用户名: 密码: 验证码:
PCR—膜芯片~(?)技术检测结核杆菌耐药基因突变的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪80年代后期以来,伴随人类免疫缺陷病毒(HIV)感染的流行、结核分枝杆菌(Mycobacterium tuberculosis,MTB)耐药菌株的出现以及流动人口的增加,全球结核病(tuberculosis,TB)疫情急剧恶化,严重威胁着人类健康。目前,全世界每年TB死亡人数高达300万。随着联合药物的使用,MTB的耐药菌株也在不断的出现和传播。据WHO 2008年1月的调查报告[1]显示,耐药结核病(drug-resistant tuberculosis,DR-TB )的发病率创历史最高纪录,中国结核病耐药的严重程度在全球范围内仅次于俄罗斯,DR-TB已成为我国严重的公共卫生和社会问题。
     结核病实验室诊断和耐药性检测技术研究一直是国内外共同关注的焦点[2]。MTB培养加药敏试验仍是目前临床广泛采用鉴定MTB及其耐药性的“金标准”,但它对结核杆菌尤其是耐药菌株的检出率很低,所需时间较长,无法满足临床辅助诊断与指导用药的需要[3,4]。反向点膜杂交(reverse dot blot hybridization ,RDB)法应用DNA探针、核酸杂交、酶联显色3方面技术,同时检测MTB多个药物的耐药性[5],是目前国内外研究的热点。本课题组在前期研究中,以临床分离株为对象利用RDB法初步构建了检测耐药结核杆菌的膜芯片及反应体系。本研究以石蜡包埋组织标本为对象,从DNA的提取方法、多重PCR的反应体系及膜芯片的杂交条件三方面对整个检测体系进行优化,并将优化后的PCR-膜芯片体系直接用于检测石蜡包埋组织及痰液等临床标本的非培养结核杆菌及其耐药情况,结合药敏试验及测序结果对PCR-膜芯片检测结果进行比较分析。
     目的:优化结核分枝杆菌耐药基因膜芯片检测体系,探讨PCR-膜芯片技术直接应用于临床标本中结核杆菌耐药性检测的方法。
     方法:1、以石蜡包埋组织标本为对象,首先对提取DNA的方法进行优化。分别以氯化钠盐析法、酚-氯仿抽提法、一步法、试剂盒法提取石蜡包埋组织中结核杆菌的DNA,并通过琼脂糖凝胶电泳、PCR及TB膜芯片分析所提取DNA的质量;
     2、根据课题组前期建立的结核杆菌多重PCR体系扩增石蜡包埋组织中结核杆菌的耐药基因,通过调整引物组合、模板DNA的加入量及PCR反应的循环次数进行优化;
     3、根据课题组前期建立的结核杆菌耐药膜芯片体系检测石蜡包埋组织中结核杆菌耐药基因突变,通过调整膜芯片杂交时间及显色时间进行优化;
     4、综合各项优化条件,构建优化后PCR-膜芯片检测体系。
     5、采集100例石蜡包埋的肺或淋巴结组织标本(结核病人80例,非结核病人20例),采集82例痰标本(结核病人64例,非结核病人18例);
     6、利用TB膜芯片检测石蜡包埋组织标本和痰标本中的结核杆菌IS6110基因,结果与抗酸染色镜检及痰涂片结果进行比较分析;
     7、利用优化的PCR-膜芯片检测体系,直接检测TB膜芯片阳性的石蜡包埋组织及痰标本中的结核杆菌及其耐药基因突变,结果与药敏试验及DNA测序结果进行分析比较。
     结果:1、氯化钠盐析法提取的DNA (19.338±6.270μg)和一步法提取的DNA(20.050±5.591μg)最多(P<0.001),PCR与TB膜芯片验证显示氯化钠盐析法与酚-氯仿法提取到质量较高的结核杆菌DNA;
     2、扩增石蜡包埋组织中结核杆菌耐药基因的多重PCR的最适条件为:引物组合调整为RKE、IAG、PRP、RRI,模板DNA的加入量为5μl, PCR反应的循环次数为38;
     3、检测石蜡包埋组织中结核杆菌耐药基因突变膜芯片杂交的最适条件为:杂交时间为6h及以上,显色时间为15min;
     4、TB膜芯片检测石蜡包埋组织标本和痰标本中的结核杆菌IS6110基因,特异度分别为100%(20/20)和100%(18/18),灵敏度分别为52.5%(42/80)和81.3%(52/64)。
     5、优化后PCR-膜芯片直接检测石蜡包埋组织结核杆菌耐药基因突变,在42例TB膜芯片确认结核杆菌阳性的标本中,检出5例存在耐药基因的突变,其突变位点与测序结果基本符合。
     6、优化后PCR-膜芯片直接检测痰样结核杆菌耐药基因突变,在52例确认结核杆菌阳性的痰样中,检出5例存在耐药基因突变,其中4例临床药敏试验显示为耐药,该4例标本的PCR-膜芯片检测结果与药敏及测序结果基本符合;在痰培养阴性的样本中,PCR-膜芯片检测1例出现耐药基因突变,突变位点与测序结果一致,提示异烟肼耐药的可能。
     结论:1、氯化钠盐析法具有高效简便的特点,是较为理想的石蜡包埋组织结核杆菌DNA的提取方法。
     2、TB膜芯片检测石蜡包埋组织标本和痰标本中结核杆菌,检出率明显高于抗酸染色镜检法和痰涂片法。
     3、优化后PCR-膜芯片体系可直接检测石蜡包埋组织及痰样等临床标本结核杆菌耐药基因突变;48小时内提供耐药信息,为临床耐药结核病的快速诊断提供有意义的辅助参考。
From later period of 1980s , tuberculosis (TB) global epidemic is fuelled by synergy with HIV, emergence of Mycobacterium tuberculosis (MTB) drug-resistant strains and the increase of floating population which seriously affects human’s health. 3 million people were killed by TB each year in the world.With the alliance use of drug,the emergence and transmission of MTB drug-resistant strains is continuous.The report in 2008 from WHO showed that the morbidity of drug-resistant tuberculosis (DR-TB) break through the records in history.The serious extent of DR-TB in china ranks only second to Russia , DR-TB has become serious public health and society problem in china .
     Many studies continuely have foused on TB diagnosis in the laboratory and techniques of detecting DR-TB at home and abroad. MTB Culture and susceptibility test as the diagnostic gold standard is still widely used to identify MTB and its drug resistance in clinic. But it takes more time and it’s detection rate is too low to meet the requirement of supporting diagnosis and guiding the use of drug. Reverse dot blot hybridization (RDB), a hot research at prsent, that was used to detect the MTB multi-drug resistance with the combination of DNA probes, nucleic acid hybridization, enzyme-linked color. In our previous study, the gene membrane chip which detected MTB drug-resistant genes of Clinical isolates was initially constructed by using RDB. The detection system was optimized in our stduy by three aspects: the methods of extracting DNA, the multi-PCR reaction and the gene membrane chip conditions. Then the optimized PCR- membrane chip was applied to detect the MTB drug-resistant genes in clinical specimens such as the paraffin-embedded tissues and sputum, and the result was compared with susceptibility test and DNA sequencing.
     Objective: To optimize the system of detecting MTB drug-resistant genes by gene membrane chip and study detection of MTB in clinical specimens by PCR-membrane chip directly.
     Methods: 1. The DNA was extracted from paraffin-embedded tissues using salting-out procedure, phenol-chloroform method, one-step method and genomic DNA purification kit. The quality of extracted DNA was analyzed by agarose gel electrophoresis, PCR and TB- membrane chip.
     2. According to multi-PCR system which was constructed in the earlier stage of our study, MTB drug-resistant genes in paraffin-embedded tissues were amplified and the multi-PCR system was optimized by adjusting the combination of primers, the quantity of DNA template and the cycling conditions in PCR reaction.
     3. According to the system of gene membrane chip which was constructed in the earlier stage of our study, MTB drug-resistant genes in paraffin-embedded tissues were detected and the system of gene membrane chip was optimized by adjusting the time of hybridization and coloration.
     4. The detection system of PCR-membrane chip was constructed by integrating all the optimized condictions.
     5. 100 paraffin-embedded lung or lymph node tissue specimens were collected (80 cases of TB, 20 cases of non-TB), and 82 sputum specimens were collected (64 cases of TB, 18 cases of non-TB).
     6. TB membrane chip was applied to detect the MTB IS6110 gene in the clinical specimens of paraffin-embedded tissues and sputum, and the result was compared with acid-fast staining and sputum smears.
     7. The detection system of PCR-membrane chip was applied to detect the MTB drug-resistant genes in the TB-positive specimens of paraffin-embedded tissues and sputum, and the result was compared with susceptibility test and DNA sequencing.
     Results: 1. The quantity of DNA extracted by salting-out procedure (19.338±6.270μg) and one-step method (20.050±5.591μg) was more than that of the other methods (P<0.001); PCR and membrane chip show that the quality of TB-DNA extracted by salting-out procedure and phenol-chloroform method was better than that of the other methods.
     2. The most optimum condition of multi-PCR for amplifying MTB drug-resistant genes in paraffin-embedded tissues: the combination of primers were adjusted to RKE、IAG、PRP、RRI; the quantity of DNA template was 5μl; the cycling conditions in PCR reaction was 38.
     3. The most optimum condition of gene gmembrane chip for detecting MTB drug-resistant genes in paraffin-embedded tissues: the time for hybridization was 6 hours or more; and the time for coloration was 15min.
     4. MTB-IS6110 gene in paraffin-embedded tissue and sputum specimens were detected by TB membrane chip: The specificity was 100% (20/20) and 100% (18/18) respectively; and the sensitivity was 52.5% (42/80) and 81.3% (52/64), respectively.
     5. MTB drug-resistant genes in paraffin-embedded tissue specimens were detected by PCR-membrane chip : In 42 TB-positive cases, there are 5 cases of drug-resistant gene mutations and the mutation sites were consistent with the sequencing.
     6. MTB drug-resistant genes in sputum specimens were detected by PCR-membrane chip : In 52 TB-positive samples, there were 5 cases of drug-resistant gene mutations and 4 of them were consistent with the susceptibility test and the sequencing results. In sputum culture-negative samples, 1 case of gene mutation was detected by PCR-membrane chip and the mutation which prompted the possibility of INH resistance was consistent with the sequencing.
     Conclusion: 1. The salting-out procedure for DNA extraction of mycobacterium tuberculosis from paraffin-embedded tissues is more efficient and simple.
     2. The detection rate of TB membrane chip which was applied to detect the MTB IS6110 gene in the clinical specimens of paraffin-embedded tissues and sputum is significantly higher than that of acid-fast staining method and sputum smears.
     3. MTB drug-resistant genes in clinical specimens including paraffin-embedded tissues and sputum can be detected derectly by using PCR-membrane chip which can provide resistant informations within 48 hours and provide a meaningful reference for the rapid diagnosis of clinical DR-TB.
引文
[1] http://www.who.com.ANTI-TUBERCULOSIS DRUGRESISTANCE IN THE WORLD.
    [2] Dinnes J,Deeks J,Kunst H,et a1.A systematic review of rapid diagnostic tests for the detection of tuberculosis infection (Review).Health 7rechnol Asses8,2007,11:1—196.
    [3] Katoch V M.Newer diagnostic techniques for tuberculosis[J].In -dian J Med Res,2004,(120)4:4l8-428.
    [4]胡忠义.加强结核病实验室诊断和耐药性检测新技术的研究和应用[J].中华预防医学杂志,2008,42(2):75-76.
    [5] Jones EC,Chezmar JL,Nelson RC,et a1.The frequency and significance of small (<5mm) hepatic lesions detected by CT.AJR 1992;158:535~539.
    [6] World Health Organization.WHO Report 2007:Global Tuberculosis Control , Surveillance , Planning , Financing . Geneva :WHO,2007,277pp.
    [7]全国结核病流行病学抽样调查技术指导组,全国结核病流行病学抽样调查办公室.2000年全国结核病流行病学抽样调查报告[J].中国防痨杂志,2002, 24(2):65-108.
    [8]王莉萍,王伟.耐多药结核病挑战全球公共卫生[N].科学时报, 2009 -4-2.
    [9] Ahmad S, M okaddasE. Recent advances in the diagnosis and treatment of multidrugresistant tuberculosis[J]. RespirM ed,2009,103(12): 17771790.
    [10] Drobniewski FA,Wilson SM.The rapid diagnosis of isoniazid andrifampicin resistance in Mycobacterium tuberculosis—a molecular story[J].J Med Microbiol, 1998, 47:189-196.
    [11] Cavusoglu C, Hilmioglu S, Guneri S, et al. Characterization of rpoB Mutations in Rifampin-Resistant Clinical Isolates of Mycobacterium tuberculosis from Turkey by DNA Sequencing and Line Probe Assay[J].J Clin Microbiol,2002,40:4435-4438.
    [12] Teresa A, Felmlee, Qiang Liu, et al. Genotypic Detection of Mycobacterium tuberculosis Rifampin Resistance: Comparison of Single-Strand Conformation Polymorphism and Dideoxy Fingerprinting[J].J Clin Microbiol,1995,33: 1617-1623.
    [13]胡忠义,靳安佳.结核分枝杆菌耐药性检测进展[J].临床肺科杂志, 2000,5:ll 6-ll9.
    [14]周凌云.结核分枝杆菌基因检测膜芯片的构建及临床应用研究[M].广西医科大学硕士研究生学位论文,2006,5:47.
    [15] Kosel S,Graeber MB.Use of neuropathological tissue for molecular genetic studies parameters affecting DNA extraction and polymerase chain reaction [J].Acta Neuropathology(Berl),1994,88(1):19-25.
    [16]叶健.甲醛固定组织的DNA提取[J].中国法医学杂志,1998,13(1):41-44.
    [17]何晓,周凌云,何敏,等. PCR-反向杂交膜片技术检测石蜡包埋组织中的结核杆菌.现代预防医学,2008,35(4):766-768.
    [18]韦世录.耐多药结核杆菌基因突变检测膜芯片的研究[M].广西医科大学硕士研究生学位论文,2007,5:47.
    [19]武贵臻,夏米西努尔·伊力克,杨曦,等.不同方法提取石蜡包埋组织DNA的比较分析[J].新疆医科大学学报,2009,32(2):128-130.
    [20] Saiki RK, Walsh PS, L evenson CH, et al. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes[J]. Proc Natl Acad Sci USA,1989,86∶6230-6234.
    [21]徐湘民.逆向点杂交技术及其在基因诊断中的应用[J].国外医学遗传学分册,1994,6:291-295.
    [22]刘丽华,高峰,闫小明.反向斑点杂交技术的临床应用[J].实用医技杂志,2006,13(4):531-532.
    [23]张灵霞,庄玉辉,杨华卫,等.rDNA探针杂交检测病人痰标本中结核杆菌的研究[J].中国防痨杂志,2000,22(3):127-129.
    [24]胡建成,邵祝洪,方桂女.应用聚合酶链反应斑点杂交法检测结核杆菌[J].浙江医学,2000,22(12):764-765.
    [25]杨华卫,杨树德,庄玉辉,等.直接杂交法检测痰液中结核分枝杆菌[J].临床检测杂志,2001,19(1):1-3.
    [26]肖瑜,彭理年,李淑琴.PCR-反向膜杂交技术检测临床标本中结核分枝杆菌[J].遵义医学院学报,2001,24(1):84-85.
    [27]庄玉辉.结核分支杆菌耐药性分子机理研究的若干进展[J].中华结核和呼吸杂志,1997,20(6):329-331.
    [28] Morcillo N,Zumarraga M,Alito A,et al.A Low cost home-made, reverse-line blot hybridization assay for rapid detection of rifampicin resistance in Mycobacterium tuberculosis[J].Int J Tuberc Lung Dis,2002, 6:959-965.
    [29]吴雪琼.应用聚合酶链反应一寡核苷酸探针法快速检测结核菌耐药基因突变[J].中华检验医学杂志,20O5,28(3):310
    [30]梁建琴,吴雪琼,张俊仙,等.应用膜反向斑点杂交技术检测耐异烟肼结核分支杆菌基因型[J].中国现代医学杂志,2006,16(15):2272-2276.
    [31]梁疆莉,林琳,刘渠,等.单链探针反向杂交试验快速检测结核分支杆菌5种耐药基因[J].中国卫生检验杂志, 2010,20, (6): 1283- 1285.
    [32] Goelz SE,Hamiltom SR,Vogelstein B.Purification of DNA from formaldehyde fixed and paraffin embedded human tissue [J].Biochem Biophys Res Commun,1985,130(1):118-126.
    [33] Elena R, Rivero, Adriana C, et a1.Simple salting-out method for DNA extraction from formalin-fixed, paraffin-embedded tissues [J].Pathology Research and Practice,2006,202(7): 523-529.
    [34] Howe DK,Vodkin MH,Novak RJ,et a1.Identification of two genetic markers that distinguish pathogenic and nonpathogenic strains of Acanthamoeba spp[J]. Parasitol Res,1997,83(4): 345-348.
    [35]张旭垠,易晓芳,丁景新,等.石蜡包埋组织中4种DNA提取方法的比较研究[J].中国妇幼健康研究,2007,18(4):291-293.
    [36]田子强,刘俊峰,张少为,等.普通甲醛固定石蜡包埋组织提取方法的探讨[J].癌症,2004, 23(3):342—345.
    [37]李子玲,康晓明,杨毓华,等.应用多重聚合酶链反应法检测并鉴别结核分支杆菌与非结核分支杆菌DNA[J].中华结核和呼吸杂志,1998,21(9):547-551
    [38] Lerrera I.Molina T,Saiz P,et a1.New multiplex PCR for rapid detection of isoniazid—resistant Mycobacteriumtu—berculosis clinical isolates[J].Antimicrob Agents Che—mother,2005,49(1):1-44.
    [39] Telenti A,Marshall W F,Smith T F.Detection of epstein-barrvi-ILlS polymerase chain reaction [J].J Clin Microbiol,1990,28 (10):2187-2190.
    [40]杨伟洪,陈罡,罗殿中,等.PCR检测结核杆菌的优越性及局限性分析[J].国际医药卫生导报,2006, 12, (10):141-144
    [41] TraoreH, van Deun A, Shamputa IC, et al. Directdetection ofmy cobactefium tuberculosis complex DNA and rifampin resistance inclinical specimens from tube rculosis patients by line probe assay[J]. J ClinM icrobio,l 2006, 44(12): 43844388.
    [42]李兵,吴驰,刘厚明,等.反向膜杂交技术检测结核分枝杆菌耐药株的临床价值研究[J].海南医学,2009, 20(12):7-9.
    [43]韩中波.结核分支杆菌耐药基因的杂交检测[J].中国实用医药2009,4(4):134-135.
    [44] Hamidou Traore, Armand van Deun, Isdore Chola Shamputa,et a1.Direct Detection of Mycobacterium tuberculosis Complex DNA and Rifampin Resistance in Clinical Specimens from Tuberculosis Patients by Line Probe Assay[J].JOURNAL OF CLINICAL MICROBIOLOGY,2006,44(12):4384–4388.
    [45] Xueqiong Wu, Junxian Zhang, Jianqin Liang, et a1. Comparison of Three Methods for Rapid Identification ofMycobacterial Clinical Isolates to the Species Level[J]. JOURNAL OF CLINICAL MICROBIOLOGY,2007,45(6):1898–1903.
    [46]周伟杰,刘明霞,匡群等.肺外结核样感染病原体的分离和耐药性分析[J].医学检验与临床,2007,18(1):76-77.
    [47] Akhbar J, Howats on AG Raine PA. Aty pical mycobacterial infection in childhood: a“surgicaldiease”[J].collsura Edinb,1997,42(2):110-111 .
    [48]倪正义,周密,许俊,等. 420例肺外结核的分支杆菌培养、菌型鉴定及药敏分析[J].临床肺科杂志,2007,12(6):560-561
    [49] D. Magana-Arachchi, J. Perera,S. Gamage,et a1. Low cost in-house PCR for the routine diagnosis of extra-pulmonary tuberculosis [J]. TUBERC LUNG DIS,2008,12(3):275–280
    [50]何敏,万逢洁,周凌云,等.反向杂交膜片检测结核菌耐利福平基因突变[J].中国公共卫生,2005,21(12):0241-2241.
    [1] World Health Organization.WHO Report 2007:Global Tuberculosis Control , Surveillance , Planning , Financing . Geneva :WHO,2007,277pp.
    [2]全国结核病流行病学抽样调查技术指导组,全国结核病流行病学抽样调查办公室.2000年全国结核病流行病学抽样调查报告[J].中国防痨杂志,2002, 24(2):65-108.
    [3] http://www.who.com.ANTI-TUBERCULOSIS DRUGRESISTANCE IN THE WORLD.
    [4]王莉萍,王伟.耐多药结核病挑战全球公共卫生[N].科学时报, 2009 -4-2.
    [5] Ahmad S, M okaddasE. Recent advances in the diagnosis and treatment of multidrugresistant tuberculosis[J]. RespirM ed,2009,103(12): 17771790.
    [6] Drobniewski FA,Wilson SM.The rapid diagnosis of isoniazid and rifampicin resistance in Mycobacterium tuberculosis—a molecular story[J].J Med Microbiol,1998, 47:189-196.
    [7] Cavusoglu C, Hilmioglu S, Guneri S, et al. Characterization of rpoB Mutations in Rifampin-Resistant Clinical Isolates of Mycobacterium tuberculosis from Turkey by DNA Sequencing and Line Probe Assay[J].J Clin Microbiol,2002,40:4435-4438.
    [8] Teresa A, Felmlee, Qiang Liu, et al. Genotypic Detection of Mycobacterium tuberculosis Rifampin Resistance: Comparison of Single-Strand Conformation Polymorphism and Dideoxy Fingerprinting[J].J Clin Microbiol,1995,33: 1617-1623.
    [9]胡忠义,靳安佳.结核分枝杆菌耐药性检测进展[J].临床肺科学杂志,2000,5:ll 6-ll9.
    [10]孙冰梅,车志宏.结核分枝杆菌耐药的分子机制及耐药基因检测方法的研究进展[J].山西医药杂志,2005,4 (4):301-303.
    [11]杨松.结核病耐药的分子机制及其防治研究进展[J].临床肺科杂志,2006,11(5):632-633.
    [12] Wade MM, Volokhov D, Peredelchuk M, et a1. Accurate mapping Of mutations of pyrazinamide-resistant Mycobacterium tuberculosis strains with a scanning - frame oligonucleotide microarray.Diagnostic Microbiology and Infectious Disease.2004,49:89-97.
    [13]李洪每,吴雪琼,王巍,等.134例结核杆菌5种耐药基因的检测.解放军医学杂志,2002,27(11):993~994.
    [14] YueJ,Shi,XieJP,et al.Detection of rifampin-resistant Mycobacteirum tuberculosis strains by using a specialized olongucleotide micorarray Diagnostic Micorbilogy and Infectious Disesae,2004,48:47-54.
    [15]吴为群,吴忠道,张扣兴,等.结核分会杆菌异烟肼耐药的分子机制及其快速鉴定.热带医学杂志,2003,3(3):295-297.
    [16] Bamaga M, WrightD JM, Zhang H.Selection of invitor mutants of pyrazinamide-rsistant Mycobacterium tuberculosis.International Jounral ofAntimicrobila Agents,2002,20:275-281.
    [17] RinderH,MieskesKT,TortoliE,eta1.Detection of embB codon 306 mutations in ethma butolresistant Mycobacterium tuberculosis directly form sputum samples:a low-cost,rapidappraoch.Modecular and Cellular Probes.2001,15:37-42.
    [18]张俊仙,吴雪琼,刑婉丽,等.应用基因芯片技术检测耐利福平结核分枝杆菌基因型[J].中国现代医学杂志,2007,17(13):1572-1577.
    [19]吴雪琼.耐药性结核分枝杆菌的分子生物学研究现状[J].中华结核和呼吸杂志,2006.29(12):837-840.
    [20] Wang Y,Zhang WH。Zhao JR,et a1. Detection of katG 315 gene mutation associated with isoniazid resistance in Mycobacterium tuberculosis by template-mdirected dye-terminator incorporation with fluorescence polarization detection technology[J].Zhonghua Jie He Hu xi Za Zhi,2004,27(3):l79-l82.
    [21] Dalla Costa E R, Ribeiro M O, Silva M S, et al. Research article correlations of mutations in katG, oxyR-ahpC and inhA genes andin vitro susceptibility in Mycobacterium tuberculosis clinical strains segregated by spoligotype families from tuberculosis prevalent countries in South America[J/OL]. BMC Microbiol, 2009, 9: 39 doi:10.1186/1471-2180-9-39.
    [22] Morlock GP,Metchock B,Sides D,et a1. ethA,inhA,and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates[J].Antimicrob Agents Chemother,2003,47(12):3799-3805.
    [23] Yu S,Girotto S,I ee C,et a1.Reduced affinity for ioniazid in the S315T mutant of Mycobacterium tuberculosis katG is a key factor in antibiotic resistance.[J].J Biol Chem,2003,278(17):14769-14775.
    [24] Leung TE,Ho PI,Yuen KY,et a1. Molecular character-izationof isoniazid resistance in Mycobacterium tuberculosis:identification of a novel mutation in inhA[J].Anti-microb Agents Chemother,2006,50(3):1075-1078.
    [25]朱艳玲,万康林,沈国顺.结核分枝杆菌异烟肼耐药性研究进展[J].中国自然医学杂志,2007,9(2):155-158.
    [26]陈曦,马玙,金奇,等.耐异烟肼结核分枝杆菌临床分离株耐药相关基因突变研究[J].中华结核和呼吸杂志, 2005, 12 (4):250-253.
    [27] Lee AS , Teo AS , Wong SY. Novel mutations in ndh in Isoniazid-resistant Mycobacterium tuberculosis Isolates .[J]Antimicrob Agents Chmother , 2001 ,45(7):2157-2159.
    [28]李召东,陈瑜,王明法,等.结核杆菌耐药的分子机制研究[J].中国医药导报.2007,4(2):15-17.
    [29] Githui WA,Jordaan AM,Juma ES,et al.Idntification of MDR-TB Beijing/W and other Mycobacterium tuberculosis genotypes in Nairobi,Kenya[J].Int J Tuberc Lung Dis,2004,8(3):352-360.
    [30]张俊仙,吴雪琼,刑婉丽,等.应用基因芯片技术检测耐利福平结核分枝杆菌基因型[J].中国现代医学杂志,2007,17(13):1572-1577.
    [31]黄振宇,范学工.210株结核分枝杆菌利福平耐药基因ropB突变特征研究[J].中国人兽共患病学报,2007,23.(6):548-551.
    [32] Isakova ZHT,Pak OA,Iusupova E,et al.Use of biological microchips in the determination of drugresistance of mycobacterium tuberculosis to rifampicin[J].Probl Tuberk Bolezn Legk,2005,(8):50-53.
    [33] Abdelaal A, El-Ghaffar H A, Zaghloul M H, et al.Genotypic detection of rifampicin and isoniazid resistant Mycobacteriumtuberculosis strains by DNA sequencing: a randomized trial[J/OL]. Ann Clin Microbiology Antimicrob,2009, 8: 4 doi: 10.1186/1476-0711-8-4.
    [34] Bergval I L, Vijzelaar R N, Dalla Costa E R, et al.Development of multiplex assay for rapid characterization of Mycobacterium tuberculosis[J]. J Clin Microbiol, 2008, 46(2), 689-699.
    [35] Anthony R M, Schuitema A R J, Bergval I L, et al.Acquisition of rifabutin resistance by a rifampicin resistant mutant of Mycobacterium tuberculosis involves an unusual spectrum of mutations and elevated frequency[J]. Ann Clin Microbiol Antimicrob, 2005, 4(2): 9-12.
    [36]宇岩,万康林,唐立.结核分枝杆菌耐乙胺丁醇的研究进展[J].中国人兽共患病学报.2007,23(3):286-292.
    [37] RAMASWAMY SV, AMINAG, GOKSEL S, etal.Moleculargenetic analysis ofnucleotide polymorphisms associatedwith ethambutol resistance in human isolates of Mycobacterium tuberculosis [J].Antimicrob AgentsChemother, 2000, 44 (2): 326-336.
    [38] Gegia M, Mdivani N, Mendes R E, et al. Prevalence ofand molecular basis for tuberculosis drug resistance in the republic of georgia: validation of a QIAplex system for detection of drug resistance-related mutations[J]. Antimicrob Agents Chemother,. 2008, 52(2): 725-729.
    [39] Hazhón, Motiwala A S, Cavatore M, et al. Convergent evolutionary analysis identifies significant mutations in drug resistance targets of Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother, 2008, 52(9): 3369-3376.
    [40] Davies J,Davis DD. Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics. The effect of drug concentration[J].J Bio1 Chem,1968,243:3312.
    [41] Garvin R T.13iswas U K,Gorini L. The effects of streptomycin or dihydrostreptomycin binding to 16S rRNA or to 30S ribosomal subunits Lil[J].Proc Nail Acad Sci USA,1974,71:381.
    [42] Spies F S, da Silva P E, Ribeiro M O, et al. Identification of mutations related to streptomycin resistance in clinical isolates of Mycobacterium tuberculosis and possible involvement of efflux mechanism[J]. Antimicrob Agents Chemother, 2008, 52(8): 2947-2949.
    [43] Sekiguchi J I, Miyoshi-Akiyama T, Augustynowicz-Kopec E, et al. Detection of multidrug resistance in Mycobacterium tuberculosis[J]. J Clinical microbiol, 2007, 45(1): 179-192.
    [44] Maus C E, Plikaytis B B, Shinnick T M. Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and Viomycin in Mycobacterium tuberculosis[J]. Antimicrob Agents chemother, 2005, 49(8): 3192-3197.
    [45]姜英,彭俊平,杨帆,等.结核分枝杆菌耐吡嗪酰胺分子机制研究[J].微生物学免疫学进展,2007,35(1):5-9.
    [46]曾涛.结核分枝杆菌耐药分子机制及检测方法的研究进展[J].中国热带医学,2008,8(3):481-484.
    [47] Sekiguchi J I, Nakamura T, Miyoshi-Akiyama T, et al. Development and evaluation of a line probe assay for rapid identification of pncA mutations in pyrazinamide- resistant Mycobacterium tuberculosis strains[J]. J Clinical Microbiol, 2007, 45(9):2802-2807.
    [48] Bergval I L, Vijzelaar R N, Dalla Costa E R, et al. Development of multiplex assay for rapid characterization of Mycobacterium tuberculosis[J]. J Clin Microbiol, 2008, 46(2), 689-699.
    [49] Wang J Y, Lee L N, La H C, et al. Fluoroquinolone resistance in Mycobacterium tuberculosis isolates: associated genetic mutations and relationship to antimicrobial exposure[J]. J Antimicrob Chemother, 2007, 59, 860-865.
    [50] ENGOHANG - NDONG J, BAILLAT D, AUMERCIER M, et al.EthR, a repressor of the TetR /CamR family implicated in ethionamide resistance in mycobacterium, octamerizes cooperatively in its operator [J].Mol Microbio,l 2004, 51 (1): 175-188.
    [51]叶松,赛文莉,王健.二线抗结核分枝杆菌药物耐药分子机制[J].现代预防医学,2007,34(10):l870-1871.
    [52] MATHYSV, WINTJENSR, LEFEVRE P, etal.Molecular Genetics of para-Aminosalicylic Acid Resistance in Clinical Isolates and Spontaneous Mutants of Mycobacterium tuberculosis [J].Antimicrob Agents Chemother, 2009, 53 (5): 2 100-2 109.
    [53] Drobniewski FA,Wilson SM.The rapid diagnosis of isoniazid and rifampicin resistance in Mycobacterium tuberculosis—a molecular story[J].J Med Microbiol, 1998,47:189-196.
    [54]李桂莲,王撷秀,赵德福.结核分枝杆菌耐药基因的研究进展[J].中国慢性病预防与控制, 2006, 14(5): 377-379.
    [55] Manic C, Sel vakumar N, Kumar V, et al. Comparison of DNA sequencing , PCR SSCP and PhaB assaysw it hindirect sensitivity testing for detection of rifampicin resistante in Mycobacterium tuberculosis[J]. Int J Tuberc Lung Dis,2003,7(7): 652-659 .
    [56]杨松,钟敏,张耀亭,等.痰耐药结核分枝杆菌rpoB基因的快速检测及利福平耐药机制研究[J].江西医学院学报,2008,48(6):63-66.
    [57]杨松,张耀亭.痰耐药结核分枝杆菌embB基因的快速检测及乙胺丁醇耐药机制研究[J].2009,14(2):145-146.
    [58] Cavusoglu C, Hilmioglu S, Guneri S, et al. Characterization of rpoB Mutations in Rifampin- Resistant Clinical Isolates of Mycobacterium tuberculosis from Turkey by DNA Sequencing and Line Probe Assay[J].J Clin Microbiol, 2002,40:4435-4438.
    [59] Zhang Y, Yew WW. Mechanisms of drug resistance in Mycobacterium tuberculosis[J]. Int J Tuberc Lung Dis , 2009 , 13(11):1320-1330.
    [60] Reed GH, Kent JO, Wittwer CT. Highresolution DNA meltin analysis for simple and efficient molecular diagnostics[J]. Pharmacogenomics, 2007, 8(6): 597-608.
    [61] Herrmann MG, Durtschi JD, Bromley LK, et al. Amplicon DNA melting analysis for mutation scanning and genotyping: cross plat form comparison of instruments and dyes[J]. Clin Chem, 2006, 52(3): 494-503.
    [62] Pietzka AT, Indra A, Stger A, et al . Rapid identification of multidrug resistant Mycobacterium tuberculosis isolates by rpoB gene scanning using highresolution melting curve PCR analysis[J]. JAn timicrob Chemother , 2009, 63(6): 1121-1127.
    [63] HerreraLen L, Molina T, Saz P, et al. New multiplex PCR for rapid detection of isoniazid resistant Mycobacterium tuberculosis clinical isolates[J]. Anti microb AgentsChemother, 2005, 49(1):144-147.
    [64]包洪,于庭,刘爱忠,等.PCR-SSCP方法用于痰标本中结核分支杆菌耐药基因的检测[J ].中国实验诊断学,2007,l(1):82-84.
    [65]李洪敏,姜平,王巍,等.应用PCR-SSCP法分析矽肺结核分枝杆菌耐药基因突变规律[J].北京医学,2002,2(24):136-137.
    [66] Cheng X, Zhang J, Yang L, et al. Anewmulti PCR-SSCP assay for simultaneous detection of isoniazid and rifampin resi stance in Mycobacterium tuberculosis[J]. J Microbiol Methods , 2007, 70(2):301-305.
    [67] Huo YN,Ge CR.Rapid screening of katG gene mutation in isoniazid resistant Mycobaeterium tuberculosis[J]. Zhejiang Da Xue Xue Bao Yi Xue Ban.2002,31(3):178.
    [68] Jaber A A, Ahmad S, Mokaddas E. Minor contribution of mutations at iniA codon 501 and embC-embA intergenic region in ethambutol-resistant clinical Mycobacterium tuberculosis isolates in Kuwait[J]. Ann Clin Microbiol Antimicrob, 2009, 15(8): 2.
    [69] ThoDQ, HaDT, DuyPM, et al. Comparison of MAS-PCR and GenoType MTBDR assay for the detection of rifampic in resistant Mycobacterium tuberculosis[J] . Int J Tuberc Lung Dis , 2008 , 12(11):1306-1312 .
    [70] RuizM,TorresMJ,LlanosAC,eta1.Direct detection of rifampin and iosniazid-resistant Mycobacterium tubecrulosis in auramine rhodamine opsitive sputum specimens by real-time PCR[J].J Clin Microbiol,2004,42(4):1585-1589.
    [71] Varma BasilM,ElHajjH,ColangeliR,eta1.Rapid detection ofrifampin resistance in mycobacterium tuberculosis isolatesfrom India and Mexico by a molecular beacon assay[J].J Clin Microbiol,2004,42(12):5512-5516.
    [72] BurggrafS,ReischlU,MalikN,eta1.Comparison of an internlaly controlled large-volume Light Cycler assay for detection of mycobacteirum tuberculosis in clinical samples with the COBAS AMPLI-COR assay[J].J Clin Microbiol,2005,43(4):1564-1569.
    [73] Liu KT,SuW J,Perng RP.Clinical utility of polymerase chain reaction for diagnosis of smear-negative pleurla tubecrulosis[J].J Clin MedAsosc,2007,70(4):148-151.
    [74] Gryadunov D, Mikhailovich V, Lapa S, et al. Evaluation of hybridisation on oligonucleotide microar rays for analysis of drug resistant Mycobacterium tuberculosis[J]. Clin Microb iol Infect, 2005, 11(7):531-539.
    [75]崔振玲,景奉香,胡忠义.基因芯片检测结核分枝杆菌利福平和异烟肼耐药性研究[J].中华结核与呼吸杂志,2004,7(27): 439-441.
    [76] Caoili JC, Mayorova A, SikesD, et al. Evaluation of the TB biochipoligo nucleotide micro arraysystem for rapid detect ion of rifampin resistance in Mycobacterium tuberculosis [J]. J Clin Microbio,2006,44(7): 2378-2381.
    [77] Saiki RK, Walsh PS, L evenson CH, et al. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes[J]. Proc Natl Acad Sci USA,1989,86∶6230-6234.
    [78]徐湘民.逆向点杂交技术及其在基因诊断中的应用[J].国外医学遗传学分册,1994,6:291-295.
    [79]刘丽华,高峰,闫小明.反向斑点杂交技术的临床应用[J].实用医技杂志,2006,13(4):531-532.
    [80] TraoreH, van Deun A, Shamputa IC, et al. Direct detection of mycobactefium tuberculosis complex DNA and rifampin resistance inclinical specimens from tube rculosis patients by line probe assay[J]. J ClinM icrobio, 2006, 44(12): 43844388.
    [81] Mingzhang XIE, Changjie CHEN. Development of molecular mechanisms and molecular biology rapid detection methods of drug-resistant Mycobacterium tuberculosis [J]. J Mol Diagn Ther,2010,2(5):348-352.
    [82] Morcillo N,Zumarraga M,Alito A,et al.A Low cost home-made,reverse-line blot hybridization assay for rapid detection of rifampicin resistance in Mycobacterium tuberculosis[J].Int J Tuberc Lung Dis,2002, 6:959-965.
    [83]吴雪琼.应用聚合酶链反应一寡核苷酸探针法快速检测结核菌耐药基因突变[J].中华检验医学杂志,20O5,28(3):310
    [84]梁建琴,吴雪琼,张俊仙,等.应用膜反向斑点杂交技术检测耐异烟肼结核分支杆菌基因型[J].中国现代医学杂志, 2006,16(15):2272-2276.
    [85] Aragón L M, Navarro F, Heiser V, et al. Rapid detection of specific gene mutations associated with isoniazid or rifampicin resistance in Mycobacterium tuberculosis clinical isolates using non-fluorescent low-density DNA microarrays[J]. J Antimicrob Chemother, 2006, 57, 825-831.
    [86] Brossier F, Veziris N, Truffot-Pernot C, et al. Performance of the genotype MTBDR line probe assay for detection of resistanceto rifampin and isoniazid in strains of Mycobacterium tuberculosis with low-and high-level resistance[J]. J clin microbiol, 2006, 44(10): 3659-3664 .
    [87]梁疆莉,林琳,刘渠,等.单链探针反向杂交试验快速检测结核分支杆菌5种耐药基因[J].中国卫生检验杂志, 2010,20, (6): 1283- 1285.
    [88] MakinenJ,MarttilaHJ,MaljamakiM,et1a.Comparison of two commercially available DNA line probe assays for detection of Multidrug.resistantMycobacterium tuberculosis.J Clin Micorbio1.2006.4(4):350-352.
    [89] Gina noniF,Iona E,SementilliF.eta1. Evaluation ofa new line probe assay for rapid identification of gyrA mutations in Mycobacteirum tuberculosis. Antimicrob Agents Chemother.2005,49:2928-2933.
    [90] Saribas Z, Kocag z T, Alp A, et al. Rapid detection of rifampin resistance in Mycobacterium tuberculosis isolates by heteroduplex analysis and determination of rifamycin cross-resistance in rifampin-resistant isolates[J]. J clin microbiol, 2003, 816-818.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700