用户名: 密码: 验证码:
等离子体催化氨分解制氢的协同效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨分解是极具吸引力的燃料电池原位供氢方法。然而,已有报道主要采用热催化法分解氨气制氢,其中贵金属Ru活性最好但价格昂贵,而其它金属尤其非贵金属活性很低。本论文利用介质阻挡放电等离子体提高了非贵金属催化剂的低温催化活性,从而建立了基于非贵金属的等离子体催化氨分解制氢新方法,并取得以下结果和结论:
     1.将介质阻挡放电等离子体和非贵金属催化剂耦合用于氨分解制氢反应中,获得了显著的协同效应。例如,在10g体相Fe基催化剂存在下,NH3进料量为40ml/min、410℃的条件下,氨气转化率由热催化法的7.8%提高至99.9%(32.4W),氨气完全转化的温度比热催化法降低了140℃;制氢能量效率由单纯等离子体法的0.43mol/kW-h提高至4.96mol/kW-h。
     2.催化剂在协同效应中占据主导地位。首先,催化剂能够回收利用等离子体放电电热而使反应物得到活化,提高制氢能量效率;其次,催化剂表面放电改善了等离子体放电效果,由不均匀的丝状放电转变为较均匀的微放电、增加放电区面积和放电电流,电子密度得到大幅度增加,使得反应物分子与电子发生非弹性碰撞而被活化的概率增加;此外,催化剂表面放电使得催化剂能够直接利用等离子体区的活性物种。
     3.等离子体在协同效应中起到重要的辅助作用。首先,用自行建立的等离子体脱附技术以及OES、FTIR和15NH3同位素示踪研究发现:等离子体区的活性物种(NH3*、NH2·、NH等)与催化剂表面吸附态的含N物种的相互作用(Eley-Rideal过程)能够促进产物N物种的脱附,解决了催化剂被强吸附N原子毒化(金属氮化物)的问题;其次,反应物NH3分子被放电活化成活性物种(以NH3*为主),且NH3*物种的浓度与氨分解活性有直接对应关系,由此判断NH3*物种易于在催化剂表面吸附活化。
     4.负载型催化剂的金属和载体种类对协同效应具有显著影响。首先,在Fe、Co、Ni和Cu四种金属催化剂中,Co为最佳活性组分,其金属-氮键(M-N)强度适中,即:易形成又易断裂,有利于催化循环,且催化剂表面中间态物种浓度及表面放电面积较大,有利于表面化学反应的发生;其次,在等离子体环境下,载体的相对介电常数显著影响其等离子体催化氨分解协同能力,是选择等离子体催化体系中催化剂载体的重要依据。
     5.改进催化剂制备工艺可使等离子体催化氨分解的转化率和制氢能效分别提高40%和2倍多;等离子体催化体系更适合选用高进料速度(~200ml/min);催化剂用量存在最佳值(体相Fe基催化剂10g);在等离子体环境下,助剂KCl、KNO3、La(NO3)3、 Ce(NO3)3改性催化剂反而使其氨分解反应活性降低,有别于热催化研究。
Ammonia decomposition reaction has received an increasing attention due to the potential of using ammonia as a hydrogen storage medium in hydrogen economy. So far, only noble metal Ru exhibits good catalytic activity for ammonia decomposition in thermal catalysis mode, but metal Ru is too expensive for wide use. The problem of cheap metal catalysts such as supported Fe, Co, Ni lies in the very slow recombinative desorption of the surface adsorbed N atoms. In this study, the activity of the cheap metal catalysts was greatly enhanced by placing the catalyst bed into the plasma zone. Systematic studies were carried out to get insight into the activity enhancement. The following results and conclusions were obtained:
     1. A strong synergy was observed in ammonia decomposition when placing the cheap catalyst into the dielectric barrier discharge (DBD) plasma. For example, in the conditions of NH3flow rate being40ml/min, reaction temperature being410"C, input power being32.4W, when a bulk. Fe-based catalyst was used (10g), the ammonia conversion increased from7.8%to99.9%and the reaction temperature decreased by140℃compared to the thermal catalysis. The energy efficiency of H2production increased from0.43mol/kW-h to4.96mol/kW-h compared with the plasma only.
     2. The catalyst played a chief role in the synergy of plasma catalysis for ammonia decomposition. First, the catalyst increases the energy efficiency of the plasma by making use of the concomitant heat of the discharge. Second, the discharge was modified by the discharge of catalyst surface, changing from filamentary discharge to microdischarge which increased the uniformity and currents of discharge. Such a modification led to the increase of electron density and inelastic collision of NH3molecules with the electrons. Third, the catalyst can exploit the active species such as excited ammonia molecule (NH3*) to accelerate ammonia conversion.
     3. The vital role of plasma for the catalyst was to eliminate the rate-limiting step of the recombinative desorption of surface-adsorbed N atoms. This was confirmed by the self-established plasma desorption technique and other means such as OES, FTIR and15NH3isotope tracing. The acceleration of the recombinative desorption rate of surface-adsorbed N atoms was mainly implemented by heavy active species such as NH3*, NH2·and NH·instead of electrons.
     4. Metals and supports both had strong effects on the synergy of plasma and catalyst. Among Fe, Co, Ni and Cu, the supported Co catalyst exhibited the strongest synergy because the moderate strength of Co-N bond favored the formation and cleavage of M-N. More importantly, it was found that the dielectric constant of support had a close relationship with the ammonia conversion, which means that the dielectric constant is an important criterion to choose the support of catalyst in the plasma-catalysis mode.
     5. After improvement of catalyst preparation, the ammonia conversion and energy efficiency of Hi production increased by40%and more than two times, respectively. There are optimal values for catalyst dosage (10g for the bulk Fe-based catalyst) and feed flow of reactant (~200ml/min). In the presence of plasma, the activity of catalyst modified by promoter (KCl, KNO3, La(NO3)3or Ce(NO3)3) decreased for ammonia decomposition, which is dfferent from the condition of thermal catalysis.
引文
[1]KOTHARI R., SINGH D.P., TYAGI V. V., et al. Fermentative hydrogen production-An alternative clean energy source [J]. Renewable and Sustainable Energy Reviews,2012,16:2337-2346.
    [2]ABUADALA A., DINCER I. A review on biomass-based hydrogen production and potential applications [J]. International Journal of Energy Research,2012,36:415-455.
    [3]XIAO L., WU S. Y., LI Y. R. Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redox reactions [J]. Renewable Energy,2012,41:1-2.
    [4]JAMES O. O., MAITY S., MESUBI M. A., et al. Towards reforming technologies for production of hydrogen exclusively from renewable resources [J]. Green Chemistry,2011,13:2272-2284.
    [5]BSHISH A., YAAKOB Z., NARAYANAN B., et al. Steam-reforming of ethanol for hydrogen production [J]. Chemical Papers,2011,65:251-266.
    [6]AMIN A. M., CROISET E., EPLING W., et al. Review of methane catalytic cracking for hydrogen production [J]. International Journal of Hydrogen Energy,2011,36:2904-293.
    [7]MURRAY L. J., DINCA M., LONG J. R. Hydrogen storage in metal-organic frameworks [J]. Chemical Society Review,2009,38:1294-1314.
    [8]SUH M. P., PARK H. J., PRASAD T. K., et al. Hydrogen Storage in Metal-Organic Frameworks [J]. Chemical Reviews,2012,112:782-835.
    [9]LIM K. L., KAZEMIAN H., YAAKOB Z. Solid-state Materials and Methods for Hydrogen Storage:A Critical Review [J]. Chemical Engineering & Technology,2010,33:213-226.
    [10]CHEN J., WU F. Review of hydrogen storage in inorganic fullerene-like nanotubes [J]. Applied Physics A,2004,78:989-994.
    [11]GRAETZ J. New approaches to hydrogen storage [J]. Chemical Society Review,2009,38:73-82.
    [12]CHEN P., XIONG Z. T., LUO J. Z., et al. Interaction of hydrogen with metal nitrides and imides [J]. Nature,2002,420:302-304.
    [13]LI Y. W., YANG R. T. Hydrogen Storage in Low Silica Type X Zeolites [J]. The Journal of Physical Chemistry B,2006,110:17175-17181.
    [14]FARHA O. K., YAZAYDIN A. O., ERYAZICI I., et al. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities [J]. Nature Chemistry,2010, 2:944-948.
    [15]GUPTA B. K., SRIVASTAVA O. N. High-yield production of graphitic nanofibers [J]. International Journal of Hydrogen Energy,2008,33:2975-2979.
    [16]NIJKAMP M. G., RAAYMAKERS J. E. M. J., DILLEN A. J. V., et al. Hydrogen storage using physisorption -materials demands [J]. Applied Physics A:Materials Science & Processing,2001,72: 619-623.
    [17]ZALUSKA A., ZALUSKI L., STROM-OLSEN J. O., Nanocrystalline magnesium for hydrogen storage [J]. Journal of Alloys and Compounds,1999,288:217-225.
    [18]JAIN I. P., JAIN P., JAIN A., Novel hydrogen storage materials:A review of lightweight complex hydrides [J]. Journal of Alloys and Compounds,2010,503:303-339.
    [19]ZUTTEL A., RENTSCH S., FISCHER P., et al. Hydrogen storage properties of LiBH4 [J]. Journal of Alloys and Compounds,2003,356-357:515-520.
    [20]LIU X. F., LANGMI H. W., BEATTIE S. D., et al. Ti-Doped LiAlH4 for Hydrogen Storage:Synthesis, Catalyst Loading and Cycling Performance [J]. Journal of the American Chemical Society,2011,133: 15593-15597.
    [21]HU J.J., WU G. T., LIU Y. F., et al. Hydrogen Release from Mg(NH2)2-MgH2 through Mechanochemical Reaction [J]. The Journal of Physical Chemistry B,2006,110:14688-14692.
    [22]YERGA R. M. N., AVAREZ-GALVAN M. C., MOTA N., et al. Catalysts for Hydrogen Production from Heavy Hydrocarbons [J]. ChemCatChem,2011,3:440-457.
    [23]NAVARRO R. M., PENA M. A., FIERRO J. L., Hydrogen Production Reactions from Carbon Feedstocks:Fossil Fuels and Biomass [J]. Chemical Reviews,2007,107:3952-3991.
    [24]LUKYANOV B. N., Catalytic production of hydrogen from methanol for mobile, stationary and portable fuel-cell power plants [J]. Russian Chemical Reviews,2008,77:995-1016.
    [25]SOUZAA A. C. C. D., SILVEIRA J. L., Hydrogen production utilizing glycerol from renewable feedstocks-The case of Brazil [J]. Renewable and Sustainable Energy Reviews,2011,15:1835-1850.
    [26]COELHO B., OLIVEIRA A. C., MENDES A., Concentrated solar power for renewable electricity and hydrogen production from water-a review [J]. Energy & Environmental Science,2010,3:1398-1405.
    [27]ROSEN M. A., Advances in hydrogen production by thermochemical water decomposition:A review [J]. Energy,2010,35:1068-1076.
    [28]AHMED T. Y., AHMAD M. M., YUSUP S., et al. Mathematical and computational approaches for design of biomass gasification for hydrogen production:A review [J]. Renewable and Sustainable Energy Reviews,2012,16:2304-2315.
    [29]DASGUPTA C. N., GILBERT J. J., LINDBLAD P., Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production [J]. International Journal of Hydrogen Energy,2010,35:10218-10238.
    [30]ALLAKHVERDIEVA S. I., THAVASIC V., KRESLAVSKI V. D., et al. Photosynthetic hydrogen production [J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2010, 11:101-113.
    [31]SCHUTH F., PALKOVITS R., SCHLOGL R., et al. Ammonia as a possible element in an energy infrastructure:catalysts for ammonia decomposition [J]. Energy & Environmental Science,2012,5: 6278-6289.
    [32]KLERKE A., CHRISTENSEN C. H., NORSKOVB J. K., et al. Ammonia for hydrogen storage: challenges and opportunities [J]. Journal Materials Chemistry,2008,18:2304-2310.
    [33]JIAO K., ALAEFOUR I. E., LI X. G. Three-dimensional non-isothermal modeling of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with phosphoric acid doped polybenzimidazole membranes [J]. Fuel,2011,90:568-582.
    [34]KWON K. J., YOO D. Y., PARK J. O., Experimental factors that influence carbon monoxide tolerance of high-temperature proton-exchange membrane fuel cells [J]. Journal of Power Sources,2008, 185:202-206.
    [35]YAN Y. F., ZHANG L., LI L. X., et al. Progress in Catalytic Membrane Reactors for High Purity Hydrogen Production [J]. Journal of Inorganic Materials,2011,26:1233-1243.
    [36]JASINSKI M., DORS M., NOWAKOWSKA. H., et al. Production of hydrogen via conversion of hydrocarbons using a microwave plasma [J]. Journal of Physcs D:Applied Physics,2011,44: 194002-194009
    [37]TU X., WHITEHEAD J. C., Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge:Understanding the synergistic effect at low temperature [J]. Applied Catalysis B: Environmental,2012,125:439-448.
    [38]MOHARANA M. K., PEELA N. R., KHANDEKAR S., et al. Distributed hydrogen production from ethanol in a microfuel processor:Issues and challenges [J]. Renewable and Sustainable Energy Reviews, 2011,15:524-533.
    [39]BARELLI L., BIDINI G., GALLORINI F., et al. Hydrogen production through sorption-enhanced steam methane reforming and membrane technology:A review [J]. Energy,2008,33:554-570.
    [40]IULIANELLI A., BASILE A. Hydrogen production from ethanol via inorganic membrane reactors technology:a review [J]. Catalysis Science Technology,2011,1:366-379.
    [41]PALO D. R., DAGLE R. A., HOLLADAY J. D., Methanol Steam Reforming for Hydrogen Production [J]. Chemical Reviews,2007,107:3992-4021.
    [42]ASHOK J., REEMA S., ANJANEYULU C., Methane decomposition catalysts for COx-free hydrogen Production [J]. Reviews in Chemical Engineering,2010,26:29-39.
    [43]JASINSKI M., DORS M., NOWAKOWSKA H., Production of hydrogen via methane conversion using microwve plasma source with CO2 or CH4 swirl [J]. Przeglad Elektrotechniczny (Electrical Review), 2009, ISSN0033-2097, R.85 NR 5,121-123.
    [44]BREEN J. P., BURCH R., COLEMAN H. M., Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications [J]. Applied Catalysis B:Environmental,2002,39:65-74.
    [45]YANG Y., MA J. X., WU F., Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst [J]. International Journal of Hydrogen Energy,2006,31:877-882.
    [46]ZHANG X. R., SHI P. F., Production of hydrogen by steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts [J]. Journal of Molecular Catalysis A:Chemical,2003,194:99-105.
    [47]ARICO. A. S., SIRACUSANO S.,BRIGUGLIO N., et al. Polymer electrolyte membrane water electrolysis:status of technologies and potential applications in combination with renewable power sources [J]. Journal of Applied Electrochemistry,2013,43:107-118.
    [48]YIN S. F., XU B. Q., WANG S. J., et al. Magnesia-carbon nanotubes (MgO-CNTs) nanocomposite: novel support of Ru catalyst for the generation of COx-free hydrogen from ammonia [J]. Catalysis Letters, 2004,96:113-116.
    [49]U. S. Department of Energy. Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles [R]. US Department of Energy Office of Energy Efficiency and Reneable Energy and The FreedomCAR and Fuel Partnership, Washington, September 2009.
    [50]YIN S. F., XU B. Q., ZHOU X. P., et al. A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications [J]. Applied Catalysis A:General,2004,277:1-9.
    [51]DONG B. X., ICHIKAWA T., HANADA. N., et al. Liquid ammonia electrolysis by platinum electrodes [J]. Journal of Alloys and Compounds,2011,509S:S891-S894.
    [52]HANADA. N., HINO S., ICHIKAWA T., et al. Hydrogen generation by electrolysis of liquid ammonia [J]. Chemical Communication,2010,46:7775-7777.
    [53]HAUSE M. L., YOON Y. H., CRIM F. F., Vibrationally mediated photodissociation of ammonia:The influence of N-H stretching vibrations on passage through conical intersections [J]. The Journal of Chemical Physics,2006,125:174309-174316.
    [54]LEACH S., JOCHIMS H. W., BAUMGARTEL H., VUV Photodissociation of ammonia:a dispersed fluorescence excitation spectral study [J]. Physical Chemistry Chemical Physics,2005,7:900-911.
    [55]ODOCHIAN L., DIRTU D., MOCANU A. M., et al. Contributions to the Degenerated Branching Mechanism of the Thermal Decomposition of Ammonia [J]. Kinetics and Catalysis,2011,52:480-486.
    [56]DIRTU D., ODOCHIAN L., PUI A., et al. Thermal decomposition of ammonia. N2H4-an intermediate reaction product [J]. Central European Journal of Chemistry,2006,4:666-673.
    [57]QIU H., MARTUS K., LEE W. Y., et al. Hydrogen generation in a microhollow cathode discharge in high-pressure ammonia-argon gas mixtures [J]. International Journal of Mass Spectrometry,2004,233: 19-24.
    [58]BAN J. Y., KIM H. I., CHOUNG S. J., et al. NH3 removal using the dielectric barrier discharge plasma-V-TiO2 photocatalytic hybrid system [J]. Korean Journal of Chemical Engineering,2008,25: 780-786.
    [59]YIN S. F., ZHANG Q. H., XU B. Q., et al. Investigation on the catalysis of COx-free hydrogen generation from ammonia [J]. Journal of Catalysis,2004,224:384-396.
    [60]DUAN X., QIAN G., ZHOU X. G., et al. Tuning the size and shape of Fe nanoparticles on carbon nanofibers for catalytic ammonia decomposition [J]. Applied Catalysis B:Environmental,2011,101: 189-196.
    [61]LI X. K., Jl W. J., ZHAO J., et al. Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15 [J]. Journal of Catalysis,2005,236:181-189.
    [62]BIELUN Z. L., PELKA R., ARABCZYK W. Study of the Kinetics of Ammonia Synthesis and Decomposition on Iron and Cobalt Catalysts [J]. Catalysis Letters,2009,129:119-123.
    [63]ZHANG J., COMOTTI M., SCHUTH F., et al. Commercial Fe-or Co-containing carbon nanotubes as catalysts for NH3 decomposition [J]. Chemical Communication,2007,1916-1918.
    [64]CUI X. Z., LI H., GUO L. M., et al. Synthesis of mesoporous tungsten carbide by an impregnation-compaction route, and its NH3 decomposition catalytic activity [J]. Dalton Transactions, 2008,6435-6440.
    [65]LIU H. C., WANG H., SHEN J. H., et al. Influence of preparation conditions on the catalytic performance of MoNx/SBA-15 for ammonia decomposition [J]. Journal of Natural Gas Chemistry,2006, 15:178-180.
    [66]KARIM A. M., PRASAD V., MPOURMPAKIS G., et al. Correlating Particle Size and Shape of Supported Ru/γ-Al2O3 Catalysts with NH3 Decomposition Activity [J]. Journal of the American Chemical Society,131:12230-12239.
    [67]GARCIA-GARCIA F. R., RUIZ A. G., RAMOS I. R. Role of B5-Type Sites in Ru Catalysts used for the NH3 Decomposition Reaction [J]. Topics in Catalysis,2009,52:758-764.
    [68]ZHENG W. Q., ZHANG J., XU H. Y., et al. NH3 Decomposition Kinetics on Supported Ru Clusters: Morphology and Particle Size Effect [J]. Catalysis Letters,2007,119:311-318.
    [69]LU A. H., NITZ J. J., COMOTTI M., et al. Spatially and Size Selective Synthesis of Fe-Based Nanoparticles on Ordered Mesoporous Supports as Highly Active and Stable Catalysts for Ammonia Decomposition [J]. Journal of the American Chemical Society,2010,132:14152-14162.
    [70]KOWALCZYK Z., SENTEK J., JODZIS S., et al. Effect of Potassium on the Kinetics of Ammonia Synthesis and Decomposition over Fused Iron Catalyst at Atmospheric Pressure [J]. Journal of catalysis, 1997,169:407-414.
    [71]PELKA R., MOSZYNSKA I., ARABCZYK W. Catalytic Ammonia Decomposition Over Fe/Fe4N [J]. Catalysis Letters,2009,128:72-76.
    [72]ARABCZYK W., PELKA R. Studies of the Kinetics of Two Parallel Reactions:Ammonia Decomposition and Nitriding of Iron Catalyst [J]. The Journal of Physical Chemistry A,2009,113: 411-416.
    [73]TSUBOUCHI N., HASHIMOTO H., OHTSUKA Y., Catalytic Performance of Limonite in the Decomposition of Ammonia in the Coexistence of Typical Fuel Gas Components Produced in an Air-Blown Coal Gasification Process [J]. Energy & Fuels,2007,21:3063-3069.
    [74]GANLEY J. C., THOMAS F. S., SEEBAUER E. G., et al. A priori catalytic activity correlations:the difficult case of hydrogen production from ammonia [J]. Catalysis Letters,2004,96:117-122.
    [75]LIU H. C, WANG H., SHEN J. H., et al. Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing COx-free hydrogen from ammonia [J]. Applied Catalysis A:General, 2008,337:138-147.
    [76]ZHENG W. Q., ZHANG J., GE Q. J., et al. Effects of CeO2 addition on Ni/Al2O3 catalysts for the reaction of ammonia decomposition to hydrogen [J]. Applied Catalysis B:Environmental,2008,80: 98-105.
    [77]LIU H. C., WANG H., SHEN J. H., et al. Promotion effect of cerium and lanthanum oxides on Ni/SBA-15 catalyst for ammonia decomposition [J]. Catalysis Today,2008,131:444-449.
    [78]SOENSEN R. Z., NIELSEN L. J. E., JENSEN S., et al. Catalytic ammonia decomposition: miniaturized production of COx-free hydrogen for fuel cells [J]. Catalysis Communications,2005,6: 229-232.
    [79]YAO L. H., LI Y. X., ZHAO J., et al. Core-shell structured nanoparticles (M@SiO2, Al2O3, MgO; M= Fe, Co, Ni, Ru) and their application in COx-free H2 production via NH3 decomposition [J]. Catalysis Today,2010,158:401-408.
    [80]BOISEN A., DAHL S., NORSKOV J. K., et al. Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst [J]. Journal of Catalysis,2005,230,309-312.
    [81]HANSGEN D. A., THOMANEK L. M., CHEN J. G., et al. Experimental and theoretical studies of ammonia decomposition activity on Fe-Pt, Co-Pt, and Cu-Pt bimetallic surfaces [J]. Journal of Chemical Physics,2011,134:184701-184707.
    [82]LEVY R. B., BOUDART M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis [J]. Science,1973,181:547-549.
    [83]SIEGEL E., D-bandwidth contraction upon metalloid formation:A resolution of the bonding controversy in transition metal carbides, nitrides and borides [J]. Semiconductors and Insulators,1979,5: 47-60.
    [84]PANSARE S. S., TORRES W., GOODWIN J. G., Ammonia decomposition on tungsten carbide [J]. Catalysis Communications,2007,8:649-654.
    [85]LIU H. C., WANG H., SHEN J. H., et al. Preparation and evaluation of ammonia decomposition catalysts by high-throughput technique [J]. Reaction Kinetics and Catalysis Letters,2008,93:11-17.
    [86]LEE H. J., CHOI J. G., COLLING C. W., et al. Temperature-programmed desorption and decomposition of NH3 over molybdenum nitride film [J]. Applied surface Science,1994,78:299-307.
    [87]PELKA R., ARABCZYK W., Studies of the Kinetics of Reaction Between Iron Catalysts and Ammonia-Nitriding of Nanocrystalline Iron with Parallel Catalytic Ammonia Decomposition [J]. Topics in Catalysis,2009,52:1506-1516.
    [88]LU C. S., LI X. N., ZHU Y. F., et al. Ammonia Decomposition over Bimetallic Nitrides Supported onγ-Al2O3 [J]. Chinese Chemical Letters,2004,15:105-108.
    [89]KRAUPNER A., ANTONIETTI M., PALKOVITS R., Mesoporous Fe3C sponges as magnetic supports and as heterogeneous catalyst [J]. Journal Materials Chemistry,2010,20:6019-6022.
    [90]ZHENG W. Q., ZHANG J., ZHU B., et al. Structure-Function Correlations for Ru/CNT in the Catalytic Decomposition of Ammonia [J]. ChemSusChem,2010,3:226-230.
    [91]GARCIA-GARCIA F. R., ALVAREZ-RODRIGUEZ J., RODRIGUEZ-RAMOS I., et al. The use of carbon nanotubes with and without nitrogen doping as support for ruthenium catalysts in the ammonia decomposition reaction [J]. Carbon,2010,48:267-276.
    [92]LI L., ZHU Z. H., LU G. Q., et al. Catalytic ammonia decomposition over CMK-3 supported Ru catalysts:Effects of surface treatments of supports [J]. Carbon,2007,45:11-20.
    [93]ZHANG J., XU H. Y., JIN X. L., et al. Characterizations and activities of the nano-sized Ni/Al2O3 and Ni/La-Al2O3 catalysts for NH3 decomposition [J]. Applied Catalysis A:General,2005,290:87-96.
    [94]WANG L., CHEN J. L., GE L., et al. Halloysite-Nanotube-Supported Ru Nanoparticles for Ammonia Catalytic Decomposition to Produce COx-Free Hydrogen [J]. Energy Fuels,2011,25:3408-3416.
    [95]LI L., WANG S. B., ZHU Z. H., et al. Catalytic decomposition of ammonia over fly ash supported Ru catalysts [J]. Fuel processing technology,2008,89:1106-1112.
    [96]NG P. F., LI L., WANG S. B., et al. Catalytic Ammonia Decomposition over Industrial-Waste-Supported Ru Catalysts [J]. Environmental Science & Technology,2007,41:3758-3762.
    [97]LI L., ZHU Z. H., YAN Z. F., et al. Catalytic ammonia decomposition over Ru/carbon catalysts:The importance of the structure of carbon support [J]. Applied Catalysis A:General,2007,320:166-172.
    [98]RAROG-PILECKA W., SZMIGIEL D., KOWALCZYK Z., et al. Ammonia decomposition over the carbon-based ruthenium catalyst promoted with barium or cesium [J]. Journal of Catalysis,2003,218: 465-469.
    [99]PYRZ W., VIJAY R., BINZ J., et al. Characterization of K-Promoted Ru Catalysts for Ammonia Decomposition Discovered Using High-Throughput Experimentation [J]. Topics in Catalysis,2008,50: 180-191.
    [100]ZHANG J., XU H. Y., LI W. Z. Kinetic study of NH3 decomposition over Ni nanoparticles:The role of La promoter, structure sensitivity and compensation effect [J]. Applied Catalysis A:General,2005,296: 257-267.
    [101]ZHANG J., XU H. Y., GE Q. J., et al. Highly efficient Ru/MgO catalysts for NH3 decomposition: Synthesis, characterization and promoter effect [J]. Catalysis Communications,2006,7:148-152.
    [102]LI Y. X., YAO L. H., SONG Y. Y., et al. Core-shell structured microcapsular-like Ru@SiO2 reactor for efficient generation of COx-free hydrogen through ammonia decomposition [J]. Chemical Communication,2010,46:5298-5300.
    [103]FEYEN M., WEIDENTHALER C., GUTTEL R., et al. High-Temperature Stable, Iron-Based Core-Shell Catalysts for Ammonia Decomposition [J]. Chemistry-A European Journal,2011,17:598-605.
    [104]LI Y. X., YAO L. H., LIU S. Q., et al. Cs-modified iron nanoparticles encapsulated in microporous and mesoporous SiO2 for COx-free H2 production via ammonia decomposition [J]. Catalysis Today,2011, 160:79-86.
    [105]ZHANG J., MULLER J. O., ZHENG W. Q., et al. Individual Fe-Co Alloy Nanoparticles on Carbon Nanotubes:Structural and Catalytic Properties [J]. Nano Letters,2008,8:2738-2743.
    [106]LIANG C. H., LI W. Z., WEI Z. B., et al. Catalytic Decomposition of Ammonia over Nitrided MoNx/y-Al2O3 and NiMoNy/y-Al2O3 Catalysts [J]. Industrial Engineering Chemistry Research,2000,39: 3694-3697.
    [107]ZHANG H. B., SCHRADER G. L., Characterization of NH3/Fe Catalytic Systems by Laser Raman Spectroscopy [J]. Journal of catalysis,1986,99:461-471.
    [108]SELWYN G. S., LIN M. C. Production of the NH radical from the catalytic decomposition of NH3 on polycrystalline Pt and Fe surface at the high temperatures [J].1982,67:213-220.
    [109]BRADFORD M. C. J., FANNING P. E., Kinetics of NH3 Decomposition over Well Dispersed Ru [J]. Journal of catalysis,1997,172:479-484.
    [110]EGA WA C., NISHIDA T., NAITO S., et al. Ammonia decomposition on (1110) and (001) surface of Ruthenium [J]. Journal of the Chemical Society, Faraday Transactions 1,1984,80:1595-1604.
    [111]BLANKSBY S. J., ELLISON G. B., Bond dissociation energies of organic molecules [J]. Accounts of Chemcial Research,2003,36:255-263.
    [112]SU K., HU X. L., LI X. Y., et al. High-level ab initio calculation and assessment of the dissociation and ionization energies of NH2 and NH3 neutrals or cations [J]. Chemical Physics Letters,1996,258: 431-435.
    [113]TARRONI r., PALMIERI P., MITRUSHENKOV A., et al. Dissociation Energies and heats of formation of NH and NH+[J]. The Journal of Chemical Physics,1997,106:10265-10272.
    [114]GRELA M. A., COLUSSI A. J., Decomposition of methylamono and aminomethyl radicals. The heats of formation of methyleneimine(CH2=NH) and hydrazyl (N2H3) radical [J]. International Journal of Chemical Kinetics,1988,20:713-718.
    [115]STOLBOV S., RAHMAN T. S., First-principles study of some factors controlling the rate of ammonia decomposition on Ni and Pd surfaces [J]. Journal of Chemical Physics,2005,123: 204716-204720.
    [116]HUANG W. Y., LAI W. Z., XIE D. Q., First-principles study of decomposition of NH3 on Ir(100) [J]. Surface Science,2008,602:1288-1294.
    [117]XIAO X. Z., CAO Y. L., CAI Y. Y., Decomposition of NH3 on Ir(110):A first-principle study [J]. Surface Science,2011,605:802-807.
    [118]DUAN X. Z., QIAN G., FAN C., et al. First-principles calculations of ammonia decomposition on Ni(110) surface [J]. Surface Science,2012,606:549-553.
    [119]VILEKAR S. A., FISHTIK I., DATTA R., The peculiar catalytic sequence of the ammonia decomposition reaction and its steady-state kinetics [J]. Chemical Engineering Science,2012,71:333-344.
    [120]BAIKER A., MONTI D., Interaction of Ammonia with Metallic Copper, Nickel and Cobalt Catalysts Studied by Temperature Programmed Desorption [J]. Berichte der Bunsengesellschaft fur physikalische Chemie,1983,87:602-605.
    [121]HANSGEN D. A., VLACHOS D. G., CHEN J. G. G., Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction [J]. Nature chemistry,2010,2:484-489.
    [122]RAPALOULIAS D., AMOUROUX J., BERGOUGNAN M. P., et al. Process catalytiques dans les reacteurs a plasma hors d'equilibre III. Decompodition de NH3 [J]. Revue de Physique Appliquee,1982,17: 95-101.
    [123]BERGOUGNAN M. P., GICQUEL A., AMOUROUX J., Modification desprocessus hors equilibre au cours de I'interaction entre un plasma basse pression et une surface. Ⅰ. Gas d'un plasma de NH3. Application a la catalyse chimique [J]. Revue de Physique Appliquee,1983,18:335-346.
    [124]GICQUEL A., CAVADIAS S., AMOUROUX J., Heterogeneous catalysis in low-pressure plasma [J]. Journal of Physcs D:Applied Physics,1986,19:2013-2042.
    [125]赵青,刘述章,童洪辉等.等离子体技术与应用[M].北京:国防工业出版社,2009:4-6.
    [126]KOGELSCHATZ U., Dielectric-barrier Discharges:Their History, Discharge Physics, and Industrial Applications [J]. Plasma Chemistry and Plasma Processing,2003,23:1-46.
    [127]叶超,宁兆元,江美福等.低气压低温等离子体诊断原理与技术[M].北京:科学出版社,2010:39-61.
    [128]杨津基.气体放电[M].北京:科学出版社,1983:49-55.
    [129]杨保初,刘晓波,戴玉松.高电压技术[M].重庆:重庆大学出版社,2002:4-6.
    [130]Kuffel J, Kuffel E, Zaengl W S., High volt age engineering fundamentals [M].2nd ed. Great Britain: Butter worth-Heinemann Press,2000:281-366.
    [131]石中玉.紫外线光源及其应用[M].北京:轻工业出版社,1984:1-44.
    [132]ZHANG Y., GU B., WANG W. C., et al. Experimental investigation on large area dielectric barrier discharge in atmospheric nitrogen and air assisted by the ulraviolet lamp [J]. Spectroch imica Act a Part A: Molecular and Biomolecular Spectroscopy,2009,72(3):460-464.
    [133]CHEN H. L., LEE H. M., CHEN S. H., et al. Review of plasma catalysis on hydrocarbon reforming for hydrogen production——Interaction, integration, and prospects [J]. Applied Catalysis B:Environmental, 2008,85:1-9.
    [134]WHITEHEAD J. C., Plasma catalysis:A solution for environmental Problems [J]. Pure and Applied Chemistry,2010,82:1329-1336.
    [135]KIM H.H., Nonthermal Plasma Processing for Air-Pollution Control:A Historical Review, Current Issues, and Future Prospects [J]. Plasma Processes and Polymers,2004,1:91-110.
    [136]DURME J. V., DEWULF J., LEYS C., et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment:A review [J]. Applied Catalysis B:Environmental,2008,78:324-333.
    [137]NOZAKI T., HIROYUKI T., OKAZAKI K., Hydrogen Enrichment of Low-Calorific Fuels Using Barrier Discharge Enhanced Ni/γ-Al2O3 Bed Reactor:Thermal and Nonthermal Effect of Nonequilibrium Plasma [J]. Energy & Fuels,2006,20:339-345.
    [138]TUFANO V., TURCO M., Kinetic modeling of nitric oxide reduction over a high-surface area V2O5-TiO2 catalyst [J]. Applied Catalysis B:Environmental,1993,2:9-26.
    [139]ODENBRAND C. U. I., ANDERSON L. A. H., BRANDIN J. G. M., et al. Catalytic reduction of nitrogen oxides:2. The reduction of NO2 [J]. Applied Catalysis,1986,27:363-377.
    [140]TOBY. S., VANDEBURGT L. J., TOBY F. S., Kinetics and Chemiluminescence of Ozone-Aromatic Reactions In the Gas Phase [J]. Journal of Chemical Physics,1985,89:1982-1986.
    [141]HEATH W. O., BARLOW S. E., BERQSMAN T. M., et al. Development and Analysis of High-Energy Corona Processes for Air Purification [C]//International conference on advanced oxidation technologies for water and air remediation 1994, PNL-SA-24432. London,25-30 Jun 1994.
    [142]CHANG J. S., KOSTOV K. G., URASHIMA K., et al. Removal of NF3 from Semiconductor-Process Flue Gases by Tandem Packed-Bed Plasma and Adsorbent Hybrid Systems [J]. IEEE Transactions on Industry Applications,2000,36:1251-1259.
    [143]KANG S. K., PARK J. M., KIM Y., et al. Numerical Study on Influences of Barrier Arrangements on Dielectric Barrier Discharge Characteristics [J]. IEEE Transactions on Plasma Science,2003,31: 504-510.
    [144]TAKUMA T., Field Behavior at a Triple Junction in Composite Dielectric Arrangements [J]. IEEE Transaction on Electrical Insulation,1991,26:500-509.
    [145]TAS M. A., Plasma-Induced Catalysis:A Feasibility Study and Fundamentals [D]. Dutch:Eindhoven University of Technology,1995.
    [146]RAPAKOULIAS D. E., CAVADIAS S., MATARAS D., Heterogeneous catalysis in interaction of plasma excited species with surfaces [J]. Journal of High Temperature Chemical Processes,1993,2: 231-246.
    [147]BERK R. D., MARONI P., PAPAGEORGOPOULOS D. C., et al. Vibrational Mode-Specific Reaction of Methane on a Nickel Surface [J]. Science,2003,302:98-100.
    [148]ABBOTT H. L., BUKOSKI A., KAVULAK D. F., et al. Dissociative chemisorption of methane on Ni.100:Threshold energy from CH4 (2v3) eigenstate-resolved sticking measurements [J]. Journal of Chemical Physics,2003,119:6407-6410.
    [149]HIGGINS J., CONJUSTEAU A., SCOLES G., et al. State selective vibrational (2v3) activation of the chemisorption of methane on Pt (111) [J]. Journal of Chemical Physics,2001,114:5277-5283.
    [150]WALKER A. V., KING D. A., Dynamics of dissociative methane adsorption on metals:CH4 on Pt{110}(1×2) [J]. Journal of Chemical Physics,2000,112:4739-4748.
    [151]RETTNER C. T., PFNUR H. E., STEIN P. H., et al. Promotion of dissociative chemisorption with vibrational and translational energy [J]. Journal of Vacuum Science & Technology A,1988,6:899-901.
    [152]RETTNER C. T., STEIN H., Effect of vibrational energy on the dissociative chemisorption of N2 on Fe(Ⅲ) [J]. Journal of Chemical Physics,1987,87:770-771.
    [153]POR E., HAASE G., CITRI O., et al. Effect of molecular energy content on the dissociative chemisorption of N2 on Re(0001) [J]. Chemical Physics Letters,1991,186:553-560.
    [154]ROMM L., KATZ G., KOSLOFF R., et al. Dissociative Chemisorption of N2 on Ru(001) Enhanced by Vibrational and Kinetic Energy□ Molecular Beam Experiments and Quantum Mechanical Calculations [J]. The Journal of Physical Chemistry B,1997,101:2213-2217.
    [155]ERTL G., Surface Science and Catalysis-Studies on the Mechanism of Ammonia Synthesis:The P. H. Emmett Award Address [J]. Catalysis Review-science and Engineering,1980,21:201-223.
    [156]JAMES A. L., Kinetics,catalysis and mechanism of methane steam reforming [D]. America: Worcester Polytechnic institute,2006.
    [157]HOLMBLAD P. M., WAMBACH J., CHORKENDOFF I., Molecular beam study of dissociative sticking of methane on Ni (100) [J]. Journal of Chemical Physics,1995,102:8255-8263.
    [158]JUURLINK L.B.F., MCCABE P.R., SMITH R.R., et al. Eigenstate-Resolved Studies of Gas-Surface Reactivity:CH4 (v3) Dissociation on Ni(100) [J]. Physical Review Letters,1999,83:868-871.
    [159]LEE M. B., YANG Q. Y., CEYER S. T., Dynamics of the activated dissociative chemisorption of CH4 and implication for the pressure gap in catalysis:A molecular beam-high resolution electron energy loss study [J]. Journal of Chemical Physics,1987,87:2724-2741.
    [160]LARSEN J. H., HOLMBLAD P. M., CHORKENDOFF I., Dissociative sticking of CH4 on Ru(0001) [J]. Journal of Chemical Physics,1999,110:2637-2642.
    [161]NOZAKI T., MUTO N., KADO S., et al. Dissociation of vibrationally excited methane on Ni catalyst Part 1. Application to methane steam reforming [J]. Catalysis Today,2004,89:57-65.
    [162]NOZAKI T., MUTO N., KADO S., et al. Dissociation of vibrationally excited methane on Ni catalyst Part 2. Process diagnostics by emission spectroscopy [J]. Catalysis Today,2004,89:67-74.
    [163]MASOUD N., MARTUS K., FIGUS M., et al. Rotational and Vibrational Temperature Measurements in a High-Pressure Cylindrical Dielectric Barrier Discharge (C-DBD) [J]. Contributions to Plasma Physics,2005,45:32-39.
    [164]ZHANG Y., CHU W., CAO W., et al. A Plasma-Activated Ni/a-Al2O3 Catalyst for the Conversion of CH4 to Syngas [J]. Plasma Chemistry and Plasma Processing,2000,20:137-144.
    [165]LIU X. Z., WANG J. G., LIU C. J., et al. Partial oxidation of methane to syngas over Ni-Fe/Al2O3 catalyst with plasma enhanced activity [J]. Reaction Kinetics and Catalysis Letters,2003,79:69-76.
    [166]WANG J. G., LIU C. J., ZHANG Y. P., et al. Partial oxidation of methane to syngas over glow discharge plasma treated Ni-Fe/Al2O3 catalyst [J]. Catalysis Today,2004,89:183-191.
    [167]ZHU X. L., HUO P. P., ZHANG Y. P., et al. Characterization of Argon Glow Discharge Plasma Reduced Pt/Al2O3 Catalyst [J]. Industrial Engineering Chemistry Research,2006,45:8604-8609.
    [168]LI Z. H., TIAN S. X., WANG H. T., et al. Plasma treatment of Ni catalyst via a corona discharge [J]. Journal of Molecular Catalysis A:Chemical,2004,211:149-153.
    [169]ZHU Y. R., LI Z. H., ZHOU Y. H., et al. Plasma treatment of Ni and Pt catalysts for partial oxidation of methane [J]. Reaction Kinetics and Catalysis Letters,2006,87:33-41.
    [170]YU K. L., LIU C. J., ZHANG Y. P., et al. The preparation and characterization of highly dispersed PdO over Alumina for low-temperature combustion of methane [J]. Plasma Chemistry and Plasma Processing,2004,24:393-403.
    [171]CHEN M. H., CHU W., DAI X. Y., et al. New palladium catalysts prepared by glow discharge plasma for the selective hydrogenation of acetylene [J]. Catalysis Today,2004,89:201-204.
    [172]BARTHOLOMEW C. H., Carbon Deposition in Steam Reforming and Methanation [J]. Catalysis Review-science and Engineering,1982,24:67-112.
    [173]MELCHOR A., GARBOWSKI E., MATHIEU M. V., et al. Physicochemical Properties and Isomerization Activity of Chlorinated Pt/Al2O3 Catalysts [J]. Journal of the Chemical Society, Faraday Transactions,1986,182:3667-3679.
    [174]WAGNER C., Adsorbed Atomic Species as Intermediates in Heterogeneous Catalysis [J]. Advances in Catalysis,1970,21:323-381.
    [175]VAYENAS C. G., BEBELIS S., LADAS S., Dependence of catalytic rates on catalyst work function [J]. Nature,1990,343:625-627.
    [176]NICOLE J., TSIPLAKIDES D., WODIUNIG S., et al. Activation of Catalyst for Gas-Phase Combustion by Electrochemical Pretreatment [J]. Journal of The Electrochemical Society,1997,144: L312-L314.
    [177]POPPE J., VOLKENING S., SCHAAK A., et al. Electrochemical promotion of catalytic CO oxidation on Pt/YSZ catalysts under low pressure conditions [J]. Physical Chemistry Chemical Physics, 1999,1:5241-5249.
    [178]LIU C. J., MALLINSON R., LOBBAN L., Nonoxidative Methane Conversion to Acetylene over Zeolite in a Low Temperature Plasma [J]. Journal of Catalysis,1998,179:326-334.
    [179]NIELSEN-ROSTRUP J. R., SEHESTED J., NORSKOV J. K., Hydrogen and synthesis gas by steam-and CO2 reforming [J]. Advances in Catalysis,2002,47:65-139.
    [180]ELIASSON B., KOGELSCHATZ U., Nonequilibrium Volume Plasma Chemical Processing [J]. IEEE Transactions on Plasma Science,1991,19:1063-1077.
    [181]方世东,孟月东,舒兴胜等.氢等离子体裂解煤制乙炔的研究进展[J].煤炭燃烧,2009,15(5):60-70.
    [182]程易,陈家琦,郭文康.一种应用于等离子体煤裂解制乙炔反应器的煤粉入口结构:中国,CN200910080098.5[P].2009,03,19.
    [183]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002:456-536.
    [184]PLOTCZYK W. W, RESZTAK A, SZYMANSKI A., Plasma processing of brown coal [J]. International Journal of Materials and Product Technology,1995,10:530-540.
    [185]LANGMUIR 1., Positive ion currents from the positive column of mercury arcs [J]. Science,1923,58: 290-291.
    [186]BENESI H.A., JONES A.C., An infrared study of the water-silica gel system [J]. The Journal of Physical Chemistry,1959,63:179-182.
    [187]RAMIS G. G., Yl L., BUSCA G., TURCO M., et al. Adsorption, activation, and oxidation of ammonia over SCR Catalyst [J]. Journal of catalyst,1995,157:523-535.
    [188]KLEINER I., BROWN L.R., TARRAGO G., et al. Positions and intensities in the 2 nu4/nul/nu3 vibrational system of 14NH3 near 3 um [J]. Journal of Molecular Spectroscopy,1999,193:46-71.
    [189]RICO V. J., HUESO J. L., COTRINO J., et al. Hybrid catalytic-DBD plasma reactor for the production of hydrogen and preferential CO oxidation (CO-PROX) at reduced temperatures [J]. Chemical Communication,2009,0:6192-6194.
    [190]ROBERTS S., Dielectric constant of barium titanate at high temperatures [J]. Physical Review,1949, 75:989-990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700