用户名: 密码: 验证码:
基于脉搏波的无创连续血压检测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一个重要的人体生理参数,血压不仅可以反映出人体的心血管功能状态,同时还可以为疾病的临床诊断,观察治疗提供重要的依据。血压是指血液在血管中流动时对每单位面积的血管壁上的侧向压力。大部分的心血管系统信息,包括了心脏的泵血功能、心率、外周阻力、主动脉与大动脉的血管壁弹性、血容量以及血液的物理状态等,都与血压有着重要的联系,这一重要参数能反应出上述心血管系统功能的基本状况。血压在疾病的检测与预防治疗中扮演着重要的角色,为了避免危重病人出现意外,为了让医护人员能够及时对病人进行治疗,需要对危重病人或是手术中的病患者进行连续的血压检测。因此血压检测在家庭保健和临床诊断中具有重要意义。
     目前,血压测量方法可分为直接测量法和间接测量法两大类。直接测量法已经被国际认定为血压检测方法的金标准,因为其原理是将导管直接插入到人体的大动脉或者心室中,由连接着导管的压力传感器直接进行血压信号的连续检测,这样测量的血压结果最为准确,但是由于有创性,容易引发病人的并发症,一般限用于危重病人或开腔手术病人。间接测量法是通过检测动脉管壁的搏动、血管容积变化等参数间接得到血压,简便易行,在临床上得到广泛应用。
     在当前的传统血压检测技术中,普遍存在可操作性差的问题,而且人体的血压是具有很明显的波动起伏性的,它会根据不同个体的健康状况、感情因素、客观或者主观的原因而发生改变。本论文所研究的一种基于光电容积脉搏波的无创连续血压测量方法,它能有效地克服传统方法的缺点,对于临床监护及特殊情况下的血压监测具有很大的优势,所以本论文对此方法的实现、测量结果的可行性与准确性进行了研究。
     本论文所做的工作包括以下几个方面:
     1.朗伯——比尔定律反映了光学吸收规律,即物质在一定波长处的吸光度与它的浓度成正比。基于郎伯——比尔定律和光电传感器的检测原理,可以将透射光强与光电传感器的输出电压相关联,建立朗伯——比尔定律与人体动脉血压的基本联系,推导出人体收缩压和舒张压的具体表达式,建立无创血压测量模型。
     2.根据已经建立的无创血压检测模型,设计无创血压检测的硬件电路,包括了光电采集电路、初级放大电路、低通滤波电路、后级放大电路、AD转换电路与串口输出电路。
     3.根据已经建立的无创血压检测模型,设计无创血压检测的软件(下位机与上位机)。下位采用Keil uVision2编写程序,写进单片机AT89C51芯片中;上位机采用VB6.0进行编写,采用MSComm控件来进行串口通信。
     4.根据已经建立的无创血压测量模型,完成实验,将无创血压测量方法与传统方法所测得血压值进行分析,验证无创血压测量方法的有效性与正确性。
As an important human physiological parameter, blood pressure can reflect the functional status of the human heart and blood vessels, the clinical diagnosis of the disease, observed an important basis for treatment. Blood pressure is the lateral earth pressure per unit area of vessel wall when blood flow in blood vessels, is an important parameter to reflect the function of the human circulatory system, the heart pumping function, heart rate, peripheral vascular resistance, aortic and large artery elasticity, the body blood volume and the physical state of blood and other factors are reflected in the blood pressure indicators. Blood pressure have an important role in the detection of disease prevention and treatment, the clinical need of critically ill patients and surgical patients to implement the continuous custody of the blood pressure, so that health care workers can take timely rescue measures when patients are unexpected. Blood pressure monitoring in home health care and the clinical diagnosis is very important.
     At present, the blood pressure measurement methods can be divided into two major categories of direct measurement and indirect measurement. The direct measurement method is to connect the pressure sensor catheter directly into the aorta or ventricular to detect blood pressure signal, capable of continuous measurement. Since this method directly measured blood pressure data is the most accurate, so it is seen internationally as the gold standard for blood pressure monitoring. But it need high technical requirements, and traumatic, generally restricted to critically ill patients. The indirect measurement method is obtained indirectly through the detection of arterial wall pulsatility, vascular volume changes in parameters of blood pressure, user-friendly and been widely used clinically.
     Operability problems are prevalent in the traditional blood pressure monitoring technology, and human blood pressure with the physiological cycle, personal feelings, the outside world and the inherent variety of stimuli change, with significant volatility. This dissertation presents a photoplethysmography-based non-invasive continuous blood pressure measurement, it can effectively overcome the shortcomings of traditional methods and has a great advantage for blood pressure monitoring in clinical care and special circumstances, in dissertation, and this method was studied.
     In this dissertation, the work done by including the following aspects:
     1. Lambert-Beer law reflects the law of the optical absorption, the absorbance of the material at a certain wavelength, it is proportional to the concentration. Based on the Lambert-Beer law and the detection principle of the photoelectric sensor, we can establish connection between the transmitted light intensity and photoelectric sensor output voltage, establish connection between the Lambert Beer law and human arterial blood pressure, deduce the specific expression of human systolic and diastolic blood pressures, and create a non-invasive blood pressure measurement model.
     2. According to the non-invasive blood pressure monitoring model has been established, design the hardware circuit of noninvasive blood pressure monitoring, including optical data acquisition circuit, the primary amplifier, low pass filter circuit, after stage amplifier, A/D converter circuit and serial output circuit.
     3. According to the non-invasive blood pressure monitoring model has been established, design the software program of non-invasive blood pressure monitoring. The microcontroller program written using Keil uVision2procedures, and written into the AT89C51chip; PC program uses VB6.0to write, using the MSComm control to the serial communication.
     4. According to non-invasive blood pressure measurement model has been established, complete the experiment. Contrast the measured blood pressure values to non-invasive blood pressure measurement methods with the traditional method, verify the validity and accuracy of noninvasive blood pressure measurement methods.
引文
[1]姚鸣放,杨伟松,赵西梅,傅晓勤.无创性连续血压测量初探[J].医疗设备信息.2005,VOL.20,NO.5:60-61
    [2]贺智明,周超英,李新胜.有创血压传感器发展现状及其趋势[J].医疗卫生装备.2006,VOL.27.NO.2:34-36
    [3]Eoin O'Brien, Gareth Beevers, Gregory YH Lip. Blood pressure measurement Part IV-automated sphygmomanometry: self blood pressure measurement[J]. BMJ.2001,NO.322:1167-1170
    [4]罗雪据.高血压病的监测与诊治.人民卫生出版社[M].北京.2004:15-20
    [5]Ingelfinger JR. Ambulatory blood pressure monitoring as a predictive tool[J]. The new England J med.2002, NO.347:778-779
    [6]Neutel JM. The importance of 24h blood pressure control[J]. blood pressure monitoring.2001, NO.6:9-16
    [7]Shimada K, Kario K, Umeda Y, Early morning sure in blood pressure[J]. Blood pressure monitoring.2001,NO.6:349-353
    [8]石湘芸,吴旭辉.动态血压监测在高血压病人的临床应用价值[J].天津医药.2000,VOL.28,NO.7:446-448
    [9]孙小琳,朱昭琼,张亦南,刘兴奎.脉搏波法无创检测动脉血压的研究进展[J].麻醉与监护论坛.2009,NO.16:56-59
    [10]Spainski A. Standard algorithm of blood pressure measurement by oscillometric method [J]. Med Biol Eng Comput.1992
    [11]李天钢,卞正中.监护仪中振荡法无创血压测量方法的研究[J].中国医疗器械杂志.2003.VOL.27,NO.4:244-246
    [12]王禾.容积补偿法监测连续每搏无创血压的进展[J].麻醉与监护论坛.2008.VOL.15,NO.2:130-132
    [13]Imholz BP et al. Fifteen years'experience with finger arterial pressure monitoring assessment of the technology. Cardiovasc Res.1998, VOL.38, No.3:605-616
    [14]焦学军,房兴业.连续每搏血压测量方法的研究进展.航天医学与医学工程.2004,VOL.13,NO.2:148-150
    [15]Penaz J. Photoelectric measurement of blood pressure, vulmne and flow in the finger [C]. Digest of 10th International Conference on Medical Engineering, Dresden, Germany.1973
    [16]Imholz BP, Wieling W, van Montfrans GA, et al. Fifteen years experience with finger arterial pressure monitoring assessment of the technology[J]. Cardiovasc Res.1998
    [17]Bahr D, Petzke J. The automatic arterial tonometer. 26thann of conf Eng Med Bio.1973:259
    [18]Kemmotsu O, Ueda M, Otsuka H, et al. Arterial tonometry for noninvasive, continuous blood pressure monitoring during anrsthesia[J]. Anesthesiology.1991, VOL.5, NO.2:333-340
    [19]Ng KG, Small CF. Survey of automated noninvasive blood pressure monitors[J]. Clin Eng.1994
    [20]郑方,范从源.麻醉设备学[M].北京:人民卫生出版社.2006:173-180
    [21]乔爱科.动脉中的脉搏波理论[J].生物医学工程学杂志.2000,VOL.17,NO.1:95-96
    [22]罗志昌,张松.脉搏波波形特征信息的研究[J].北京工业大学学报.1996,VOL.22, NO.1:71-77
    [23]焦学军,房兴业.利用脉搏波特征参数连续测量血压的方法研究[J].生物医学工程学杂志.2002,VOL.19,NO.2:217-220
    [24]Bazzett HC, Dfeyer NB. Measurement of pulse wave velocity[J]. Physiol.1992
    [25]Naidu MU, Reddy BM, Yashmaina S, et al. Validity and reproducibility of arterial pulse wave velocity measurement using new device with oscillometric technique: a pilot study[J]. Biomed Eng Online.2005
    [26]Tanaka H, Sakamoto K, Kanai H. Indirect Blood Pressure Measurement by The Pulse Wave Velocity Method [J]. Med Electronics Bio.1984, VOL.22, NO.1:1-3
    [27]罗志昌,张松,杨益民.脉搏波工程分析与临床应用[M].科学出版社.2006:8-9
    [28]韩文波,曹维国,张精慧.光电式脉搏波监测系统[J].长春光学精密机械学院学报.1999,VOL.22.NO.4:30-32
    [29]Devin B.McCombie, Andrew T.Reisner, H.Harry Asada. Adaptive blood pressure estimation from wearable PPG sensors using peripheral artery pulse wave velocity measurements and multi-channel blind identification of local arterial dynamics. Proceedings of the 28th IEEE EMBS Annual International Conference.2006:3521-3524
    [30]Beate H. McGhee. Monitoring arterial blood pressure:what you may not know[J]. Critical care Nurse:2002, VOL.22,NO.4:60-78
    [31]Paul H.Jones,Wei-Min Wang. Method of Measuring Blood Pressure with a Plethysmograph US Patent 5269310.1993
    [32]范盛金.一元三次方程的新求根公式与新判别法.海南师范学院学报.1989
    [33]刘文.光电传感器在脉搏采集中的研究[J].中国医学装备.2005,VOL.2,NO.9:22-23
    [34]童英华,陈学煌,冯忠岭.心音、脉搏信号采集、调理电路的设计[J].2011,VOL.34,NO.8:193-195
    [35]汪建敏,贺贵明.单电源低通滤波器的设计[J].仪表技术.2007,NO.10:31-32
    [36]乔爱科,伍时桂.动脉中的脉搏波理论[J].生物医学工程学杂志.2000,VOL.17,NO.1:95-100
    [37]罗山鹰,娄文忠.一种用于人体脉搏的信号采集系统[J].兵工自动化.2001,VOL.20,NO.2:19-21
    [38]刘文,杨欣,张铠麟.基于AT89C2051单片机的指脉检测系统的研究[J].医疗装备.2005,NO.9:9-10
    [39]AT89C51寄存器快速开发手册[Z]
    [40]李玉峰,倪虹霞.MCS.51系列单片机原理与接口技术[M].人民邮电出版.2004
    [41]韦源,于平Visual Basic程序设计基础[M].清华大学出版社.2001
    [42]范逸之,陈立元Visual Basic与RS-232串行通信控制[M].清华大学出版社.2002:79-80
    [43]熊政纲,阳奇志.测量指端脉搏波的实验设计[J].实用预防医学.2003,VOL.10,NO.1:104-105
    [44]木丽萍.指端脉搏波实验[J].物理实验.2002,VOL.23,NO.6:6-8
    [45]陈卉.Bland—Altman分析在临床测量方法一致性评价中的应用[J].中国卫生统计.2007,VOL.24.NO.3:308-309
    [46]萨建,刘桂芬.定量测量结果的一致性评价及Bland-Altman法的应用[J].中国卫生统计.2011,VOL.28,NO.4:409-411

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700