用户名: 密码: 验证码:
基于GIS与模型的小麦籽粒品质生态区划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进行作物生态条件及其生态反应相似性或差异性的空间分析和区划研究,有助于充分利用与挖掘自然资源和品种遗传潜力,设计优质、高产和高效的作物生产模式,推动作物生产的区域化、产业化发展,对指导区域作物生产及粮食安全保障具有重要意义。地统计学理论是研究空间变量分布及变异规律的有效方法之一,但前人甚少将其引入进行作物品质的定量化空间分析与生态区划研究。本研究以小麦为对象,在建立模型输入参数空间数据源的基础上,首先研究了小麦籽粒品质预测模型的空间升尺度方法;其次,基于地统计学理论,探讨了基于网格点的小麦籽粒品质空间变异特征的定量化分析方法;然后,基于非监督分类算法初步提出了小麦籽粒品质生态区划方案;最后,通过有效耦合与集成基础数据、小麦模型与WebGIS平台等,建立了具有综合功能的数字麦作支持系统。研究成果有助于促进作物模型的尺度化和区域化应用,确立小麦品质的空间变异规律和生态区划,为数字麦作及现代农业的发展奠定技术基础。
     首先基于小麦籽粒品质预测模型的参数需求和区域性气候因子的变化特征,通过比较3种空间插值法的模拟精度,确定普通克里格法为适宜的气象数据空间插值法。以此对江苏省和我国主要冬麦区内气象台站实际观测的逐日最高气温、最低气温、日照时数和降雨量4个主要气候要素进行了空间推算,生成了2个研究区域逐日4个气候要素5km×5km空间分辨率栅格图以及区域内6个冬小麦品种开花至成熟期的日均温、日较差、总日照时数和总降雨量4个气象因子5km×5km空间分辨率栅格图,为小麦籽粒品质预测模型的升尺度研究、品质空间变异分析和生态区划提供了区域化基础数据平台。
     通过解析小麦籽粒品质预测模型的机理及模型升尺度的技术路径,基于构建的区域化基础数据平台,研究探讨了小麦籽粒品质预测模型的空间升尺度方法。首先采用“先计算后插值”和“先插值后计算”两种升尺度方法,模拟了小麦籽粒品质预测模型的区域表现,进而确定“先插值后计算”为小麦籽粒品质预测模型的适宜升尺度方法。然后,在不同气象环境下对模型进行了区域应用,所得结果与点尺度下的情景基本吻合,表明小麦籽粒品质预测模型“先插值后计算”的升尺度方法具有较好的区域适用性。
     基于地统计学理论和品质空间变异模式,运用半方差函数理论和模型升尺度方法,探索了定量小麦籽粒品质空间变异规律的方法。首先对小麦籽粒品质预测模型的区域模拟结果进行了半方差函数拟合;其次,基于拟合函数的特征参数进行了籽粒品质的空间相关性、最大相关范围、不同方向空间变异性的定量化分析。结果显示,基于地统计学和模型升尺度方法,可有效融合基于网格点的品质指标与地理空间坐标,从而进行区域内籽粒品质指标空间变异的定量化分析,且精细的栅格图可直观、定量地描述区域内品质空间分布和变异趋势。
     运用小麦籽粒品质预测模型的升尺度方法和籽粒品质空间变异的定量化方法,分析提出了我国主要冬麦区的小麦品质生态区划。首先,对我国主要冬麦区的气候环境和升尺度品质预测结果进行了定量分析。然后,以区域模拟结果为数据源,建立了空间计算模型,并对各品质指标数据进行了基于网格点的融合处理,进而以非监督分类法对各网格单元进行了基于主要品质指标的空间聚类。最后,根据国家小麦籽粒品质标准,分析评价归属于同一空间区域的主要品质指标统计值,提出了数字化小麦籽粒品质生态区划方法。根据研究结果,初步将我国主要冬麦区划分为强筋、中强筋、中筋、中弱筋和弱筋5个冬小麦籽粒品质生态区,并以精细的栅格图实现了直观、定量的空间表达。
     在上述工作的基础上,通过探索小麦品质预测模型、管理知识模型和生长模拟模型与WebGIS技术的集成机制,提出了“XML技术+自定义地图引擎”的技术思路,设计了合理的系统体系结构,建立了基于模型和WebGIS的数字麦作支持系统(MGDWFSS).系统实现了网络环境下小麦适宜栽培方案设计、生长动态模拟、产量品质预测、品质生态区划及生产管理决策等综合功能。从而为作物模型的升尺度应用提供了量化方法与关键技术,为区域小麦品质分析评价与管理决策提供了数字化平台。
Spatial analysis and zoning on the similarities and differences of crop ecological factors and responses are of vital significance for regional crop production and food security in China. It helps to design high-quality, high-yield and high-efficiency crop production patterns, drive its regionalization and industrialization, as well as make full use of natural resources and excavate species' genetic potentials. Geostatistic theory serves as one of effective means to study spatial distribution and variation of production factors; however, it has rarely been used in quantified spatial analysis and zoning of crop quality. In this research, firstly, spatial data sources were built as input variables of a wheat grain quality estimation model, spatial scaling-up methods for model prediction were studied, and spatial variability of grain quality in wheat was quantified to the granularity of grid based on the geostatistical theory. Then, a preliminary digital ecological zoning scheme of wheat grain quality was proposed based on the unsupervised classification algorithm. Finally, a comprehensive digital wheat farming support system is established through effective coupling and integration of database, wheat models and WebGIS platform. The results will help promote applications of crop models at regional scale, evaluate the spatial variation of wheat quality and make ecological zoning, and provide the technical basis for development of digital wheat farming and modern agriculture.
     First, based on the parameter demand of the wheat grain quality estimation model and the change characteristics of regional climate, the method of Ordinary Kriging was determined as the appropriate spatial weather data interpolation method by comparing the precision of three different spatial interpolation methods. Then, the actual daily maximum temperature, minimum temperature, rainfall and sunlight hours, obtained from different weather stations within Jiangsu Province and across main winter wheat growing regions in China, were interpolated using this method at the 5km×5km resolution to generate the spatial grid map for two study areas of these four climate elements on a daily basis, as well as the spatial grid map of the four climatic factors (average daily temperature, difference of diurnal temperatures, total sunlight hours, and total rainfall) for six winter wheat varieties from anthesis to maturity. The results provide the basis regional data platform with high spatial-temporal resolution for scaling-up of wheat grain quality estimation model, and for analyzing spatial quality variation and making spatial ecology zoning.
     By analyzing the estimation mechanism of wheat grain quality model and technical approach of model scaling-up, the scaling-up method was explored based on the regional data platform. First, the regional performance of the wheat grain quality estimation model was simulated in two different ways. One way was to run the model at each location and then interpolate its results on a grid (i.e., "calculate first, interpolate later", denoted by "CI"). The other way was to interpolate the model inputs on a grid firstly, and then run the model at each grid nodes (i.e., "interpolate first, calculate later", denoted by "IC"). The IC technology turns out to be suitable for scaling up the wheat grain quality estimation model. Then, the model was applied at regional scale under various climate conditions, and the results were largely consistent with the results obtained by applying wheat grain quality estimation model under point scale scenarios.
     Based on the geostatistical theory and the spatial pattern of grain quality variation, quantitative methods to explore the characteristics of wheat grain quality variation were studied with semi-variance function theory and the suitable model scale-up method. First, regional simulation results were analyzed with semi-variance function; secondly, based on the characteristic parameters of the fitting function, the grain quality was quantitatively analyzed for spatial correlations, the maximum correlation scope, as well as spatial variability in different directions. The results show that based on geostatistics and scale-up model, quality indices based on grid can be effectively integrated with geo-spatial coordinates. The spatial variation of regional grain quality indices can be quantified, and the fine mapping based on grid can intuitively quantify the spatial distribution and variation trend of regional grain quality.
     The digital wheat quality zoning in China's main winter wheat growing regions was established based on the up-scaling wheat grain quality estimation model and the quantitative analysis of spatial variability. First, the climate environment of China's main winter wheat growing areas and the predicted quality results were quantitatively analyzed. Then, the quality indices simulated through up-scaling model were integrated with grid and an established spatial calculation model. The main quality indices were clustered spatially based on the non-supervision classification algorithm. Finally, according to the national standards of wheat grain quality, the statistical characteristics of main quality indices from the same region were analyzed and evaluated, resulting in a digital wheat grain quality ecological zoning method. Based on the above method, China's main winter wheat growing regions were divided into five primary ecological zones, with a fine mapping based on grid for a visual, quantitative and spatial expression.
     Based on the above-mentioned results, the mechanism and methodology for integrating the GIS technology with wheat grain quality estimation model, management knowledge model and growth simulation model were further explored. By designing a reasonable framework of system architecture with the XML technology plus a custom map engine, a model and WebGIS-based digital wheat farming support system (MGDWFSS) was developed. The system realized the comprehensive functions as suitable cultivation plan design, dynamic growth simulation, yield and quality forecasting, quality ecological zoning, and management decision-making in a network environment. Overall, the present study has provided quantitative methods and key technologies for up-scaling crop system models. It has also constructed a digital platform for regional productivity analysis and evaluation as well as management decision-making in wheat production.
引文
[1]许为钢,曹广才,魏湜.中国专用小麦育种与栽培.北京:中国农业出版社,2006.
    [2]金善宝.中国小麦学.北京:中国农业出版社,1996.
    [3]曹卫星,郭文善,王龙俊,等.小麦品质生理生态及调优技术.中国农业出版社,2005.
    [4]田纪春.优质小麦.济南:山东科学技术出版社,1995.
    [5]王绍中,季书勤,刘发魁,等.小麦品质生态与品质区划研究:生态因子与小麦品质的关系.河南农业科学,1995,(11):2-6.
    [6]荆奇,姜东,戴廷波,等.基因型与生态环境对小麦籽粒品质与蛋白质组方的影响.应用生态学报,2003,14(10),1649-1653.
    [7]朱金宝,刘广田,张树榛.基因型和环境对小麦烘烤品质的影响.作物学报,1995,21(6):679-684.
    [8]邢先贵.优质小麦品种在不同栽培条件下的产量和品质表现.华中农业大学学报,1996,15(2):117-121.
    [9]林素兰.环境条件及栽培技术对小麦品质的影响.辽宁农业科学,1997,(2):30-31.
    [10]王立秋,靳占忠,曹敬山,等.水肥因子对小麦籽粒及面包烘烤品质的影响.中国农业科学,1997,30(3):67-63.
    [11]荆奇,曹卫星,戴廷波.小麦籽粒品质形成及其调控研究进展.麦类作物学报,1999,19(4):46-50.
    [12]金善宝.中国小麦生态.北京:中国科学出版社,1991.
    [13]曹广才,王邵中.小麦品质生态.北京:中国科学技术出版社,1994,35-140.
    [14]李永庚.山东省不同生态类型区小麦品质的差异及其生理基础.博士论文,2001.
    [15]李洪恩.中国小麦种质资源主要品质鉴定.西安:陕西科学技术出版社,1992.
    [16]董洪平.小麦蛋白质含量的遗传型与环境互作分析.河北农业大学学报,1989,(3):20-26.
    [17]姚艳荣,贾秀领,马瑞,等.冀中南强筋小麦品种品质性状稳定性差异及地域和气候因子效应.华北农学报,2006,21(增刊):23-28.
    [18]Daniel C, Triboy E. Changes in wheat protein aggregation during grain development:effects of temperatures and water stress. European Journal of Agronomy,2002,16,1-12.
    [19]郭天财,马冬云,朱云集,等.冬播小麦品种主要品质性状的基因型与环境及其互作效应分析.中国农业科学,2004,37(7):948-953.
    [20]潘洁,姜东,戴廷波,等.不同生态环境与播种期下小麦籽粒品质变异规律的研究.植物生态学报,2005,29(3):467-473.
    [21]郭天财,张学林,樊树平,等.不同环境条件对三种筋型小麦品质性状的影响.应用生态学报,2003,14(6):917-920.
    [22]U. S. Wheat Association.2000 Crop Quality Report. Beijing,2000.
    [23]Ron Depauw, et al. Canadian wheat pool. The World Wheat Book, A History of Wheat Breeding. Lavoisier Pubisher,2000:479-513.
    [24]Lindsay O'Brien, et al. Genetic pool of Australia wheats. The World Wheat Book, A History of Wheat Breeding. Lavoisier Pubisher,2000:611-664.
    [25]中国农业部.中国小麦品质区划方案(试行).中国农业信息快讯,2001,6:19-20.
    [26]王绍中,季书勤,刘发魁,等.河南省小麦品质生态区划.河南农业科学,2001,(9):4-5.
    [27]钱存鸣.江苏省小麦品质区划研究.江苏农业科学,1990,(6):8-11.
    [28]马传喜.安徽省小麦品质区划的初步研究.安徽农学通报,2001,7(5):25-27.
    [29]王教,陈光斗,邹军容.陕西省强筋优质小麦基地建设及实施开发的探讨.陕西农业科学,2002,(9):27-30.
    [30]邓振镛,尹东,张毅.甘肃省小麦生态气候适生种植区的研究.气象科技,2000,(1):36-40.
    [3 1]李永庚,于振文,梁晓芳,等.山东省强筋小麦种植区划的研究.山东农业科学,2001,(5):3-9.
    [32]吴天琪,郭洪海,张希军,等.山东省优质专用小麦种植区划研究.中国农业资源与区划,2002,23(5):1-5.
    [33]曹卫星,罗卫红.作物系统模拟及智能管理.北京:高等教育出版社.2003:3-18.
    [34]Jones C A, Kiniry F R. CERES-Maize:A simulation model of maize growth and development. College station, US:Tesas S&M Univ. Press,1986.
    [35]Van Kenlen H. Crop production under semi-arid conditions, as determined by nitrogen and moisture availability. In:Penning de Vries F W T. Van Laar H H eds. Simulation Monographs. Wageningen, Netherlands:PUDOC,1982.234-251.
    [36]曹卫星,朱艳.作物管理知识模型.北京:中国农业出版社,2005:1-44.
    [37]张艳,何中虎,周桂英,等.基因型和环境对我国冬播麦区小麦品质性状的影响.中国粮油学报,1999,14(5):1-5.
    [38]潘洁.小麦生长模拟与决策支持系统的研究.南京:南京农业大学博士论文,2005.
    [39]潘洁,戴廷波,姜东,等.基于气候因子效应的冬小麦籽粒蛋白质含量预测模型.中国农业科学,2005,38(4):684-691.
    [40]Wesseling JG, Feddes RA. Assessing crop water productivity from field to regional scale. Agricultural Water Management,2006,86:30-39.
    [41]Hartkamp AD, White JW, Rossing WAH, et al. Regional application of a cropping systems simulation model:crop residue retention in maize production systems of Jalisco, Mexico. Agricultural Systems,2004,82:117-138.
    [42]Riitta AS. Applying a site based crop model to estimate regional yields under current and changed climates. Ecological Modelling,2000,131:191-206.
    [43]Guerra LC, Garcia AG, Hook JE, et al. Irrigation water use estimates based on crop simulation models and kriging. Agricultural Water Management,2007,89:199-207.
    [44]Bechini L, Bocchi S, Maggiore T. Spatial interpolation of soil physical properties for irrigation planning. A simulation study in north Italy. European Journal of Agronomy,2003,19:1-14.
    [45]Wu D-R, Yu Q, Lu C-H, et al. Quantifying production potentials of winter wheat in the North China Plain. European Journal of Agronomy,2006,24:226-235.
    [46]马玉平,王石立,张黎,等.基于升尺度方法的华北冬小麦区域生长模型初步研究Ⅰ.潜在生产水平.作物学报,2005,3 1(6):697-705.
    [47]孟庆岩,李强子,吴炳方.农作物单产预测的运行化方法.遥感学报,2004,8(6):602-610.
    [48]Moen TN, Kaiser HM, Riha SJ. Regional yield estimation using a crop simulation model:concepts, methods, and validation. Agricultural System,1994,46:79-92.
    [49]Chipanshi A C, Ripley E A, Lawford R G. Large-scale simulation of wheat yield in semi-arid environments using a crop-growth model. Agricultural System,1999,59:57-66.
    [50]Ma Y P, Wang S L, Zhang L, et al. A preliminary study on a regional growth simulation model of winter wheat in north china based on scaling-up approach I. Potential production level. Acta Agronomica Sinica,2005,31(6):697-705.
    [51]Riitta A S. Applying a site based crop model to estimate regional yields under current and changed climates. Ecological Modelling,2000,131:191-206.
    [52]Guerra L C, Garcia A G, Hook J E, et al. Irrigation water use estimates based on crop simulation models and kriging. Agricultural Water Management,2007,89:199-207.
    [53]Bechini L, Bocchi S, Maggiore T. Spatial interpolation of soil physical properties for irrigation planning. A simulation study in north Italy. European Journal of Agronomy,2003,19:1-14.
    [54]Bechini L, Ducco G, Donatelli M, et al. Modeling, interpolation and stochastic simulation in space and time of global solar radiation. Agriculture, Ecosystems and Environment,2000,81,29-42.
    [55]Webster, R. Quantitative spatial analysis of soil in the field. Advance in Soil Science.1985:1-10.
    [56]王仁择,胡光道.线性地质统计学.北京:地质出版社,1988.
    [57]Issaks E H, Srivastava R M. An introduction to applied geostatistics. New York, USA:Oxford University Press,1989.
    [58]孟键,马小明.Kriging空间分析法及其在城市大气污染中的应用.数学的实践与认识,2002,32(2):309-312.
    [59]王珂,许红卫,John S. Bailey,等.土壤钾素空间变异性和空间插值方法的比较研究.植物营养与肥料学报,2000,6(3):318-322.
    [60]王政权.地统计学及在生态学中的应用.北京:科学出版社,1999:65-132.
    [61]李德仁,王树良,李德毅.空间数据挖掘理论与应用.北京:科学出版社,2006.
    [62]Matheron G Principles of geostatistics. Economic Geology,1963,58:1246-1266.
    [63]David M. J. Geostatistical or reserve estimation. Amsterdam Elsevier,1977.
    [64]Journel A. G. and C. J. Huijbregts. Mining geostatistics. London:Academic Press,1978.
    [65]侯景儒,郭光裕.矿床统计预测及地址统计学的理论及应用.北京:冶金工业出版社,1993.
    [66]孙洪泉.地址统计学及其应用.北京:中国矿业大学出版社,1990.
    [67]Webster, R. Quantitative spatial analysis of soil in the field. Advances in Soil Science.1985,3:1-70.
    [68]Cambardella C A, Moorman T B, Novak Jhi, et al. Field-scale variability of soil properties in cental Iowa soils. Soil Science Society of America Journal,1994,58:1501-1511.
    [69]Burgos, P., Madejon, E., Perez-de-Mora, et al. Spatial variability of the chemical characteristics of a trace-element-contaminated soil before and after remediation. Geoderma.2006,130:157-175.
    [70]张仁铎.空间变异理论及应用.北京:科学出版社.2005.
    [71]史丹,李艳.地统计学在土壤学中的应用.北京:中国农业出版社.2006.
    [1]许为钢,曹广才,魏湜.中国专用小麦育种与栽培.北京:中国农业出版社,2006,13-197.
    [2]Webster, R. Quantitative spatial analysis of soil in the field. Advance in Soil Science.1985:1-10.
    [3]曹广才,王邵中.小麦品质生态.北京:中国科学技术出版社,1994,35-140.
    [4]李鸿恩,张玉良,吴秀琴,等.我国小麦种质资源主要品质特性鉴定结果及评价.中国农业科学,1995,28(5):29-37.
    [5]Daniel C, Triboy E. Changes in wheat protein aggregation during grain development:effects of temperatures and water stress. European Journal of Agronomy,2002,16,1-12.
    [6]郭天财,马冬云,朱云集,等.冬播小麦品种主要品质性状的基因型与环境及其互作效应分析.中国农业科学,2004,37(7):948-953.
    [7]王绍中,季书勤,刘发魁,等.小麦品质生态及品质区划研究Ⅱ.生态因子与小麦品质的关系.河南农业科学,1995,(11):3-6.
    [8]王绍中,刘发魁,张玲,等.小麦品质生态及品质区划研究Ⅲ.河南省小麦品质生态区划.河
    南农业科学,1995,2:3-9.
    [9]吴天琪,郭洪海,张希军,等.山东省优质专用小麦种植区划研究.中国农业资源与区划,2002,23(5):1-5.
    [10]赵广才,常旭虹,刘利华,等.河北省小麦品质生态区划研究.麦类作物学报,2007.27(6):1042-1046.
    [11]贺文强,苗果园,张永清,等.山西省小麦品质区划研究.山西师范大学学报(自然科学版),2006,20(2):82-84.
    [12]潘洁.小麦生长模拟与决策支持系统的研究.南京:南京农业大学博士论文,2005.
    [13]潘洁,戴廷波,姜东,等.基于气候因子效应的冬小麦籽粒蛋白质含量预测模型.中国农业科学,2005,38(4):684-691.
    [14]Bechini L, Bocchi S, Maggiore T. Spatial interpolation of soil physical properties for irrigation planning. A simulation study in north Italy. European Journal of Agronomy,2003,19:1-14.
    [15]Bechini L, Ducco G, Donatelli M, et al. Modeling, interpolation and stochastic simulation in space and time of global solar radiation. Agriculture, Ecosystems and Environment,2000,81:29-42.
    [16]国家质量技术监督局.中华人民共和国国家标准,小麦,GB/T17892.北京,1999.
    [17]国家质量技术监督局.中华人民共和国国家标准,小麦,GB/T17893.北京,1999.
    [18]刘铁梅,曹卫星,罗卫红.小麦抽穗后生理发育时间的计算与生育期的预测.麦类作物学报,2000,20(3):29-34.
    [19]严美春,曹卫星,李存东.小麦发育过程及生育期机理模型的检验和评价.中国农业科学,2000,33(2):43-50.
    [20]金善宝.中国小麦学.北京:中国农业出版社,1996.
    [21]农业部种植业管理司.小麦主导品种与主推技术.北京:中国农业出版社.1-48.
    [22]徐兆飞,张惠叶,张定一.小麦品质及改良.北京:气象出版社,2000:324-333.
    [23]袁建,杨晓蓉,汪海峰,等.1996-1999年江苏省小麦主要品质性状分析初报.江苏农业科学,2000(6):21-24.
    [24]兰涛,姜东,王连臻,等.不同类型小麦品种品质性状的生态变异.南京农业大学学报,2004,27(3):7-10.
    [25]金善宝.中国小麦生态.北京:中国科学出版社,1991.
    [26]余松烈,郭天财,张宝军.中国小麦栽培理论与实践.上海:上海科学技术出版社,2006:33-223.
    [27]马玉平,王石立,张黎,等.基于升尺度方法的华北冬小麦区域生长模型初步研究Ⅰ.潜在生产水平.作物学报,2005,31(6):697-705.
    [28]王政权.地统计学及在生态学中的应用.北京:科学出版社,1999:65-132.
    [1]王春乙,娄秀荣,王建林.中国农业气象灾害对作物产量的影响.自然灾害学报,2007,16(5):3743.
    [2]张建平,赵艳霞,王春乙,等.气候变化对我国华北地区冬小麦发育和产量的影响.应用生态学报,2006,17(7):1179-1184.
    [3]张嵩午,刘党校.小麦冠温的多态性及其与品质变异的关联.中国农业科学,2007,40(8):1630-1637.
    [4]杨占烈,余显权,黄显洪,等.不同生态条件下影响稻米品质变化的气象因子研究.种子,2006,25(7):78-81.
    [5]李伟明,刘素恩,王志忠,等.棉花纤维品质年际间变化及气象因素影响分析.棉花学报,2005,17(2):103-106.
    [6]张瑞朋,刘雪锋,刘奇,等.气象因子与大豆品质的关系.种子,2006,25(11):66-68.
    [7]刘新安,于贵瑞,范辽生,等.中国陆地生态信息空间化技术研究(Ⅲ)-温度、降水等气候要素.自然资源学报,2004,19(6):818-825.
    [8]庄立伟,王石立.东北地区逐日气象要素的空间插值方法应用研究.应用气象学报,2003,14(5):605-615.
    [9]常文渊,戴新刚,陈洪武.地质统计学在气候要素场插值的实例研究.地球物理学报,2004,47(64):9821-990.
    [10]王景雷,孙景生,张寄阳,等.基于GIS和地统计学的作物需水量等值线图.农业工程学报,2004,20(5):51-54.
    [11]温广玉,侯锡铭,陈华豪.用地统计学方法内插气象台站资料预报林火发生.东北林业大学学报,2002,(4):19-21.
    [12]Daly C,G H Taylor, W P Gibson. The PRISM approach to mapping precipitation and temperature. In Amer. Meteor. Soc. Pro.10th AMS Conf. on Applied Climatology Meteorogical Soc., Reno, NV [C]. Boston, Mass:Amer. Meteor. Soc.,1997.20-23,10-12.
    [13]Christopher Daly, George H Taylor. Development of High-quality Spatial Climate Datasets for the United States [EB/OL]. http://www.ocs.ordt.edu/erim98.html.2002.
    [14]Hutchinson M F. Interpolating mean rainfall using thin plate smoothing splines. International Journal of Geographical Information Systems,1995,9:385-403.
    [15]Stephen J Jeffrey, John, O Cater. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environmental modeling & Software,2001,16:309-330.
    [16]Peter E Thornton, Steven W Running. Generating surfaces of daily meteorological variables over large regions of complex terrain. Journal of hydrology,1997,190:214-251.
    [17]Spatial Bioclimatology:Daymet [EB/OL]. http://www.forestry.utm.eud/ntsg/bioclimatology/daymet. 2002.
    [18]Miquel Ninyrolla, Xavier Pons, Joan M Rouge. A methodological approach of climatological modeling of air temperature and precipitation through GIS techniques. Int. J. Climatol.,2000,20: 1823-1841.
    [19]VEMAP Members. Vegetation/ecosystem modeling and analysis project (VEMAP):comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Global Biogeochem Cycles,1995,9:407-437.
    [20]尚宗波,高琼,杨奠安.利用中国气候信息系统研究年降水量空间分布规律.生态学报,2001,21(5):689-694.
    [21]王政权.地统计学及在生态学中的应用.北京:科学出版社,1999:102-132.
    [22]崔读昌.中国农业气候学.杭州:浙江科学技术出版社,1999:289-322
    [1]曹卫星,罗卫红.作物系统模拟及智能管理.北京:华文出版社.2000:71-81.
    [2]Moen TN, Kaiser HM, Riha SJ. Regional yield estimation using a crop simulation model:concepts, methods, and validation. Agricultural System,1994,46:79-92.
    [3]Chipanshi A C, Ripley E A, Lawford R G. Large-scale simulation of wheat yield in semi-arid environments using a crop-growth model. Agricultural System,1999,59:57-66.
    [4]Jeffrey W W, John D C, Achim D. Insufficient geographic characterization and analysis in the planning, execution dissemination of agronomic research. Field Crops Research,2002,76:45-54.
    [5]Priya S, Shibasaki R. Nationnal spatial crop yield simulation using GIS-based crop production model. Ecological modeling,2000,135(2001):113-129.
    [6]Hartkamp A D, White J W, Rossing W A H, et al. Regional application of a cropping systems simulation model:crop residue retention in maize production systems of Jalisco Mexico. Agricultural Systems,2004,82:117-138.
    [7]Riitta A S. Applying a site based crop model to estimate regional yields under current and changed climates. Ecological Modeling,2000,131:191-206.
    [8]Guerra L C, Garcia A G, Hook J E, et al Irrigation water use estimates based on crop simulation models and kriging. Agricultural Water Management,2007,89:199-207.
    [9]Bechini L, Bocchi S, Maggiore T. Spatial interpolation of soil physical properties for irrigation planning. A simulation study in north Italy. European Journal of Agronomy,2003,19:1-14.
    [10]马玉平,王石立,张黎,等.基于升尺度方法的华北冬小麦区域生长模型初步研究Ⅰ.潜在生产水平.作物学报,2005,31(6):697-705.
    [11]Wu D-R, Yu Q, Lu C-H. Quantifying production potentials of winter wheat in the North China Plain. European Journal of Agronomy,2006,24:226-235.Riitta A S. Applying a site based crop model to estimate regional yields under current and changed climates. Ecological Modelling,2000,131: 191-206.
    [12]Bechini L, Ducco G, Donatelli M, et al. Modeling, interpolation and stochastic simulation in space and time of global solar radiation. Agriculture, Ecosystems and Environment,2000,81:29-42.
    [13]马玉平,王石立.利用遥感技术实现作物模拟模型区域应用的研究进展.应用生态学报,2004,15(9):1655-1661.
    [14]潘洁,戴廷波,姜东,等.基于气候因子效应的冬小麦籽粒蛋白质含量预测模型.中国农业科学,2005,38(4):684-691.
    [15]潘洁.小麦生长模拟与决策支持系统的研究.南京:南京农业大学博士论文,2005.
    [16]兰涛,姜东,王连臻,等.不同类型小麦品种品质性状的生态变异.南京农业大学学报,2004,27(3):7-10.
    [1]Motzo R, Giunta F, Deidda M. Relationships between grain-filling parameters, fertility, earliness and grain protein of durum wheat in a Mediterranean environment. Field Crops Research,1996,47: 129-143.
    [2]金善宝.小麦生态理论与应用.杭州:浙江科学技术出版社,1992:166-172.
    [3]荆奇,姜东,戴廷波,等.基因型与生态环境对小麦籽粒品质与蛋白质组方的影响.应用生态学报,2003,14(10):1649-1653.
    [4]Daniel C, Triboy E. Changes in wheat protein aggregation during grain development:effects of temperatures and water stress. European Journal of Agronomy,2002,16:1-12.
    [5]郭天财,张学林,樊树平,等.不同环境条件对三种筋型小麦品质性状的影响.应用生态学报,2003,14(6):917-920.
    [6]曹卫星,罗卫红.作物系统模拟及智能管理.北京:华文出版社.2000:71-81.
    [7]Priya S, Shibasaki R. Nationnal spatial crop yield simulation using GIS-based crop production model. Ecological modeling,2000,135(2001):113-129.
    [8]Hartkamp A D, White J W, Rossing W A H, et al. Regional application of a cropping systems simulation model:crop residue retention in maize production systems of Jalisco Mexico. Agricultural Systems,2004,82:117-138.
    [9]Riitta A S. Applying a site based crop model to estimate regional yields under current and changed climates. Ecological Modeling,2000,131:191-206.
    [10]Guerra L C, Garcia A G, Hook J E, et al. Irrigation water use estimates based on crop simulation models and kriging. Agricultural Water Management,2007,89:199-207.
    [11]Bechini L, Bocchi S, Maggiore T. Spatial interpolation of soil physical properties for irrigation planning. A simulation study in north Italy. European Journal of Agronomy,2003,19:1-14.
    [12]马玉平,王石立,张黎,等.基于升尺度方法的华北冬小麦区域生长模型初步研究Ⅰ.潜在生产水平.作物学报,2005,31(6):697-705.
    [13]Wu D-R, Yu Q, Lu C-H. Quantifying production potentials of winter wheat in the North China Plain. European Journal of Agronomy,2006,24:226-235.
    [14]王政权.地统计学及在生态学中的应用.北京:科学出版社,1999:65-132.
    [15]张艳,何中虎,周桂英,等.基因型和环境对我国冬播麦区小麦品质性状的影响.中国粮油学报,1999,14(5):1-5.
    [16]蔡大同,王义炳,茆泽圣,等.不同生态条件下播期和氮肥对优质小麦产量和品质性状的影响.植物营养与肥料学报,1994,9(1):72-83.
    [17]李鸿恩,张玉良,吴秀琴,等.我国小麦种质资源主要品质特性鉴定结果及评价.中国农业科学,1995,28(5):29-37.
    [18]吴东兵,曹广才,强小林,等.秋播小麦一些品质性状的相关性.麦类作物学报,2003,23(3):140-141.
    [19]Cooper M, Woodruff D R, Phillips I G, et al. Genotype-by-management interactions for grain yield and grain protein concentration of wheat. Field Crops Research,2001,69:47-67.
    [20]许为钢,曹广才,魏湜.中国专用小麦育种与栽培.北京:中国农业出版社,2006,13-197.
    [21]庄巧生.庄巧生论文集.北京:中国农业出版社,1999:82-83.
    [22]潘洁,姜东,戴廷波,等.不同生态环境与播种期下小麦籽粒品质变异规律的研究.植物生态学报,2005,29(3):467-473.
    [23]周晓兰,高庆九,邓自旺,等.江苏气温长期变化趋势及年代际变化空间差异分析.南京气象学院学报,2006,29(2):196-202.
    [24]沈填,曾燕,肖卉,等.江苏省日照时数的气候特征分析.气象科学,2007,27(4):425-429
    [25]邓自旺,周晓兰,陈海山.江苏降水长期趋势及年代际变化空间差异分析.应用气象学报,2004,15(6):696-750.
    [26]王龙俊,陈荣振,朱新开,等.江苏省小麦品质区划研究初报.江苏农业科学,2002,2:15-18.
    [27]朱会以,刘述林,贾绍凤.自然地理要素空间插值的几个问题.地理研究,2004,23(4):425-432.
    [28]王邵中,季书勤,刘发魁,等.小麦品质生态及品质区划研究Ⅱ.生态因子与小麦品质的关系.河南农业科学,1995,11:3-6.
    [29]潘洁,戴廷波,姜东,等.基于气候因子效应的冬小麦籽粒蛋白质含量预测模型.中国农业科学,2005,38(4):684-691.
    [30]曹卫星,郭文善,王龙俊,等小麦品质生理生态及调优技术.北京:小麦品质生理生态及调优技术.北京:中国农业出版社,2005:289-307.
    [1]王龙俊,陈荣振,朱新开,等.江苏省小麦品质区划研究初报.江苏农业科学,2002,2:15-18.
    [2]王绍中,刘发魁,张玲,等.小麦品质生态及品质区划研究Ⅲ.河南省小麦品质生态区划.河南农业科学,1995,2:3-9.
    [3]吴天琪,郭洪海,张希军,等.山东省优质专用小麦种植区划研究.中国农业资源与区划,2002,23(5):1-5.
    [4]赵广才,常旭虹,刘利华,等.河北省小麦品质生态区划研究.麦类作物学报,2007.27(6):1042-1046.
    [5]贺文强,苗果园,张永清,等.山西省小麦品质区划研究.山西师范大学学报(自然科学版),2006,20(2):82-84
    [6]何中虎,林作辑,王龙俊,等.中国小麦品质区划的研究.中国农业科学,2002,35(4):359-364.
    [7]李鸿恩,张玉良,吴秀琴,等.我国小麦种质资源主要品质特性鉴定结果及评价.中国农业科学,1995,28(5):29-37.
    [8]金善宝.中国小麦生态.北京:科学出版社,1991:468-478.
    [9]潘洁,姜东,戴廷波,等.不同生态环境与播种期下小麦籽粒品质变异规律的研究.植物生态学报,2005,29(3):467-473.
    [10]潘洁,姜东,戴廷波,等.不同生态环境与播种期下小麦籽粒品质变异规律的研究.应用生态学报),2005,16(7):1257-1260 (in Chinese)
    [11]曹卫星,郭文善,王龙俊,等.小麦品质生理生态及调优技术.中国农业出版社,2005.
    [12]曹广才,王邵中.小麦品质生态.北京:中国科学技术出版社,1994,35-39,101-140.
    [13]汤国安,张友顺,刘咏梅,等.遥感数字图像处理.北京:科学出版社,2004,170-218.
    [14]国家质量技术监督局.中华人民共和国国家标准,小麦,GB/T17892.北京,1999
    [15]国家质量技术监督局.中华人民共和国国家标准,小麦,GB/T17893.北京,1999
    [16]庄巧生.庄巧生论文集.北京:中国农业出版社,1999
    [17]许为钢,曹广才,魏湜.中国专用小麦育种与栽培.北京:中国农业出版社,2006,13-66.
    [18]荆奇,姜东,戴廷波,等.基因型与生态环境对小麦籽粒品质与蛋白质组方的影响.应用生态学报,2003,14(10),1649-1653.
    [19]Daniel C, Triboy E. Changes in wheat protein aggregation during grain development:effects of temperatures and water stress. European Journal of Agronomy,2002,16,1-12.
    [20]郭天财,马冬云,朱云集,等.冬播小麦品种主要品质性状的基因型与环境及其互作效应分析.中国农业科学,2004,37(7):948-953.
    [21]崔读昌.中国农业气候学.杭州:浙江科学技术出版社,1999:183-193
    [22]郭天财,张学林,樊树平,等.不同环境条件对三种筋型小麦品质性状的影响.应用生态学报,2003,14(6),917-920.
    [23]马传喜.安徽省小麦品质区划的初步研究.安徽农学通报,2001,7(5):25-27.
    [24]王东,于振文,张永丽.山东强筋和中筋小麦品质形成的气象条件及区划.应用生态学报,2007,18(10),2269-2276.
    [25]王绍中,季书勤,刘发魁,等.小麦品质生态及品质区划研究Ⅱ.生态因子与小麦品质的关系.河南农业科学,1995,(11):3-6.
    [26]金善宝.小麦生态理论与应用.杭州:浙江科学技术出版社,1992:182-184.
    [1]曹卫星,朱艳,田永超,等.数字麦作技术研究的若干进展与发展方向.中国农业科学,2006,39(2):281-288
    [2]Yang J Y, Huffman E C. EasyGrapher:software for graphical and statistical validation of DSSAT outputs. Computers and Electronics in Agriculture,2004,45(1/3):125-132
    [3]Watkins K B, Lu Y C, Reddy V R. An economic evaluation of alternative pix application strategies for cotton production using GOSSYM/COMAX. Computers and Electronics in Agriculture,1998, 20:251-262
    [4]刘小军,朱艳,,曹卫星,等.基于WebGIS和知识模型的精确农作决策支持系统.南京农业大学学报,2007,30(4):11-15
    [5]彭汉艮,姚霞,朱艳,等.种植制度知识模型系统的设计与实现.南京农业大学学报,2005,28(2):125·128
    [6]曹卫星,朱艳.作物管理知识模型.北京:中国农业出版社,2005:274-286
    [7]朱艳.基于知识模型的小麦管理决策支持系统的研究.南京:南京农业大学,2003
    [8]潘洁.小麦生长模拟与决策支持系统的研究.南京:南京农业大学,2005
    [9]陈蓉蓉,周治国,曹卫星,等.农田精确施肥决策支持系统的设计与实现.中国农业科学,2004,37(4):516-521
    [10]刘小军,朱艳,姚霞,等.基于WebGIS的农田生产环境质量评价系统研究.中国农业科学,2005,38(3):551-557
    [11]曹静,刘小军,汤亮.基于知识模型的网络化作物管理决策支持系统.南京农业大学学报,2007,30(3).21-26
    [12]曹卫星,罗卫红.作物系统模拟及智能管理.北京:华文出版社,2000:176-183
    [13]吴才聪,马成林,张书慧,等.基于GIS的精确农业合理采样与施肥间距研究.农业机械学报,2004,35(2):80-83
    [14]李海波,站德臣,徐晓飞.基于工作流引擎的构件组装体系结构.软件学报,2006,17(6):1401-1410
    [1]曹广才,王邵中.小麦品质生态.北京:中国科学技术出版社,1994,35-39,29-40.
    [2]张建平,赵艳霞,王春乙,等.气候变化对我国华北地区冬小麦发育和产量的影响.应用生态学报,2006,17(7):1179-1184.
    [3]张嵩午,刘党校.小麦冠温的多态性及其与品质变异的关联.中国农业科学,2007,40(8):1630-1637.
    [4]刘新安,于贵瑞,范辽生,等.中国陆地生态信息空间化技术研究(Ⅲ)-温度、降水等气候要素.自然资源学报,2004,19(6):818-825.
    [5]庄立伟,王石立.东北地区逐日气象要素的空间插值方法应用研究.应用气象学报,2003,14(5):605-615.
    [6]常文渊,戴新刚,陈洪武.地质统计学在气候要素场插值的实例研究.地球物理学报,2004,47(64):9821-990.
    [7]温广玉,侯锡铭,陈华豪.用地统计学方法内插气象台站资料预报林火发生.东北林业大学学报,2002,(4):19-21.
    [8]曹卫星,罗卫红.作物系统模拟与智能管理.北京:高等教育出版社,2003,8-12.
    [9]尚宗波,高琼,杨奠安.利用中国气候信息系统研究年降水量空间分布规律.生态学报,2001,21(5):689-694.
    [10]杨昕,汤国安,王春,邓凤东.基于DEM的山区气温地形修正模型-以陕西省耀县为例.地理科学,2007,27(4):525-530.
    [11]冯锦明,赵天保,张英娟.基于台站降水资料对不同空间内插方法的比较.气候与环境研究,2004,9(2):261-277.
    [12]曹卫星,罗卫红.作物系统模拟及智能管理.北京:高等教育出版社.2003:3-18.
    [13]Wesseling JG, Feddes RA. Assessing crop water productivity from field to regional scale. Agricultural Water Management,2006,86:30-39
    [14]Hartkamp AD, White JW, Rossing WAH, et al. Regional application of a cropping systems simulation model:crop residue retention in maize production systems of Jalisco, Mexico. Agricultural Systems,2004,82:117-138
    [15]Riitta AS. Applying a site based crop model to estimate regional yields under current and changed climates. Ecological Modelling,2000,131:191-206
    [16]Guerra LC, Garcia AG, Hook JE, et al. Irrigation water use estimates based on crop simulation models and kriging. Agricultural Water Management,2007,89:199-207
    [17]Bechini L, Bocchi S, Maggiore T. Spatial interpolation of soil physical properties for irrigation planning. A simulation study in north Italy. European Journal of Agronomy,2003,19:1-14
    [18]Wu D-R, Yu Q, Lu C-H, et al. Quantifying production potentials of winter wheat in the North China Plain. European Journal of Agronomy,2006,24:226-235
    [19]马玉平,王石立,张黎,等.基于升尺度方法的华北冬小麦区域生长模型初步研究Ⅰ.潜在生产水平.作物学报,2005,31(6):697-705.
    [20]孟庆岩,李强子,吴炳方.农作物单产预测的运行化方法.遥感学报,2004,8(6):602-610
    [21]Moen TN, Kaiser HM, Riha SJ. Regional yield estimation using a crop simulation model:concepts, methods, and validation. Agricultural Systems,1994,46:79-92
    [22]Chipanshi A C, Ripley E A, Lawford R G. Large-scale simulation of wheat yield in semi-arid environments using a crop-growth model. Agricultural Systems,1999,59:57-66
    [23]Ma Y P, Wang S L, Zhang L, et al. A preliminary study on a regional growth simulation model of winter wheat in north china based on scaling-up approach I. Potential production level. Acta Agronomica Sinica,2005,31(6):697-705. (in Chinese)
    [24]王绍中,季书勤,刘发魁,等.小麦品质生态与品质区划研究:生态因子与小麦品质的关系.河南农业科学,1995,(11):2-6.
    [25]朱金宝,刘广田,张树榛.基因型和环境对小麦烘烤品质的影响.作物学报,1995,21(6):679-684.
    [26]邢先贵.优质小麦品种在不同栽培条件下的产量和品质表现.华中农业大学学报,1996,15(2):117-121.
    [27]林素兰.环境条件及栽培技术对小麦品质的影响.辽宁农业科学,1997,(2):30-31.
    [28]王立秋,靳占忠,曹敬山,等.水肥因子对小麦籽粒及面包烘烤品质的影响.中国农业科学,1997,30(3):67-63.
    [29]荆奇,曹卫星,戴廷波.小麦籽粒品质形成及其调控研究进展.麦类作物学报,1999,19(4):46-50.
    [30]荆奇,姜东,戴廷波,等.基因型与生态环境对小麦籽粒品质与蛋白质组方的影响.应用生态学报,2003,14(10),1649-1653.
    [31]金善宝.中国小麦生态.北京:中国科学出版社,1991:
    [32]曹广才,王邵中.小麦品质生态.北京:中国科学技术出版社,1994,35-39,101-140.
    [33]李永庚.山东省不同生态类型区小麦品质的差异及其生理基础.博士论文,2001.5.
    [34]董洪平.小麦蛋白质含量的遗传型与环境互作分析.河北农业大学学报,1989,(3):20-26.
    [35]姚艳荣,贾秀领,马瑞,等.冀中南强筋小麦品种品质性状稳定性差异及地域和气候因子效应.华北农学报,2006,21(增刊):23-28.
    [36]Daniel C, Triboy E. Changes in wheat protein aggregation during grain development:effects of temperatures and water stress. European Journal of Agronomy,2002,16,1-12.
    [37]郭天财,马冬云,朱云集,等.冬播小麦品种主要品质性状的基因型与环境及其互作效应分析.中国农业科学,2004,37(7):948-953.
    [38]潘洁,姜东,戴廷波,等.不同生态环境与播种期下小麦籽粒品质变异规律的研究.植物生态学报,2005,29(3):467-473.
    [39]郭天财,张学林,樊树平,等.不同环境条件对三种筋型小麦品质性状的影响.应用生态学报,2003,14(6):917-920.
    [40]李鸿恩,张玉良,吴秀琴,等.我国小麦种质资源主要品质特性鉴定结果及评价.中国农业科学,1995,28(5):29-37.
    [41]庄巧生.庄巧生论文集.北京:中国农业出版社,1999
    [42]U. S. Wheat Association.2000 Crop Quality Report Beijing,2000.
    [43]Ron Depauw. Canadian wheat pool. The World Wheat Book, A History of Wheat Breeding. Lavoisier Pubisher,2000:479-513.
    [44]Lindsay O'Brien, et al. Genetic pool of Australia wheats. The World Wheat Book, A History of Wheat Breeding. Lavoisier Pubisher,2000:611-664
    [45]王绍中,季书勤,刘发魁,等.河南省小麦品质生态区划.河南农业科学,2001,(9):4-5.
    [46]王龙俊,陈荣振,朱新开,等.江苏省小麦品质区划研究初报.江苏农业科学,2002,2:15-18.
    [47]王教,陈光斗,邹军容.陕西省强筋优质小麦基地建设及实施开发的探讨.陕西农业科学,2002,(9):27-30.
    [48]邓振铺,尹东,张毅.甘肃省小麦生态气候适生种植区的研究.气象科技,2000,(1):36-40.
    [49]李天永,齐玉志,林永岭.调整种植结构,发展优质专用小麦.河北农业科技,2001,9:8.
    [50]曹卫星,郭文善,王龙俊,等.小麦品质生理生态及调优技术.中国农业出版社,2005,1-40.
    [51]陈蓉蓉,周治国,曹卫星,等.农田精确施肥决策支持系统的设计与实现.中国农业科学,2004,37(4):516-521
    [52]刘小军,朱艳,姚霞,等.基于WebGIS的农田生产环境质量评价系统研究.中国农业科学,2005,38(3):551-557
    [53]曹静,刘小军,汤亮.基于知识模型的网络化作物管理决策支持系统.南京农业大学学报,2007,30(3).21-26
    [54]李海波,站德臣,徐晓飞.基于工作流引擎的构件组装体系结构.软件学报,2006,17(6):1401-1410

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700