用户名: 密码: 验证码:
丹参生长发育与有效成分积累的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丹参作为一味传统中药在我国沿用已久,始载于《神农本草经》,传统以丹参植物的根入药,因其根色红且形状似参而得名“丹参”。正品丹参来源于唇形科(Labiatae)、鼠尾草属(Salvia)植物丹参(Salvia miltiorrhiza Bge)的根。本文主要研究了丹参生长发育过程根的解剖结构和有效成分的相关性。主要内容如下:
     研究表明:根尖(root tip)指从根的顶端到着生根毛的部分。主根、侧根和不定根都有根尖。根尖在根的生长、根的吸收、根的分枝以及根的组织分化中都起着十分重要的作用。根尖可以分为根冠(root cap)、分生区(meristematic zone)、伸长区(elongation)和成熟区(maturation zone)四个部分。根冠位于根尖的最前端,是由薄壁细胞组成的一个保护根尖的帽状结构,覆盖在分生区之外,保护着幼嫩分生组织,当根向土层深处生长时,使分生组织不致于被土壤中细砂石所磨损。同时,根冠外层的细胞形成粘滑的胶质,使根在生长过程中容易深入土层。根冠细胞在根生长时,由于与土壤的磨擦,外部细胞不断脱落,而里面的分生组织细胞不断地进行细胞分裂补充到根冠中,使根冠始终保持一定的厚度。分生区也叫生长锥,位于根冠之上,大约长1mm,是顶端分生组织。分生区的细胞在植物的一生中始终保持分裂能力,根的其他结构都由分生区细胞分裂所产生。根的分生区由原分生组织和初生分生组织两部分组成。原分生组织位于最前端,细胞分化较少,在原分生组织的最前端有一团细胞,其分裂的频率明显低于周围的细胞,这一区域叫做不活动中心(quiescent center)。初生分生组织位于原分生组织的上方,细胞已出现初步的分化,根据细胞的形状、大小及液泡化程度的不同,将初生分生组织划分为原表皮、基本分生组织和原形成层三个部分。原表皮以后发育成表皮,原形成层位于中央,以后发育成维管柱,基本分生组织位于原形成层和原表皮之间,以后发育成皮层。伸长区在分生区的上方,细胞多已停止分裂。细胞液泡化程度增加,体积增大,并显著地沿根的长轴方向伸长,是根部伸长的主要动力;另外,伸长区的细胞已加速分化,最早的筛管和环纹导管开始出现,是分生组织向成熟结构的过渡区。由外形上来看,成熟区外部密生根毛,因此,又叫根毛区(root hair zone)。根毛区的细胞开始成熟,细胞已分化为筛管、导管以及薄壁细胞等各类成熟组织,因此这一区叫做成熟区。根毛为植物的重要部分,根系分布在土壤中,根毛及其附近的表皮细胞具有吸收水分及无机盐类的能力。根毛是根表皮细胞的突出物,根毛呈筒状,表皮细胞与根毛间无横隔,细胞质沿细胞壁呈一薄层,中央为一大液泡,细胞核位于根毛的顶端。单位面积上大量生长根毛,大大的扩展了与土壤的接触面积,使得根系能充分吸收土壤中的水分和无机盐类。同时也发现根毛的形成与外界环境有关。丹参的根、茎、叶中均含有水溶性成分。叶中水溶性成分含量由高到低依次为丹参素>咖啡酸>原儿茶醛。在生长期中,丹参素、咖啡酸含量在6月份最高,以后逐渐减少,12月降到最低;原儿茶醛的含量变化不大;叶的发育过程中,水溶性成分含量逐渐降低。茎中几乎不含水溶性成份。根中丹参素含量最高,原儿茶醛次之,咖啡酸最低。在生长期中,丹参素含量在7月最高,且6~9月含量较为稳定,9月以后丹参素含量逐渐降低;原儿茶醛、咖啡酸的含量在7、8、9月较为稳定,以后逐渐降低,至12月降至最低。根中有效成分含量与根的粗度无相关性,随着皮部与木质部厚度之比增大,有效成分含量有增加的趋势。丹参酮ⅡA和丹参酮I在生长季节的含量变化规律呈“单峰”曲线,丹参酮ⅡA在7月含量最高,丹参酮I在5月含量最高。
Research was conducted on Salvia miltiorrhiza, a traditional medicinal plant, to investigate the effects of irradiation and shade on the concentration of catalpol in seedlings and rhizosphere. The plants were grown under three irradiances: full light, partial shade (50% full light), and irradiation. The Salvia miltiorrhiza seedlings were harvested and the hydroponic culture solution in the containers was collected on days 3, 6, 9, 12, 15 after treatment respectively for determination of catalpol. The results showed that irradiation increased the concentration of catalpol in leaves rapidly at the early stage. Then, instead of increasing, the concentration of catalpol decreased a little. In contrast, the catalpol content in Salvia miltiorrhiza leaves was reduced under partial shade. Similar trends were observed in roots and stems of Salvia miltiorrhiza under irradiation and shade. The concentration of catapol in medium in which full-light, shade and UV-irradiated seedlings were grown all increased with time. But the concentration of catapol in medium of irradiated seedlings was greater than that of full-light seedlings, the concentration of catapol in medium of shade seedlings is lower than that of full-light seedlings. Therefore, irradiation increased both production of catalpol in Salvia miltiorrhiza seedlings, and secretion of catalpol into Salvia miltiorrhiza rhizosphere. In contrast shading decreased not only production of catalpol in Salvia miltiorrhiza seedlings, but also secretion of catalpol into Salvia miltiorrhiza rhizosphere.
     Irradiation increased the concentration of catalpol in leaves of Salvia miltiorrhiza seedlings rapidly at the early stage. Then, instead of increasing, the concentration of catalpol decreaced a little. The production of catalpol was, therefore, probably increased at the early stage by irradiation due to induceing stress response of plant, increaceing more plant secondary metabolites to guard against irradiation damage. However, a further extension of time to radiation, the leaves were damaged by the radiation, which affected not only the photosynthetic efficiency but the production of the secondary metabolites. Therefore, a further extension of time to UV radiation, the catalpol content in Salvia miltiorrhiza leaves did not increase significantly, or even decreased. In contrast, the catalpol content in Salvia miltiorrhiza leaves was reduced under partial shading, suggesting that shading affected photosynthesis, then the synthesis of secondary metabolites.
     There was an accumulation of catalpol in the medium in which Salvia miltiorrhiza seedlings were grown. As described in the Materials and methods section, in the present experiments only R. glutinosa roots were immersed in the medium. Thus, the Salvia miltiorrhiza seedlings probably secrete catalpol from their roots into the medium. The results described in the present research showed that the concentration of catalpol in the medium in which UV-irradiated seedlings were grown was greater than that in the medium in which full-light seedlings were grown.
     There are few reports on the effect of irradiation on catalpol concentration, but it was noted that irradiation increased not only production of momilactone B in rice seedlings but also secretion of momilactone B into rice rhizosphere. On the contrary, the concentration of catalpol in the medium in which shaded seedlings were grown was lower than that in the medium in which full-light seedlings were grown. These results suggest that irradiation increased both production of catalpol in Salvia miltiorrhiza seedlings, and secretion of catalpol into Salvia miltiorrhiza rhizosphere. In contrast shading decreased not only production of catalpol in R. glutinosa seedlings, but also secretion of catalpol into Salvia miltiorrhiza rhizosphere. So if high concentration of catalpol in soil is the reason for Salvia miltiorrhiza continuous cropping obstacle, intercropping with tall crop can be taken in agricultural production to shade Salvia miltiorrhiza, so as to reduce secretion of catalpol into Salvia miltiorrhiza rhizosphere.
引文
[1]国家中医药管理局《中华本草》编委会,《中华本草》第七册第十九卷,上海:上海科学技术出版社,1999.
    [2]徐立成,丹参栽培技术,安徽农业,2002(7): 29.
    [3]徐任生主编,丹参-生物学及应用,北京:科学出版社,1990.
    [4]肖小河,方清茂,尹国萍,药用鼠尾草分布式样与丹参药材道地性,中草药,1999,29(增刊):121-15.
    [5]梁晓原,侯安国,钱子刚,云南5种丹参植物资源总丹参酮的含量测定,云南中医中药杂志,1999, 20(6): 27-30.
    [6]简洋辉,徐国均,金蓉莺,中药丹参类的质量研究,中国医科大学学报,1989, 20(1):5-9.
    [7]徐昭玺主编,中草药种植技术指南,中国农业版社,2000.
    [8]岑颖洲,许少玉,王穗生,等,丹参化学成分的研究,暨南大学学报(自然科学版)1993,14(3): 55-66.
    [9]Li H. B., Chen F., Preparative isolation and purification of six diterpenoids from the Chinese medicinal plant Salvia miltiorrhiza by high-speed counter-current chromatography,Journal of Chromatography A, 2001, 925(1): 109-114.
    [10]Ikeshiro Y., Hashimoto L, Iwamoto Y., Diterpenoids from Salvia miltiorrhiza Phytochemistry, 1991, 30(8): 2791-2792.
    [11]Chen J., Wang F., Lee F. S., et al., Separation and identification of water-soluble salvianolic acids from Salvia miltiorrhiza Bunge by high-speed counter-current chromatography and ESI-MS analysis, Talanta, 2006, 69(1): 172-179.
    [12]杜冠华,张均田,丹参水溶性有效成分-丹酚酸研究进展,基础医学与临床,2000, 20(5): 394-398.
    [13]袁淑兰,宋毅,王修杰,等,丹参酮ⅡA抑制多种肿瘤细胞生长的体外实验研究,华西药学杂志,2003, 18(5): 327-329.
    [14]Yoon Y., Kim Y., Jeon W. K., et al, TanshinoneⅡA isolated from Salvia miltiorrhiza Bunge induced apoptosis in HL60 human premyelocytic leukemin cell line, Journal of Ethopharmacology, 1999, 68(1-3): 121-127.
    [15]袁淑兰,黄韧敏,王修杰,等,丹参酮对人肝癌细胞的某些表型的逆转作用,肿瘤,1997, 17(5): 268-270.
    [16]滕艳芬,王峥涛,余国奠,丹参的药用资源研究进展,中国野生植物资源,2001, 20(2):1-3.
    [17]高玉桂,王灵芝,唐冀雪,丹参酮的抗炎作用,中西医结合杂志,1983, 3(5): 300-303.
    [18]李建晴,展青霞,高健才,等,丹参酮及金属配合物的抗菌活性,山西医科大学学报,1999, 30(增刊):92-93.
    [19]吴果,何招兵,吴汉斌,丹参酮的药理作用研究进展,现代中西医结合杂志,2005,14(10):1382-1385.
    [20]何素冰,何丽娜,杨军,丹参酮对大鼠皮层神经细胞钙超载损伤的保护作用,中成药,2002, 24(5): 371-373.
    [21]Cao E. H., Liu X. Q., Wang J. J., et al, Effect of natural antioxidant tanshinone II-A on DNA damage by lipid peroxidation in liver cells, Free Radical Biology and Medicine, 1996,20(6): 801-806.
    [22]顾克显,丹参酮的药理及其在皮肤科临床的应用,皮肤病与性病,1994, 16(3): 11-13.
    [23]杨天德,刘桥义,陶军,等,丹参酮、纳洛酮对缺血再灌注心肌局部血流量的影响,中国药理学通报,1997, 13(1):45-47.
    [24]邵荣姿,曾林,付兴伦,等,丹参酮II -A磺酸钠对甲亢模型鼠心肌的保护效应,前卫医药杂志,2000, 17(2): 93-94.
    [25]买长江,乌云阁,张明堪,等,丹参酮停跳液心肌保护作用的实验研究,河南医学研究,1995, 4(3): 236-237.
    [26]于海波,徐长庆,单宏丽,等,丹参酮Ⅱ-A对大鼠心室肌细胞膜钾电流的影响,哈尔滨医科大学学报,2002, 36(2): 112-114.
    [27]徐长庆,王孝铭,范劲松,等,丹参酮Ⅱ-A对豚鼠单个心室肌细胞跨膜电位及L-型钙电流的影响,中国病理生理杂志,1997, 13(1): 43-47.
    [28]孙学刚,贾饪华,陈育鹑,定心方及丹参酮对血小板膜粘附分子表达的影响,山东中医药大学学报,2001, 25(1): 61-63.
    [29]陶军,王舟琪,刘桥义,等,丹参酮防治心肌再灌注损伤的实验研究,中华麻醉学杂志,1996, 16(5): 202-204.
    [30]张洁,曾晓荣,杨艳,等,丹参酮Ⅱ-A磺酸钠对原代培养猪冠脉平滑肌钙激活钾通道的影响,沪州医学院学报,2000, 23(5): 380-383.
    [31]胡义杨,丹酚酸A抗四氯化碳中毒致大鼠肝损伤和肝纤维化的作用,中国药理学报,1997, 18(5): 478-482.
    [32]刘平,丹酚酸乙对四氯化碳体外损伤原代培养大鼠肝细胞的直接保护作用,中国中药杂志,1997, 22(5): 303-306.
    [33] Liu J., Shen H. M., Ong C. N., Salvia miltiorrhiza inhibits cell growth and induces apoptosis in human hepatoma HepG2 cells, Cancer Letter, 2000, 153(1-2): 85-93.
    [34]Liu J., Shen H. M., Ong C. N., Role of intracellular thiol depletion, mitochondrial dysfunction and reactive oxygen species in Salvia miltiorrhiza-induced apoptosis in human hepatoma HepG2 cells, Life Science, 2001, 69: 1833-1850.
    [35]Wu Y. J., Hong C. Y., Lin S. J., et al., Increase of vitamin E content in LDL and reduction ofatherosclerosis in cholesterol-fed rabbits by a water-soluble antioxidant-rich fraction of Salvia miltiorrhiza, Arterioscler Thromb, Biology, 1998, 18(3): 481-486.
    [36]Ung M., Lee H. C., Ahn C. W., et al., Effective isolation of magnesium lithospermate B and its inhibition of aldose reductase and fibronectin on Mesangial cell line, Chemical and Pharmaceutical Bulletin, 2002, 50(8): 1135-1136.
    [37]Abd-Elazem I. S., Chen H. S., Bates R. B., et al., Isolation of two highly potent and non-toxic inhibitors of human immu-nodeficiency virus typel( HIV-1) integrase from Salvia miltiorrhiza, Antiviral Research, 2002, 55: 91-106.
    [38]秦德华,陈鸿珊,彭宗根,等,丹参中的一个新化合物及其抗HIV活性,中草药,2004,35(7): 725-728.
    [39]杜冠华,SalA对大鼠心肌缺血再灌注性损伤的保护作用,药学学报,1995, 30(10):731-733.
    [40]杨卫东,朱鸿良,赵保路,丹参的氧自由基清除作用,中国药理学通报,1990, 6(2):118-121.
    [41]中国医学科学院药物研究所编,中草药现代研究(第2卷),北京:北京医科大学中国协和医科大学联合出版社,1996.
    [42]李定友,徐理纳,丹参水溶性成分抗氧自由基和脂质过氧化作用,中国药学,1995, 4(2):107-112.
    [43]Lin T. J., Liu G. T,Liu Y. et al., Protection by salvianolic acid A against adriamycin toxicity on rat heart mitochondria, Free Radical Biology and Medicine, 1992, 12(5):347-351.
    [44]冯玲玲,周吉源,丹参的研究现状与应用前景,中国野生植物资源, 2004, 23(2): 4-7.
    [45]汪月珍,聂万松,丹参皮质部与木质部有效成份含量比较,儿科药学杂志,2004, 10 (4):18-19.
    [46]陈悦,曾令杰,梁晖,等,丹参酮ⅡA与丹酚酸B在丹参药材中的分布研究,现代中药研究与实践,2006, 20(2): 7-9.
    [47]赵海燕,施肥对栽培丹参和药用白菊花有效成分含量的影响,南京农业大学硕士学位论文,2004.
    [48]陈震,陈文蜻,丹参生长与隐丹参酮含量的关系,中药通报,1983,8(1): 2-3.
    [49]黄秀兰,王长根,董月丽,等,野生与栽培丹参的质量研究,中药材,1989, 12(6): 31-34.
    [50]倪学斌,袁俊贤,上海市郊31种丹参的质量评价,中药通报,1988,13(6): 11-13.
    [51]常效琳,管玉民,山东栽培丹参的质量考察,中药通报,1988, 13(12): 17-19.
    [52]郭宝林,林生,冯毓秀,等,丹参主要居群的遗传关系及药材道地性的初步研究,中草药,2002, 33(12): 1113-1116.
    [53]黄秀兰,杨保津,丹参有效成分与产地、季节的关系简介,中草药,1980, 11( 6):276-277.
    [54]李力,娄子洋,陈万生,等,不同产地丹参中3种丹参酮含量变异,第二军医大学学报,2000, 21(8): 753-755.
    [55]竺叶青,丹参中原儿茶醛的含量测定,中成药研究,1984,12: 11-12.
    [56]中国医学科学院药用植物资源开发研究所,药用植物栽培学,北京:农业出版社,1991:455.
    [57]陈震,元素对丹参生长及隐丹参酮含量的影响,特产科学实验,1984,2:15.
    [58]许翔鸿,生理活性物质对丹参生长和有效成分积累的影响及其机理的研究,南京农业大学硕士论文,1995.
    [59]冷文金,魏有其,施肥种类对家种丹参成分丹参酮ⅡA含量的影响,中成药,2002, 24(6): 434-435.
    [60]韩建萍,梁宗锁,孙群,等,施肥对丹参植株生长及有效成分的影响,西北农业学报,2002, 4(11): 67-71.
    [61]韩建萍,梁宗锁,氮、磷对丹参根系生长及总丹参酮累计的影响,西北植物学报,2003,23 (4): 603-607.
    [62]韩建萍,梁宗锁,氮、磷对丹参生长及丹参素和丹参酮ⅡA积累规律研究,中草药,2005,36(5): 756-759.
    [63]刘文婷,丹参的生物学特性研究,西北农林科技大学研究生论文,2004.
    [64]高杨,不同土壤水分对丹参耗水特性及有效成份含量的影响,西北农林科技大学研究生论文,2004.
    [65]曾元儿,徐晖,烘干温度和时间对丹参乙醇浸膏中丹参酮ⅡA含量的影响,中药新药与临床药理,1997, 8(1): 38-40.
    [66]裘汉幸,蒋永海,不同干燥法丹参药材中丹参酮ⅡA含量的比较,中国中药杂志,28(6):580-584.
    [67]陆锦芳,竺叶青,施大文,等,RP-HPLC法测定丹参药材与饮片中丹参酮ⅡA的含量,上海医科大学学报,1992, 19(2): 154-157.
    [68]王杰民,何怀冰,竺叶青,等,RP-HPLC法测定丹参药材中丹参素及原儿茶醛含量,上海医科大学学报,1991, 18(1): 27-31.
    [69]黄泰康,常用中药成分与药理手册,北京:中国医药科技出版社,1994, 289.
    [70]周用相,高逢喜,丹参的炮制研究,中药通报,1984, 9(5): 18-20.
    [71]张晓彤,云自厚,液相色谱检测方法,化学工业出版社,北京:2000, 5: 133.
    [72]Ma L., Zhang X., Zhang H., et al., Development of a fingerprint of Salvia miltiorrhiza Bunge by high-performance liquid chromatography with a coulometric electrode array system, Journal of Chromatography B, 2007, 846(1-2): 139-146.
    [73]Liu A. H., Li L., Xu M., et al., Simultaneous quantification of six major phenolic acids in the roots of Salvia miltiorrhiza and four related traditional Chinese medicinal preparations by HPLC-DAD method, Journal of Pharmaceutical and Biomedical Analysis, 2006, 41(11):48-56.
    [74]李广胜,王光新,赵牛和,丹参口服液中总酚酸性成分的含量测定,时珍国医国药,2001, 12( 8): 683-684.
    [75]王文祥,周巧霞,蒋木岗,比色法测定丹参及提取物水溶性总酚的改进,中草药,2001,32( 8): 711-712.
    [76]周文慧,丹参口服液中水溶性酚酸的含量测定,中草药,1994, 25(9): 460-462.
    [77]王文凯,丹参饮片制备工艺研究,中成药,1996, 18(10): 20-22.
    [78]李静,何丽一,丹参中水溶性酚酸成分的薄层扫描测定法,药学学报,1993, 28( 7):543-547.
    [79]刘燕,薄层扫描测定法测定丹参片中原儿茶醛和丹参素的含量,中国中药杂志,1990,15(3): 159-162.
    [80]刘丽娜,安神口服液的质量控制,郑州大学学报(医学版),2004, 39(4): 712-713.
    [81]张萍,付辛芳,万红,复方丹参口服液的制备及质量控制,西北药学杂志,2002, 17(2):74-75.
    [82]李正国,赵淑杰,王宝琴,HPLC法测定丹红注射液中丹参素的含量,中国新药与临床药理,1999, 10(2): 110-111.
    [83]戴忠,HPLC法测定丹参粉针剂中丹参素及原儿茶醛的含量,中成药,1996, 18(6): 10-13.
    [84]张启伟,高效液相色谱法测定丹参中丹酚酸B,中国中药杂志,2001, 26(12): 848-849.
    [85]曹枫,马长华,乔延江,HPLC测定丹参三七配伍水煎液中丹酚酸B的含量,北京中医药大学学报,2003, 26(6): 45-47.
    [86]黄炼栋,RP-HPLC法测定丹参培养物中两种水溶性酚酸类化合物的含量,中草药,1999, 30(9): 654-656.
    [87]张文生,李德昆,叶正良,反相高效液相色谱法测定丹参提取物中丹参素、原儿茶醛和丹酚酸B的含量,药物分析杂志,2003, 23(6): 475-476.
    [88]游勇基,程广强,陈铭辉,丹参注射剂中丹参素、原儿茶酸、原儿茶醛和丹酚酸B的同时测定,药物分析杂志,2004, 24(1): 46-49.
    [89]陈巧蝶,沈素眉,朱晓燕,HPLC法测定冠心丹参滴丸中丹参素和丹酚酸B含量的研究,温州师范学院学报(自然科学版),2002, 25(2): 32-34.
    [90]刘艳华,丹参HPLC指纹图谱的研究,中国药科大学学报,2002, 33(2): 127-130.
    [91]张立海,宋友华,孙春华,等,反相高效液相色谱法测定蕾贞胶囊中丹参酮IIA的含量,中国药学杂志,2000, 35(8): 552-554.
    [92]张鉴,王兰,袁成凌,等,反相高效液相色谱检测丹参药材中4种丹参酮的含量,分析化学,2005, 33(3): 355-358.
    [93]李磊,胡广林,Frank S. C.,等,丹参抗氧化成分及其分布特性,江西农业大学学报,2001, 23(4): 487-491.
    [94]倪学斌,苏静,丹参地上部分有效成分的初步分析,中国药学杂志,1995, 30(6):336-338.
    [95]温春秀,五志明,田伟,等,黄芩规范化生产技术规程(SOP),全国中药材GAP研究与应用学术研讨会会议论文汇编,2004,129-134.
    [96]杨冬野,蔡少青,王漩,等,不同生长年限野生与栽培黄芩的药材鉴定研究,中国中药杂志,2005, 30(22): 1728-1735.
    [97]刘重芳,张钮泉,戴居云,丹参不同提取工艺比较,中成药,1999, 21(8): 385-387.
    [98]郭增军,苏纪兰,等,丹参提取工艺的实验研究,西北药学杂志,2002, 17(4): 62-65.
    [99]孙群,梁宗锁,王渭玲,等,丹参移栽后苗系与根系的生长关系,中国中药杂志,2005, 30(1): 23-26.
    [100]刘文哲,通过组织培养筛选高含量喜树碱细胞系,实验生物学报,2003,36(4): 275-280. [101}么春燕,刘文哲,虎杖营养器官蕙醒类化合物含量的季节变化,西北植物学报,2005,25(1): 0179-0183.
    [102] Bennett R. N., Wallsgrove R. M., Transly review No, 72: Secondary metabolites in plant defense mechanisms, New Phytologist, 1994, 127: 617-621.
    [103]蒋传中,卫新荣,梁宗锁,丹参标准化生产技术规程((SOP),中药研究与信息,2004,5(6): 16-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700