers in the presence of carboxylates under visible light irradiation. Environ. Sci. Technol.2013,47 (5),2370-2377.
    [154]Yu, H.;Ma, B.; Chen, S.; Zhao, Q.; Quan, X.;Afzal S. Electrocatalytic debromination of BDE-47 at palladized graphene electrode. Front. Environ. Sci. Eng.2014,8 (2),180-187.
    [155]Keum Y.; Li Q. X. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron. Environ. Sci. Technol.2005,39 (7),2280-2286.
    [156]Zhuang, Y.; Ahn, S.; Luthy, R. G. Debromination of polybrominated diphenyl ethers by nanoscale zerovalent iron:Pathways, kinetics, and reactivity. Environ. Sci. Technol.2010,44 (21),8236-8242.
    [157]Fang, Z; Qiu, X.; Chen, J.; Qiu, X. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles:Influencing factors, kinetics, and mechanism. J. Hazard. Mater.2011,185,958-969.
    [158]Zhuang, Y.; Ahn, S.; Seyfferth, A. L.; Masue-Slowey, Y.; Fendorf, S.;Richard Luthy, G. Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic, impregnated, and nanoscale zerovalent iron. Environ. Sci. Technol.2011,45 (11),4896-4903.
    [159]Lin, K.; Ding, J.; Huang, X. Debromination of tetrabromobisphenol A by nanoscale zerovalent iron:Kinetics, influencing factors, and pathways. Ind. Eng. Chem. Res.2012,51,8378-8385.
    [160]Huang, Q.; Liu, W.; Peng, P.; Huang, W. Reductive debromination of tetrabromobisphenol A by Pd/Fe bimetallic catalysts. Chemosphere 2013,92, 1321-1327.
    [161]Mackenzie, K.; Kopinke, F. D. Debromination of duroplastic flame-retarded polymers. Chemosphere 1996,33 (12),2423-2430.
    [162]Liu, G.; Dai, L. Gao, X. Reductive degradation of tetrabromobisphenol A (TBBPA) in aqueous medium. Green Chem.2006,8,781-783.
    [163]Liu, G.; Zhao, H.; Thiemann, T. Zn dust mediated reductive debromination of tetrabromobisphenol A (TBBPA). J. Hazard. Mater.2009,169,1150-1153.
    [164]Luo, S.; Yang, S.; Wang, X. Reductive degradation of tetrabromobisphenol A over iron-silver bimetallic nanoparticles under ultrasound radiation. Chemosphere 2010,79,672-678.
    [165]Mackay, D.; Shiu W. Y.; Ma, K. C.; Lee, S. C. Hand book of physical-chemical properties and environmental fate for organic chemicals. N Y: CRC Press,2006.
    [166]Czaplicka, M. Sources and transformations of chlorophenols in the natural environment. Sci Total Environ.2004,322 (1-3),21-39.
    [167]Pera-Titus, M.; Garcia-Molina, V.; Banos M. A.; Gimenez, J.; Esplugas, S. Degradation of chlorophenols by means of advanced oxidation processes:a general review. Appl. Catal. B-Environ.2004,47 (4),219-256.
    [168]Kato, I.; Watanabe-Meserve, H.; Koenig, K. L.; Baptiste, M. S.; Lillquist, P. P.; Frizzera, G.; Burke, J. S.; Moseson, M.; Shore, R. E. Pesticide product use and risk of non-Hodgkin lymphoma in women. Environ. Health Perspect.2004,112 (13),1275-1281.
    [169]Hoekstra, E. J.; De Weerd, H.; De Leer, E. W. B.; Brinkman, U. A. T. Natural formation of chlorinated phenols, dibenzo-p-dioxins, and dibenzofurans in soil of a Douglas fir forest. Environ. Sci.Technol.1999,33 (15),2543-2549.
    [170]Jonesp, A. Chlorophenols and their impurities in the Canada environment. Environmental Protection Service, Department of the Environment, Ottawa, Canada Catalogue No.En-46-3/81-2, pp.434.1981.
    [171]Piet, G. J.; Grunt, F. D. Commission of the European Communities. Luxembourg,1975.
    [172]严国安,任南,李益健.环境因素对凤眼莲生长及净化作用的影响.环境科学与技术1994,1,2-5.
    [173]Schimmel, S. C.; Garmas, R. L.; Partrick, J. M. Acute toxicity, bioconcentration and persistence of AC 222,705, benthiocarb, chlorpyrifos, methyl parathion, and permethrin in the Estuarine environment. J. Agric. Food Chem.1983,31,104-113.
    [174]王芳,林少彬,陈亚研.氯酚在鲫鱼体内分布、存在形式与生物富集研究.卫生研究1999,28(3),169-171.
    [175]Alexievaa, Z.; Gerginova, M.; Zlateva, P.; Penevaa, N. Comparison of growth kinetics and phenol metabolizing enzymes of Trichosporon cutaneum R57 and mutants with modified degradation abilities. Enzyme Microb. Technol.2004, 34 (3-4),242-247.
    [176]Tartakovsky, B.; Levesque, M. J.; Dumortier, R.; Beaudet, R.; Guiot, S. R. Biodegradation of pentachlorophenol in a continuous anaerobic reactor augmented with Desulfitobacterium frappieri PCP-1. Appl. Environ. Microbiol.1999,65 (10),4357-4362.
    [177]Armenante, P. M.; Kafkewitz, D.; Lewandowski G A.; Joua, C. Anaerobic-aerobic treatment of halogenated phenoliccompounds. Water Res. 1999,33 (3),681-692.
    [178]Hameed, B. H.; Tan, I. A.W.; Ahmad, A. L. Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon. Chem. Eng. J.2008,144,235-244.
    [179]Ren, L.; Zhang, J.; Li, Y.; Zhang, C. Preparation and evaluation of cattail fiber-based activated carbon for 2,4-dichlorophenol and 2,4,6-trichlorophenol removal. Chem. Eng. J.2011,168,553-561.
    [180]Zeng, Q.; Peng, S.; Liu, M.; Song, Z.; Wang, X.; Zhang, X.; Hong, S. Solubilization and adsorption behaviors of 2,4,6-trichlorophenol in the presence of surfactants. Chem. Eng. J.2013,230,202-209.
    [181]Morales, J.; Hutcheson, R.; Chen, I. F.; Dechlorination of chlorinated phenols by catalyzed and uncatalyzed Fe (0) and Mg (0) particles. J. Hazard. Mater.2002, 90,97-108.
    [182]Dorathi, P. J.; Kandasamy, P. Dechlorination of chlorophenols by zero valent iron impregnated silica. J. Environ. Sci.2012,24 (4),765-773.
    [183]Zhou, T.; Li, Y.; Lim, T. Catalytic hydrodechlorination of chlorophenols by Pd/Fe nanoparticles:Comparisons with other bimetallic systems, kinetics and mechanism. Sep. Purif. Technol.2010,76,206-214.
    [184]Benitez, F. J.; Beltran-Heredia, J.; Acero, J. L.; Rubio, F. J. Contribution of free radicals to chlorophenols decomposition by several advanced oxidation processes. Chemosphere 2000,41,1271-1277.
    [185]Saritha, P.; Raj, D. S. S.; Aparna, C.; Laxmi, P. N. V.; Himabindu, V.; Anjaneyulu, Y. Degradative oxidation of 2,4,6-trichlorophenol using advanced oxidation processes -A comparative study. Water Air Soil Pollut.2009,200, 169-179.
    [186]Xu, L.; Yuan, R.; Guo, Y.; Xiao, D.; Cao, Y.; Wang, Z.; Liu, J. Sulfate radical-induced degradation of 2,4,6-trichlorophenol:A de novo formation of chlorinated compounds. Chem. Eng. J.2013,217,169-173.
    [1]Environmental Health Criteria, No.172, Tetrabromobisphenol A and Derivatives; International Program on Chemical Safety, World Health Organization, Geneva, Switzerland,1995; see http://www.inchem.org/documents/ehc/ehc/ehc172.htm.
    [2]Riess, M.; van Eldik, R. Identification of brominated flame retardants in polymeric materials by reversed-phase liquid chromatography with ultraviolet detection. J. Chromatogr. A 1998,827 (1),65-71.
    [3]Hardy, M. L. Regulatory status of the flame retardant tetrabromobisphenol A, in: Presented at the Printed Circuits Expo, April 2-6, San Diego, CA,2000.
    [4]Debenest,T.; Gagne, F.; Petit, A.; Andre,C.; Kohli, M.; Blaise, C. Ecotoxicity of a brominated flame retardant (tetrabromobisphenol A) and its derivatives to aquatic organisms. Comp. Biochem. Physiol. C:Pharmacol. Toxicol.2010,152 (4), 407-412.
    [5]Alaee, M.; Arias, P.; Sjodin, A.; Bergman, A. An overview of commercially used brominated flame retardant, their applications, their use patterns in different countries/regions and possible modes of release. Environ. Int.2003,29 (6), 683-689.
    [6]Covaci, A.; Voorspoelsb, S.; Abdallahc, M. A. E.; Geensa, T.; Harradc,S.; Lawd, R. J. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives. J. Chromatogr. A 2009,1216 (3), 346-363.
    [7]de Wit, C.A. An overview of brominated flame retardants in the environment. Chemosphere 2002,46 (5),583-624.
    [8]Voordeckers, J. W.; Fennell, D. E.; Jones, K.; Haggblom, M. M. Anaerobic biotransformation of tetrabromobisphenol A, tetrachlorobisphenol A, and bisphenol A in estuarine sediments. Environ. Sci. Technol.2002,36 (4),696-701.
    [9]Abdallah, M. A. E.; Harrad, S.; Covaci, A. Hexabromocyclododecanes and tetrabromobisphenol-A in indoor air and dust in Birmingham, UK:implications for human exposure. Environ. Sci. Technol.2008,42 (18),6855-6861.
    [10]Cariou, R.; Antignac, J. P.; Marchand, P.; Berrebi, A.; Zalko, D.; Andre, F.; Le Bizec, B. New multiresidue analytical method dedicated to trace level measurement of brominated flame retardants in human biological matrices. J. Chromatogr. A 2005,1100(2),144-152.
    [11]Pullen, S.; Boecker, R.; Tiegs, G. The flame retardants tetrabromobisphenol A and tetrabromobisphenol A-bisallylether suppress the induction of interleukin-2 receptor a chain (CD25) in murine splenocytes. Toxicology 2003,184 (1),11-12.
    [12]Viberg, H.; Eriksson, P. Differences in neonatal neurotoxicity of brominated flame retardants, PBDE 99 and TBBPA, in mice. Toxicology 2011,289 (1), 59-65.
    [13]Decherf, S.; Seugnet, I.; Fini, J. B.; Clerget-Froidevaux, M. S.; Demeneix, B. A. Disruption of thyroid hormone-dependent hypothalamic set-points by environmental contaminants. Molecul. Cell. Endocrinol.2010,323 (2),172-182.
    [14]Ronen, Z.; Abeliovich, A. Anaerobic-aerobic process for microbial degradation of tetrabromobisphenol A. Appl. Environ. Microbiol.2000,66 (6),2372-2377.
    [15]Summary risk assessment report prepared by the United Kingdom on behalf of the European Union in http://www.bsef.com/uploads/library/tbbpahhsum402.pdf (accessed December 2013).
    [16]Lin, K.; Liu, W.; Gan, J. Reaction of tetrabromobisphenol A (TBBPA) with manganese dioxide:Kinetics, products, and pathways. Environ. Sci. Technol. 2009,43 (12),4480-4486.
    [17]Guo,Y.; Chen, L.; Ma, F.; Zhang, S.; Yang,Y.; Yuan, X.; Guo,Y. Efficient degradation of tetrabromobisphenol A by heterostructured Ag/Bi5Nb3O15 material under the simulated sunlight irradiation. J. Hazard. Mater.2011,189 (1-2), 614-618.
    [18]Zhong,Y.; Liang, X.; Zhong,Y.; Zhu, J.; Zhu, S.; Yuan, P.; He, H.; Zhang, J. Heterogeneous UV/Fenton degradation of TBBPA catalyzed by titanomagnetite: Catalyst characterization, performance and degradation products. Water Res. 2012,46 (15),4633-4644.
    [19]Furman, O. S.; Teel, A. L.; Watts, R. J. Mechanism of base activation of persulfate. Environ. Sci. Technol.2010,44 (16),6423-6428.
    [20]Anipsitakis, G. P.; Dionysiou, D. D. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol.2004,38 (13), 3705-3712.
    [21]Johnson, R. L.;Tratnyek, P. G.; Johnson, R. O. Persulfate persistence under thermal activation conditions. Environ. Sci. Technol.2008,42 (24),9350-9356.
    [22]Antoniou, M. G.; de la Cruz, A. A.; Dionysiou, D. D. Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis, and e transfer mechanisms. Appl. Catal. B:Environ.2010,96 (3-4),290-298.
    [23]Neta, P.; Huie, R. E.; Ross, A. B. Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data 1988,17 (3),1027-1284.
    [24]Norman, R. O. C.; Storey, P. M.; West, P. R. Electron spin resonance studies. Part XXV. Reactions of sulphate radical anion with organic compounds. J. Chem. Soc. B- Phys. Org.1970 (0),1087-1095.
    [25]Pennington, D. E.; Haim, A. Stoichiometry and mechanism of the chromium-peroxydisulfate reaction. J. Am. Chem. Soc.1968,90 (14),3700-3704.
    [26]Hayon, E.; Treinin, A.; Wilf, J. Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. The SO2-, SO3-, SO4-, and SO5- radicals. J. Am. Chem. Soc.1972,94 (1),47-57.
    [27]Peyton, G. R. The free-radical chemistry of persulfate-based total organic carbon analyzers. Mar. Chem.1993,41(1-3),91-103.
    [28]Xu, L.; Yuan, R.; Guo, Y.; Xiao, D.; Cao, Y.; Wang, Z.; Liu, J. Sulfate radical-induced degradation of 2,4,6-trichlorophenol:A de novo formation of chlorinated compounds. Chem. Eng. J.2013,217,169-173.
    [29]Furman, O. S.; Teel, A. L.; Ahmad, M.; Merker, M. C.; Watts, R. J. Effect of basicity on persulfate reactivity. J. Environ. Eng.-ASCE 2011,137 (4),241-247.
    [30]Clifton, C. L.; Huie, R. E. Rate constants for hydrogen abstraction reactions of the sulfate radical, SO4-. Alcohols. Int. J. Chem.Kinet.1989,21,677-687.
    [31]Buxton, G V.; Greenstock, C. L.; Helman, W. P.; Ross,A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (·OH/·O-) in aqueous solution. J. Phys. Chem. Ref. Data 1988,17, 513-886.
    [32]Saxena, V.; Sadoqi, M.; Shao, J. Degradation kinetics of indocyanine green in aqueous solution. J. Pharm. Sci.2003,92,2090-2097.
    [33]Watts, R. J.; Teel, A. L. Treatment of contaminated soils and groundwater using in situ chemical oxidation. Pract. Period. Hazard. Toxic Radioact. Waste Manage. 2006,10(1),2-9.
    [34]Liang, C.; Su, H. Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind. Eng. Chem. Res.2009,48,5558-5562.
    [35]Hirakawa, T.; Nosaka, Y. Properties of O2·- and ·OH formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir 2002,18 (8),3247-3254.
    [36]Mamou, A.; Rabani, J.; Behar, D. Oxidation of aqueous Br-by hydroxyl radicals, studies by pulse radiolysis. J. Phys. Chem.1977,81 (15),1447-1448.
    [37]Grebel, J. E.; Pignatello, J. J.; Mitch, W. A. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters. Environ. Sci. Technol.2010,44 (17), 6822-6828.
    [38]Yuan, R.; Ramjaun, S. N.; Wang, Z.; Liu, J. Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: Implications for formation of chlorinated aromatic compounds. J. hazard. Mater. 2011,196,173-179.
    [39]Klaning, U. K.; Wolff, T. Laser flash photolysis of HC1O, ClO-, HBrO and BrO-in aqueous solution. Reactions of Cl- and Br-atoms. Ber. Bunsen-Ges. Phys. Chem.1985,89 (3),243-245.
    [40]Fang, J.; Shang, C. Bromate Formation from Bromide Oxidation by the UV/Persulfate Process. Environ. Sci. Technol.2012,46 (16),8976-8983.
    [41]Lampre, I.; Marignier, Jean-L.; Mirdamadi-Esfahani, M.; Pernot, P.; Archirel, P.; Mostafavi, M. Oxidation of bromide ions by hydroxyl radicals:Spectral characterization of the intermediate BrOH·-. J. Phys. Chem. A 2013,117 (5), 877-887.
    [42]Ahmad, M.; Teel, A. L.; Watts, R. J. Mechanism of persulfate activation by phenols. Environ. Sci. Technol.2013,47 (11),5864-5871.
    [43]Feng, Y.; Colosi, L. M.; Gao, S.; Huang, Q.; Mao, L. Transformation and removal of tetrabromobisphenol A from water in the presence of natural organic matter via laccase-catalyzed reactions:Reaction rates, products, and pathways. Environ. Sci. Technol.2013,47 (2),1001-1008.
    [44]Pang, S.; Jiang, J.; Gao,Y.; Zhou, Y.; Huangfu, X.; Liu, Y.; Ma, J. Oxidation of flame retardant tetrabromobisphenol A by aqueous permanganate:Reaction kinetics, brominated products, and pathways. Environ. Sci. Technol.2014,48 (1), 615-623.
    [45]An, J.; Zhu, L.; Wang, N.; Song, Z.; Yang, Z.; Du, D.; Tang, H. Photo-Fenton like degradation of tetrabromobisphenol A with grapheme-BiFeO3 composite as a catalyst. Chem. Eng. J.2013,219,225-237.
    [46]Fukushima, M.; Mizutani, Y.; Maeno,S.; Zhu,Q.; Kuramitz, H.; Nagao, S. Influence of halogen substituents on the catalytic oxidation of 2,4,6-halogenated phenols by Fe(III)-tetrakis(p-hydroxyphenyl) porphyrins and potassium monopersulfate. Molecules 2012,17 (1),48-60.
    [47]Monserrate, E.; Haggblom, M. M. Dehalogenation and biodegradation of brominated phenols and benzoic acids under iron-reducing, sulfidogenic, and methanogenic conditions. Appl. Environ. Microbiol.1997,63 (10),3911-3915.
    [1]Fukushima, M.; Mizutani, Y.; Maeno, S.; Zhu, Q.; Kuramitz, H.; Nagao, S. Influence of halogen substituents on the catalytic oxidation of 2,4,6-halogenated phenols by Fe(Ⅲ)-tetrakis(p-hydroxyphenyl)porphyrins and potassium monopersulfate. Molecules 2012,17 (1),48-60.
    [2]Monserrate, E.; Haggblom, M. M. Dehalogenation and biodegradation of brominated phenols and benzoic acids under iron-reducing, sulfidogenic, and methanogenic conditions. Appl. Environ. Microbiol.1997,63 (10),3911-3915.
    [3]Mackenzie, K.; Kopinke, F. D. Debromination of duroplasitic flame-retarded polymers. Chemosphere 1996,33 (12),2423-2430.
    [4]Liu, G.; Dai, L.; Gao, X.; Li, M.; Thiemann, T. Reductive degradation of tetrabromobisphenol A (TBBPA) in aqueous medium. Green Chem.2006,8 (9), 781-783.
    [5]Liu, G.; Zhao, H.; Thiemann, T. Zn dust mediated reductive debromination of tetrabromobisphenol A (TBBPA). J. Hazard. Mater.2009,169 (1-3),1150-1153.
    [6]Luo, S.; Yang, S.; Wang, X.; Sun, C. Reductive degradation of tetrabromobisphenol A over iron-silver bimetallic nanoparticles under ultrasound radiation. Chemosphere 2010,79 (6),672-678.
    [7]Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev.1995,95 (1),69-96.
    [8]Sun, C.; Zhao, D.; Chen, C.; Ma, W.; Zhao, J. TiO2-mediated photocatalytic debromination of decabromodiphenyl ether:Kinetics and intermediates. Environ. Sci. Technol.2009,43 (1),157-162.
    [9]Xu, J.; Meng, W.; Zhang, Y.; Li, L.; Guo, C. Photocatalytic degradation of tetrabromobisphenol A by mesoporous BiOBr:Efficacy, products and pathway. Appl. Catal. B:Environ.2011,107 (3-4),355-362.
    [10]Eriksson, J.; Rahm, S.; Green, N.; Bergman, A.; Jakobsson, E. Photochemical transformations of tetrabromobisphenol A and related phenols in water. Chemosphere 2004,54 (1),117-126.
    [11]Ronen, Z.; Abeliovich, A. Anaerobic-aerobic process for microbial degradation of tetrabromobisphenol A. Appl. Environ. Microbiol.2000,66 (6),2372-2377.
    [12]Tshirch, J.; Dillert, R.; Bahnemann, D.; Proft, B.; Biedermann, N.; Goer, B. Photodegradation of methylene blue in water, a standard method to determine the activity of photocatalytic coatings. Res. Chem. Intermed.2008,34 (4),381-392.
    [13]Chen, D. Ray, A. K. Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2. App. Catal. B:Environ.1999,23 (2-3),143-157.
    [14]Choi, W. Hoffmann, M. R. Photoreductive mechanism of CCl4 degradation on TiO2 particles and effects of electron donors. Environ. Sci. Technol.1995,29 (6), 1646-1654.
    [15]Choi, W. Hoffmann, M. R. Novel photocatalytic mechanisms for CHCl3, CHBr3, and CCl3CO2-degradation and the fate of photogenerated trihalomethyl radicals on TiO2. Environ. Sci. Technol.1997,31 (1),89-95.
    [16]Liu, H.; Liu, G.; Fan, J.; Zhou, Q.; Zhou, H.; Zhang, N.; Hou, Z.; Zhang, M.; He, Z. Photoelectrocatalytic degradation of 4,4'-dibromobiphenyl in aqueous solution on TiO2 and doped TiO2 nanotube arrays. Chemosphere 2011,82 (1),43-47.
    [17]Gratzel, M. Heterogeneous photochemical electron transfer reactions. CRC Press: Boca Raton, FL,1987.
    [18]Papaconstantinou, E. Relative electron-donating ability of simple alcohol radicals toward 12-heteropolytungstates. A pulse radiolysis study. J. Chem. Soc., Faraday Trans.1982,78 (1),2769-2772.
    [19]Kim, S.; Choi, W. Dual photocatalytic pathways of trichloroacetate degradation on TiO2:Effects of nanosized platinum deposits on kinetics and mechanism. J. Phys. Chem. B 2002,106 (51),13311-13317.
    [20]Matasovic, B.; Bonifacic, M. Reductive halogen elimination from phenols by organic radicals in aqueous solutions; Chain reaction induced by proton-coupled electron transfer. J. Phys. Chem. A 2007,111 (35),8622-8628.
    [21]Lin, K.; Liu, W.; Gan, J. Reaction of tetrabromobisphenol A (TBBPA) with manganese dioxide:Kinetics, products, and pathways. Environ. Sci. Technol. 2009,43 (12),4480-4486.
    [22]Feng, Y.; Colosi, L. M.; Gao, S.; Huang, Q.; Mao, L. Transformation and removal of tetrabromobisphenol A from water in the presence of natural organic matter via laccase-catalyzed reactions:Reaction rates, products, and pathways. Environ. Sci. Technol.2013,47 (2),1001-1008.
    [23]Pang, S.; Jiang, J.; Gao,Y.; Zhou, Y.; Huangfu, X.; Liu, Y.; Ma, J. Oxidation of flame retardant tetrabromobisphenol A by aqueous permanganate:Reaction kinetics, brominated products, and pathways. Environ. Sci. Technol.2014,48 (1), 615-623.
    [1]Anipsitakis, G. P.; Dionysiou, D. D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ. Sci. Technol.2003,37 (20),4790-4797.
    [2]Chen, X.; Chen, J.; Qiao, X.; Wang, D.; Cai, X. Performance of nano-Co3CO4/peroxymonosulfate system:Kinetics and mechanism study using Acid Orange 7 as a model compound. Appl. Catal. B:Environ.2008,80 (1-2), 116-121.
    [3]Yang, Q.; Choi, H.; Al-Abed, S. R.; Dionysiou, D. D. Iron-cobalt mixed oxide nanocatalysts:Heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications. Appl. Catal. B:Environ. 2009,88 (3-4),462-469.
    [4]Yuan, R.; Ramjaun, S. N.; Wang, Z.; Liu, J. Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: Implications for formation of chlorinated aromatic compounds. J. Hazard. Mater. 2011,196,173-179.
    [5]Neta, P.; Huie, R. E.; Ross A. B. Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data 1988,17 (3),1027-1284.
    [6]Antoniou, M. G.; de la Cruz, A. A.; Dionysiou, D. D. Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis, and e- transfer mechanisms. Appl. Catal. B:Environ.2010,96 (3-4),290-298.
    [7]Shukla, P. R.; Wang, S.; Ang, H. M.; Tade, M. O. Photocatalytic oxidation of phenolic compounds using zinc oxide and sulphate radicals under artificial solar light. Sep. Purif. Technol.2010,70 (3),338-344.
    [8]Tan, C.; Gao, N.; Deng, Y.; Zhang, Y.; Sui, M.; Deng, J.; Zhou, S. Degradation of antipyrine by UV, UV/H2O2 and UV/PS. J. Hazard. Mater.2013,260,1008-1016.
    [9]Kotronarou, A; Sigg, L. SO2 oxidation in atmospheric waters:Role of Fe(II) and effect of ligands. Environ. Sci. Technol.1993,27 (13),2725-2735.
    [10]Lee, Y. J.; Rochelle, G T. Oxidative degradation of organic acid conjugated with sulfite oxidation in flue gas desulfurization:Products, kinetics, and mechanism. Environ. Sci. Technol.1987,21 (3),266-272.
    [11]Brandt, C.; Fabian, I.; van Eldik, R. Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(Ⅳ) oxides in aqueous solution. Evidence for the redox cycling of iron in the presence of oxygen and modeling of the overall reaction mechanism. Inorg. Chem.1994,33 (4),687-701.
    [12]Chen, L.; Peng, X.; Liu, J.; Li, J.; Wu, F. Decolorization of Orange II in aqueous solution by an Fe(II)/sulfite system:Replacement of persulfate. Ind. Eng. Chem. Res.2012,51 (42),13632-13638.
    [13]Zhang, Y.; Zhou, J.; Li, C.; Guo, S.; Wang, G Reaction kinetics and mechanism of iron(II)-induced catalytic oxidation of sulfur(IV) during wet desulfurization. Ind. Eng. Chem. Res.2012,51 (3),1158-1165.
    [14]Reddy, K. B.; Eldik, R. V. Kinetics and mechanism of the sulfite-induced autoxid of Fe(II) in acidic aqueous solution. Atmos. Environ.1992,26A (4),661-665.
    [15]Faust, B. C.; Hoigne, J. Photolysis of Fe(III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain. Atmos. Environ.1990,24 (1),79-89.
    [16]Zepp, R. G.; Faust, B. C.; Hoigne, J. Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron(II) with hydrogen peroxide:The photo-Fenton reaction. Environ. Sci. Technol.1992,26 (2),313-319.
    [17]Pignatello, J. J.; Liu, D.; Huston, P. Evidence for an additional oxidant in the photoassisted Fenton reaction. Environ. Sci. Technol.1999,33 (11),1832-1839.
    [18]Ma, J.; Ma, W.; Song, W.; Chen, C.; Tang Y.; Zhao, J.; Huang, Y.; Xu, Y.; Zang, L. Fenton degradation of organic pollutants in the presence of low-molecular-weight organic acids:Cooperative effect of quinone and visible light. Environ. Sci. Technol.2006,40 (2),618-624.
    [19]Klamerth, N.; Malato, S.; Aguer, A.; Fernandez-Alba A. Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents:A comparison. Water Res.2013,47 (2), 833-840.
    [20]Zuo, Y.; Zhan, J.; Wu, T. Effects of monochromatic UV-Visible Light and sunlight on Fe(III)-catalyzed oxidation of dissolved sulfur dioxide. J. Atmos. Chem.2005, 50 (2),195-210.
    [21]Tamura, H.; Goto, K.; Yotsuyanagi, T.; Nagayama, M. Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III).Talanta 1974,21 (4),314-318.
    [22]Wang, Z.; Chen, X.; Ma, W.; Chen, C.; Zhao, J. Photochemical cycling of iron mediated by dicarboxylates:Special effect of malonate. Environ. Sci. Technol. 2010,44(1),263-268.
    [23]Humphrey, R. E.; Ward, M. H.; Hinze, W. Spectrophotometric determination of sulfite with 4,4'-dithiodipyridine and 5,5'-dithiobis-(2-nitrobenzoicacid). Anal. Chem.1970,42 (7):698-702.
    [24]Zuo, Y.; Zhan, J. Effects of oxalate on Fe-catalyzed photooxidation of dissolved sulfur dioxide in atmospheric water. Atmos. Environ.2005,39 (1),27-37.
    [25]Puigdomenech, I. MEDUSA-Make Equilibrium Diagrams Using Sophisticated Algorithms; 32 bit version; Inorganic Chemistry Royal Institute of Technology 100 44 Stockholm, Sweden; 2010.
    [26]Graedel, T. E.; Weschler, C. J. Chemistry within aqueous atmospheric aerosols and raindrops. Rev. Geophys.1981,19 (4),505-539.
    [27]Beilke, S.; Gravenhorst, G. Heterogeneous SO2-oxidation in the droplet phase. Atmos. Environ.1978,12 (1-3),231-239.
    [28]Betterton, E. A.; Hoffmann, M. R. Oxidation of aqueous SO2 by peroxymonosulfate. J. Phys. Chem.1988,92 (21),5962-5965.
    [29]Zuo, Y.; Hoign6, J. Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(Ⅲ)-oxalato complexes. Environ. Sci. Technol.1992,26 (5),1014-1022.
    [30]Panda, N.; Sahoo, H.; Mohapatra, S. Decolourization of Methyl Orange using Fenton-like mesoporous Fe2O3-SiO2 composite. J. Hazard. Mater.2011,185 (1), 359-365.
    [31]Ramjaun, S. N.; Yuan, R.; Wang, Z.; Liu, J. Degradation of reactive dyes by contact glow discharge electrolysis in the presence of Cl- ions:Kinetics and AOX formation. Electrochim. Acta 2011,58,364-371.
    [32]Abrahamson, H. B.; Rezvani, A. B.; Brushmiller, J. G Photochemical and spectroscopic studies of complexes of iron(III) with citric acid and other carboxylic acids. Inorg. Chim. Acta 1994,226 (1-2),117-127.
    [33]Kari, F. G.; Hilger, S.; Canonica, S. Determination of the Reaction Quantum Yield for the photochemical degradation of Fe(Ⅲ)-EDTA:Implications for the Environmental Fate of EDTA in Surface Waters. Environ. Sci. Technol.1995,29 (4),1008-1017.
    [34]Li, P.; Ma, Z.; Wang, W.; Shen, Z.; Bi, S.; Sun, H.; Bu Y. Coupling Interactions between sulfurous acid and the hydroperoxyl radical. ChemPhysChem 2010,11 (3),696-705.
    [35]Muller, J. G; Zheng, P.; Rokita, S. E.; Burrows, C. J. DNA and RNA modification promoted by [Co(H2O)6]Cl2 and KHSO5:Guanine selectivity, temperature dependence, and mechanism. J. Am. Chem. Soc.1996,118 (10),2320-2325.
    [36]Muller, J. G.; Hickerson, R. P.; Perez, R. J.; Burrows, C. J. DNA damage from sulfite autoxidation catalyzed by a nickel(II) peptide. J. Am. Chem. Soc.1997, 119(7),1501-1506.
    [37]Hickerson, R. P.; Watkins-Sims, C. D.; Burrows, C. J.; Atkins, J. F.; Gesteland, R. F.; Felden, B. A nickel complex cleaves uridine in folded RNA structures: Application to E.coli tmRNA and related engineered molecules. J. Mol. Biol. 1998,279 (3),577-587.
    [38]Stemmler, A. J.; Burrows, C. J. Guanine versus deoxyribose damage in DNA oxidation mediated by vanadium(IV) and vanadium-(V) complexes. J. Biol. Inorg. Chem.2001,6(1),100-106.
    [39]Mottley, C.; Mason, R. P. Sulfate anion free radical formation by the peroxidation of (Bi)sulfite and its reaction with hydroxyl radical scavengers. Arch. Biochem. Biophys.1988,267 (2),681-689.
    [40]Anipsitakis, G P.; Dionysiou, D. D. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol.2004,38 (13), 3705-3712.
    [41]Kraft, J.; van Eldik, R. Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution. I. Formation of transient iron(III)-sulfur(IV) complexes. Inorg. Chem.1989,28 (12),2297-2305.
    [42]Riga, A.; Soutsas, K.; Ntampegliotis, K.; Karayannis, V.; Papapolymerou, G Effect of system parameters and of inorganic salts on the decolorization and degradation of Procion H-exl dyes. Comparison of H2O2/UV, Fenton, UV/Fenton, TiO2/UV and TiO2/UV/H2O2 processes. Desalination,2007,211 (1-3),72-86.
    [43]Xu, L.; Yuan, R.; Guo, Y.; Xiao, D.; Cao, Y.; Wang, Z.; Liu, J. Sulfate radical-induced degradation of 2,4,6-trichlorophenol:A de novo formation of chlorinated compounds. Chem. Eng. J.2013,217,169-173.
    [44]Grebel, J. E.; Pignatello, J. J.; Mitch, W. A. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters. Environ. Sci. Technol.2010,44 (17), 6822-6828.
    [45]Czaplicka, M. Photo-degradation of chlorophenols in the aqueous solution. J. Hazard. Mater.2006,134 (1-3),45-59.
    [46]Hildenbrand, K.; Behrens, K.; Schulte, F. D. Comparison of the reaction of ·OH and of SO4·- radicals with pyrimidine nucleosides. An electron spins resonance study in aqueous solution. J. Chem. Soc.1989,2 (3),283-289.
    [47]Poerschmann, J.; Trommler, U. Pathways of advanced oxidation of phenol by Fenton's reagent-Identification of oxidative coupling intermediates by extractive acetylation. J. Chromatogr. A 2009,1216 (29),5570-5579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700