用户名: 密码: 验证码:
水分管理方式与供氮水平对水稻土氮素养分转化及供氮能力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
充分发挥水稻生产中水氮耦合效应是提高氮肥利用率,实现节本增效和降低环境污染风险的有效途径。本论文以长江中下游地区潮土和青紫泥为试验土壤,通过土壤培养试验、水稻柱栽试验和田间试验研究了不同水肥管理方式下水稻土的可溶性氮形态变化动态和供氮能力,以此来评价两种供试水稻土的供氮能力强度与氮肥流失风险。取得主要结果如下:
     1、通过土壤培养试验,研究比较了两种水稻土在不同水分(CW:最大田间持水量的70%,FW:淹水3 cm)和供氮水平(NO:不加氮,N25:每克土壤加N 25 mg)下的矿质氮(TMN)和可溶性有机氮(SON)的变化特征。结果表明:
     (1)外加氮源淹水处理对潮土NH_4~+-N含量除培养第7 d明显提高外,在整个培养过程中均未超过基础土壤的水平;而外加氮源或淹水处理对青紫泥NH_4~+-N含量的提升作用则贯穿于培养试验的全过程。
     (2)外加氮源处理在控水和淹水条件下都使潮土中NO_3~--N占矿质氮的百分比高达80%以上;而青紫泥加氮处理在控水条件下培养的前21 d均低于40%,至35 d始才升至90%左右,淹水条件下则低于15%。说明潮土比青紫泥具有更强的硝化作用,且硝化作用启动早持续时间长,因此氮肥通过硝态氮流失而导致的面源污染风险比青紫泥更值得关注。
     (3)两个土壤的TSN与SON含量在培养试验第14 d至35 d期间达高峰期,但潮土明显高于青紫泥,而且潮土的SON/TSN百分比在淹水条件下较高,达80%以上,而青紫泥则在控水条件下较高,达60%以上。说明在2种土壤中的可溶性有机氮的流失风险不容忽视,特别是在淹水条件下的潮土中尤为突出。
     2、通过水稻柱栽试验及田间试验,采用模拟根系对NH_4~+-N与NO_3~--N吸收过程的树脂球交换法,研究两种水分管理方式(常规淹水灌溉FW,好气控制灌溉KW)和4种供氮水平(N0:不施氮肥;N1:60%常规施氮量126 kg纯N/hm~2;N2:75%常规施氮量157.5 kg纯N/hm~2;N3:常规施氮量210 kg纯N/hm~2)下测定潮土的供氮能力,结果表明水稻生育前期树脂球交换性铵态氮(RAQN-NH_4~+)由高到低急剧下降,并随氮肥用量提高而显著增加,树脂球交换性硝态氮(RAQN-NO_3~-)在控水和淹水条件下表现出很大的区别,控水条件下RAQN-NO_3~-经历了由低到高再由高到低的变化过程,且随施氮量的提高而增加,淹水条件下无明显差异。总的来说,在整个水稻生育期内树脂球交换性铵态氮所占比例很低,大部分时段在20%以下,树脂球交换性硝态氮占总交换性氮的比例较高,是潮土的主要有效氮供应形态。
The synergy effect of the interaction of nutrients and environmental factors is the key to increase the nitrogen nutrient bio-availability,reduce nitrogen losses in a specific Cultivation mode.In this paper,the soil from Yangtze River region was selected as the tested soil.By studying the effects and mechanisms of the different water management patterns and nitrogen levels on soluble nitrogen dynamic transformation characteristics and nitrogen supply capacity in order to assess the paddy soil nitrogen supplying and nitrogen loss risk.The main results of this research were as follows:
     1.A ventilated incubation experiment was conducted to investigate the dynamic trends of the soil NH_4~+-N,NO_3~--N and soluble organic nitrogen(SON) contents under different water conditions(CW and FW) and nitrogen levels(NO and N25) in the two paddy soil types i.e.Alluvial soil and Purplish clayey soil.
     (1) During incubating period,the contents of NH_4~+-N in the Alluvial soil were not obviously enhanced by water-logged incubation or by nitrogen fertilizer added, except for being distinctly elevated at the 7~(th) day of water-logged incubation with nitrogen fertilizer added.However,the contents of NH_4~+-N in the Purplish clayey soil were significantly increased by water-logged incubation or by nitrogen fertilizer added.
     (2) NO_3~--N/TMN was as high as 80%or more by nitrogen fertilizer added not only under water-controlled but also water-logged condition in the Alluvial soil. However,the percentage was less than 40%at the 21~(th) day of water-logged incubation with nitrogen fertilizer added,and to 35~(th) day of incubation reached the highest level.it was less than 15%by water-logged incubation.The aforesaid results indicated that the nitrification activity in the Allvial soil was very strong not only under the water-controlled condition but also under the water-logged condition and it started earlier and lasted longer.It is,therefore,important to pay much more attention to the NO_3~--N leaching losses in the Alluvial soil than in the Purplish clayey soil.
     (3)The contents of TSN and SON in the two soils reached the highest level during the 14~(th) day to35~(th) of incubation,but the contents in the Alluvial soil was significantly higher than Purplish clayey soil.On the peak period,the ratio of SON to TSN can reach 80%in the Alluvial soil under the water-logged condition and 60%in the Purplish clayey soil under the water- controlled condition.Therefore,the risk of soluble organic nitrogen losses in the two paddy soils during its peak period could not be neglected either.
     2.A soil column experiment and field experiment were conducted to investigate the effects of nitrogen supplying capacity under different water conditions(FW and KW) and nitrogen levels(N0,N1,N2 and N3) with Alluvial soil.Results of the soil column experiment showed that NH_4~+-N of the three nitrogen treatment(N1,N2,N3) declined from high to low,but increased with the amount of nitrogen notability increasing.NO_3~--N under the two kinds of water conditions had a great deal of difference.RAQN- NO_3~--N has experienced from low to high,then high to low,and increased with the amount of nitrogen increasing under CW.But it was small and even under different nitrogen levels had no significant difference throughout the rice growing period under FW.In a word,from dynamics ratio of the soil exchangeable NH_4~+-N to NO_3~--N,RAQN-NH_4~+-N was very low,less 20%.the ratio of RAQN-NO_3~--N to total exchangeable nitrogen was high.Indicating under the experiment conditions,NO_3~--N is the main active form of nitrogen supply with Alluvial soil.
引文
Adams F. Some effects of lime, nitrogen and soluble and insoluble phosphate on the yield and mineral composition of established grassland [J]. J. Agricl. Sci1. Camb, 1984, 102: 219-226.
    
    Aharoni C, Sparks D L. Kinetics of soil chemical reaction — a theorefical treatment. in: Sparks D L, Suarez D L. Rates of Soil Chemical Processes. SSSA Spec. Publ. No. 27. Madison W: SSSA, ASA, 1991, 1-18.
    
    Arth I, Frenzel P, Conrad R. Denitrification coupled to nitrification in the rhizosphere of rice Soil[J]. Biology and Biochemistry, 1998, 30: 509-515.
    
    Bollard EE. Utilisation of nitrogen and its compounds by plants[M]. New York: Symposium volume of the Society for Experimental Biology, no XIII Academic Press, 1956.
    
    Bouwman A F. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere [A]. In: Bouwman A F. ed. Soils and the Greenhouse Effect [C]. Chichester. John Wiley & Sons Ltd, 1990, 61-127.
    
    Chapin III F S. New cog in the nitrogen cycle[J]. Nature, 1995, 377: 199 - 200.
    
    Cheng M F(程明芳). The application of ion-exchange resin at soil nutrient testing and the issue under solving. Soil Fert (土壤肥料), 1996, (2): 43 - 44,48. (in Chinese with English abstract)
    
    Chang M F(程明芳), Jin J Y(金继运), Huang S W (黄绍文), Yang L P(杨俐苹). The research of the soil validity tested by ion exchange resin film. Soil Fert(土壤肥料 ), 2000, (2); 41-43. (in Chinese with English abstract)
    
    Denmead O T. 1983. Micrometeorological method for measuring gaseous losses of nitrogen in the field[C] / / Freney J R, Simpson JR. Gaseous losses of Nitrogen from Plant—soil Systems. Marfinus Nighoff DiWjunk Publishers: 133-157.
    
    Drge J. Modelling nitrogen transformations in freshwater wetlands-estimating nitrogen-retention and removal in natural wetlands in relation to their hydrology and nutrient loadings [J]. Ecological Model, 1994, 75: 409-420.
    Fried M, Zsoldos F, Vose P B. Characterizing the NO_3~- and NH_4~+ uptake process of rice roots by use of N~(15) labelled NO_3~- andNH_4~+. Plant Physiol, 1965, 18: 313 - 320.
    Groffman P M, Hanson G C. 1997. Wetland denitrificatiom influence of site quality and relationships with wetland delineation protocols[J]. Soil Science Society of America Journal, 61(1): 323-329.
    Haynes R G, Gob K M. 1978. Ammonium and nitrate of plants [J]. Biological Reviews, 58: 465-510.
    Jensen K, Revsbech N P, Nielsen L P. Microscale distribution of nitrification activity in sediment determined with shielded microsensor for nitrate[J]. Allplied Environment Microbilogy, 59: 3287-3296.
    Jones D L, Shannon D, Murphy D V, Farrar J. Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils[J]. Soil Biology & Biochemistry, 2004, 36(5): 749-756.
    Jukka A L, Sanna S, Hannu N, et al. Winter CO_2, CH_4 and N_2O fluxes on some natural and drained boreal peatlands[J]. Biogeochemistry, 1999, 44: 163-186.
    Kaeim A Q M R, Iamis J V. Comparative study of the effect of ammonium and nitrate nitrogen in the nutrition of rice. Plant and Soil ,1962 ,16: 32 - 41.
    Kemp W M, Sampou P, Calrey J, et al. 1990. Ammonium recycling versus denitrification in Chesapeake Bay sediments[J]. Limnol Oceanogr, 35: 1545 - 1563.
    Kielland K. Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling[J]. Ecology, 1994, 75: 2373 - 2383.
    Kilham K. 1986. Heterotrophic nitrification[c]// Prosser J I. Nitrification. Oxford: IRL Press. 117-126.
    Kronzucker HJ, Kirk GJ D, Siddiqi M Y, et al. Effects of hypoxia on ~(13)NH_4~+ flux in rice roots: Kinetics and compartmental analysis. Plant Physiol, 1998, 116: 581 -587.
    Malhi S J, Nyborg M, Harap iak J T. Effects of long - term N fertilizer - induced acidification and liming on micronutrients in soil and in biome grass hay [J]. Soil & Tillage Research, 1998,48: 91 -10.
    Mitsch W J, Gosselin J G Wetlands. New York: Van Nostrand Reinhold Company Inc. 2000: 89-125.
    Mitsch W J, Reeder B C. Modeling nutrient retention Of a fresh water coastal wetland: estimating the roles of primary productivity, sedimentation, resuspension and hydrology [J]. Ecological Engineering, 2000, 14: 1-7.
    Murphy D V, Macdonald A J, Stockdale E A, et al. Soluble organic nitrogen in agricultural soils[J]. Biology and Fertility of Soils, 2000, 30: 374 - 387.
    Paster J, Aber J D, McClaugherty C A, et al. 1994. Above-ground production and N and P cycling along a nitrogen mineralization gradient on Black Hawk Island, Wisconsin[J]. Journal of Ecology, 65: 256-268.
    Pattie C. 1993. Methane and nitrous oxide emission from laboratory measurements of rice soil suspension: effect of soil oxidation reduction status[J]. Chemosphere, 26: 251-260.
    Perakis S S, Hedin L O. Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds[J]. Nature, 2002,415: 416-419.
    
    Qian P Y(钱佩源), Schoenau J J. Discussing soil available nutrient extracted by ion-exchange resin film. Plant Nutri&Fert Sci(植物营养与肥料学报), 1996, 2(4): 322-330. (in Chinese with English abstract)
    Rodhe H.A comparison of the contribution of various gases to the greenhouse effect[J]. Science, 1990, 248: 1217-1219.
    Russow R, Stange C F , Neue H- U. Role of nitrite and nitric oxide in the processes of nitrification and denitrification in soil: Results from ~(15)N tracer experiments [J]. Soil Biology & Biochemistry, 2009,41(4): 785 - 795.
    Sasakawa H,, Yamamoto Y. Comparison of the uptake of nitrate and ammonium by rice seedlings. Plant Physiol, 1978, 62: 665-669.
    Schalk J, Devries S, Kuenen J G, et al. A novel hydroxylamine oxidoreductase involved in the an ammox process[J]. Biochemistry, 2000, 39: 5405 -5412.
    Shingo U, Chun—sim U G, Takahito Y. 2000. Dynamics of dissolved O_2, CO_2, CH_4 and N_2O in a tropical coastal swamp in southern Thailand [J]. Biogeochemistry, 49: 191-215.
    Skogley E O, Georgitis S J, Schoff B E. The phytoavailability soil test— PST. Comm Soil Sci Plant Ahal, 1990, 21: 1229-1243.
    Siemens J, Kaupenjohannm. Contribution of dissolved organic nitrogen to N leaching from four German agricultural soils[J]. Journal of Plant Nutrition and Soil Science, 2002, 165:675-681.
    Smith K A, McTaggart I P & Tsurata H. Emissions of N_2O and NO associated with nitrogen fertilization in intensive agriculture, and the potential for mitigation[J]. Soil Use Management, 1997,13: 296 - 304.
    Stepanauskas R, LeonardsonL, TranvikLJ. 1999. Bioavailability of wetland derived DON to fresh water and marine bacteria plankton[J]. Limnol Oceanogr, 44: 1477-1485.
    Tanner C C, Kadlec R H, Gibbs M M. Nitrogen processing gradients in subsurface—flow treatment wetlands- influence of wastewater characteristics [J]. Ecological Engineering, 2002, 18(4): 499-520.
    Ta T C , Ohira K. Effects of various environmental and medium conditions on the response of Indica and Japonica rice plants to ammonium and nitrate nitrogen. Soil Sci. Plant Nitri., 1981 , 27 ( 3):347 - 355.
    Van Beemen N. Acidic deposition and internal proton in acidification of soils and water[J]. Nature, 1984, 367 - 599.
    Wang R P, Yu W M, Huang G G et al. Study on nitrogen minetalization and nitrate leaching in fields [J]. J. Soil Water Conserv., 2006, 20(1): 80-83.
    Wang Y J, Zou G H, Fu H, Liu H B. Development and advance of soil nitrogen mineralization [J]. Chi. Agri. Sci. Bull., 2005,21(10): 203 - 208.
    Weiske Achim,GeroBenckiser & Johannes C G Ottow.Effect of the new nitrification inhibitor DMPP in comparison to DCD on nitrous oxide(N_2O) emissions and methane(CH_4) oxidation during 3 years of repeated applications in field experiments[J].Nutrient Cycling in Agroecosystems.2001,60:57-64.
    Wiebe W J.1981.An aerobic respiration and fermentaton[C]//Pomeroy L R.The Ecology of a Salt Marsh.New York:Springer-Verlag Press.137-159.
    Wilson E J.Tiley C.1998.Foliar uptake of wet-deposited nitrogen by Norway spruce:an experiment using ~(15)N[J].Atmospheric Environment,32(3):513-518.
    xu H,Xing G,Zu C C,et al.1997.Nitrous oxide emissions from three rice paddy fields in China[J].Nutrient Cycling in Agroecosystems.49:23-28.
    Zhu W X,Ehrenfelc J G.1999.Nitrogen mineralization and nitrification in suburban and undeveloped Atlantic White Cedar wetlands[J].Journal of Environmental Quality,28(2):523-529.
    白军红,邓伟,朱颜明,张玉霞,栾兆擎.水陆交错带土壤氮素空间分异规律研究一以月亮泡水陆交错带为例[J].环境科学学报,2002,22(3):343-348.
    陈清,张宏彦,李晓林.生产无公害蔬菜的集中平衡施氮技术[A].见:李晓林,张福锁,米国华主编.平衡施肥与可持续优质蔬菜生产[M].北京:中国农业大学出版社,2000,225-231.
    程明芳,金继运.离子交换树脂吸附土壤养分的动力学研究[J].土壤肥料,2002(4):15-19.
    杜应琼,王富华,李乃坚.广东省蔬菜硝酸盐含量的调查与分析[J].生态环境,2004,13(1):19-22.
    段英华,张亚丽,沈其荣.水稻根际的硝化作用与水稻的硝态氮营养[J].土壤学报,2004,41(5):803-809.
    樊剑波,张亚丽,王东升等.水稻氮素高效吸收利用机理研究进展[J].南京农业大学学报,2008,31(2):129-134.
    范晓辉,林德喜,沈敏,等.长期试验地潮土的矿化与硝化作用特征[J].土壤学报,2005,42(3):340-343.
    傅庆林,俞劲炎,陈英旭.氮素营养对水稻干物质和氮分配的影响及氮肥需求量.浙江大学学报(农业与生命科学版),2000,26(4):399-403.
    高恩元.2010年化肥需求分析[A].中国化工信息中心,化肥工业发展调研报告1996-2010[R].1996,41-50.
    郭文忠,王学梅,李丁仁,等.土壤次生盐渍化对茼蒿生长发育和硝酸盐积累的影响[J].陕西农业科学,2003(2):17-19.
    何文寿,李生秀,李辉桃.水稻对铵态氮和硝态氮吸收特性的研究[J].中国水稻科学,1998,12(4):249-252.
    黄银燕,陈绍红,杨靖.农业土壤中可溶性有机氮的研究[J].安徽农业科学,2003,31(4):602-605.
    梁东丽,同延安.有效碳源和氮源对黄土性土壤N_2O逸出量的影响[J].西北农林科技大学学报(自然科学版).2003,31(1):43-48.
    李俊良,陈新平,李晓林等.大白菜氮肥施用的产量效应、品质效应和环境效应[J].土壤学报,2003,40(2):261-266.
    李菊梅,李生秀.可矿化氮与各有机氮组分的关系[J].植物营养与肥料学报,2003,9(2):158-164.
    刘艳,周国逸,刘菊秀.陆地生态系统可溶性有机氮研究进展[J].生态学杂志,2005,24(5):573-577.
    卢红玲,李世清,金发会,邵安明.可溶性有机氮在评价土壤供氮能力中的作用与效果[J].中国农业科学,2008,41(4):1073-1082.
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    任祖淦,邱孝煊,蔡元呈,等.氮肥施用与蔬菜硝酸盐积累的相关研究[J].生态学报,1998,18(5):523-5281.
    苏祖芳,周培南,许乃霞,张亚洁.密肥条件对水稻氮素吸收和产量形成的影响[J].中国水稻科学,2001,15(2):281-286.
    王朝辉,田霄鸿,魏永胜,等.蔬菜的硝态氮累积及其营养调控[A].见:李晓林,张福锁,米国华主编.平衡施肥与可持续优质蔬菜生产[M].北京:中国农业大学出版社,2000,115-128.
    王荣萍,余炜敏,黄建国,等.田间条件下氮的矿化及硝态氮淋溶研究[J].水土保持学报,2006,20(1):80-83.
    王绍华,曹卫星,丁艳锋等.水稻互作对水稻氮吸收与利用的影响[J].中国农业科学,2004,37(4):497-501.
    王树安主编.作物栽培学各论(北方本)[M].北京:中国农业出版社,1995.
    王艳杰,邹国元,付桦,刘宏斌.土壤氮素矿化研究进展[J].中国农学通报,2005,21(10):203-208.
    王洋,刘景双,孙志高等.湿地系统氮的生物地球化学研究概述[J].湿地科学,2006,4(4):311-319.
    王永锐编著.水稻营养与合理施肥.北京:科学出版社,1989.30-32.
    温伟松.土壤通报,1963,(6):12-15.
    徐华,邢光喜,蔡祖聪.土壤质地对小麦和棉花田N_2O排放的影响[J].农业环境保护,2000,19(1):1-3.
    许中坚,刘广深,愈佳栋.氮循环的人为干扰与土壤酸化[J].地质地球化学,2002,30(2):74-78.
    杨建昌,王志琴,刘立军,郎有忠,朱庆生.旱种水稻生育特性与产量形成的研究.作物学报,2002,28(1):11-17.
    杨建昌,王志琴,朱庆森.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究.中国农业科学,1996,29(4):58-66.
    尹娟,费良军,田军仓,等.水稻田中氮肥损失研究进展[J].农业工程学报,2005,21(6):189-191.
    张树兰,杨学云,吕殿青,同延安.温度、水分及不同氮源对土壤硝化作用的影响[J].生态学报,2002,22(12):2147-2153.
    张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-87.
    张维理,武淑霞,冀宏杰,等.中国农业面源污染形势估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,37(7):1008-1017.
    张亚丽.水稻氮效率基因型差异评价与氮高效机理研究[D].南京:南京农业大学,2006.
    赵明,赵征宇,蔡葵,等.有机肥料对土壤可溶性氮素变化的影响及肥效研究[J].山东农业科学,2008,1:83-86.
    赵其国.现代生态农业与农业安全[J].生态环境,2003,12(3):253-259.
    朱兆良,文启孝.中国土壤氮素[M].南京:江苏科技出版社,1992.
    朱兆亮.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    张奇春,王光火.应用离子交换树脂球研究温度对水稻土养分释放动态的影响[J].中国水稻科学,2003,17(4):365-368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700