用户名: 密码: 验证码:
微波加热机制及粉末冶金材料烧结特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波烧结技术是利用微波与物质相互作用的介质损耗而产生热量,使整个材料加热至被烧结温度而达到致密化的一种方法,其具有体积加热、选择性加热、非热效应等特点,是快速制备高质量的新材料和具有新的性能的传统材料的一种重要技术手段。论文首先探索了微波烧结纯金属粉末的微波加热特性及发热机理,并以还原铁粉为对象,研究了其烧结动力学及机制,为深入探讨微波烧结粉末冶金材料进行了基础性研究。在此基础上选取了在粉末冶金烧结中具有代表性的Fe-Cu-C铁基粉末冶金合金(少液相烧结或固相烧结)、W-Ni-Fe高密度合金(金属液相烧结)以及WC/Co硬质合金(金属与陶瓷液相烧结)为对象,研究了微波烧结此系列粉末冶金材料的工艺、性能、组织结构的特点与特性,并与常规烧结进行了对比。通过以上研究工作,得到以下主要研究结果:
     (1)金属粉末微波加热的机理存在电导损耗、磁损耗(涡流损耗、磁滞损耗、剩余损耗)和电弧放电等损耗机制,不同元素的金属粉末主导损耗机制不同。在磁性材质中,涡流损耗、磁滞损耗、剩余损耗比非磁性材料加热作用大;电导率大的材料电导损耗效果明显。同种金属粉末压坯的微波加热升温曲线依赖于粉末颗粒尺寸、孔隙度和微波输出功率。颗粒尺寸越小,加热速率越快,最终所能加热的温度也越高;孔隙度越高,加热速率越快,而最终所能加热的温度与起始孔隙度无关;微波输出功率越大,加热速度越快。在低温下,SiC可大量缩短金属压坯的加热时间,而高温下不影响Fe粉压坯的加热曲线形状,是一种较为理想的低温辅热材料。
     (2)微波烧结还原铁粉,在fcc晶体区域,试样密度和烧结温度满足黄培云综合作用烧结理论。还原铁粉微波烧结的主要机制是晶界扩散,也存在体积扩散。微波烧结的表观活化能为76.21 kJ/mol,和常规烧结相接近。
     (3)相比于常规烧结Fe-2Cu-0.6C粉末冶金材料,微波加热过程升温速度快,烧结时间显著缩短。微波烧结样品在氮氢混合气氛中,保温10min时,在1150℃得到最佳的烧结性能,密度为7.20g/cm3、洛氏硬度为HRB75、抗拉强度为413.9MPa、伸长率为6%。在1150℃微波烧结时,保温15min试样的各项性能达到最佳,密度为7.22g/cm3、硬度为HRB78、抗拉强度为416.8MPa、延伸率为5.5%。与常规烧结相比,微波烧结试样洛氏硬度稍低,拉伸性能则显著提高。微波烧结对材料力学性能改善在于其良好的微观结构。微波烧结有着更少的孔隙,即小的、近圆形的、分布较为均匀的孔隙,而不同于常规烧结的较大的、有尖角的、分布不均匀的孔隙。且微波烧结有着更为均匀的孔隙结构,即中心致密边缘多孔,而不同于常规烧结的非均匀结构,即边缘致密中心相对多孔的结构。常规烧结样品的组织主要是由大量铁素体、极少量珠光体以及大小不一的各种孔洞组成;而微波烧结样品的组织主要是由铁素体、片状和粒状珠光体以及极少量的孔隙组成。常规烧结样品属于脆性穿晶断裂,而微波烧结为脆性穿晶断裂和韧窝型的穿晶韧性断裂的混合型断裂,提高了材料的韧性和塑性。
     (4)90W-7Ni-3Fe合金在相同烧结温度下,原料粉末的粒度越小,性能越优异;但是在高温下,细粉颗粒性能反而降低。同种样品不同温度烧结时,有一最佳烧结温度,可获得最优的综合性能。在微波烧结中:1440℃下A试样的抗拉强度为919MPa、硬度为HRC35.8,1460℃下B试样的抗拉强度为899MPa、硬度为HRC34.7,1480℃下C试样的抗拉强度为884MPa、硬度为HRC34.5。相对于常规烧结,微波烧结试样W晶粒更细小、均匀,从而力学性能较好。TEM表明微波烧结合金中发现局部区域具有定向的条纹,这是微波“非热效应”作用的结果。
     (5)在保温15min,微波烧结YG8试样在1500℃时达到最佳的硬度HRA90.3。与常规烧结试样相比,微波烧结试样的硬度较高,但抗弯强度明显降低;合金的显微组织细小、均匀,但明显存在脱碳相η。微波烧结气氛中含有氧是脱碳相η存在原因之一。钴含量不同的试样,在1460℃时WC-6Co硬度最高,而WC-9Co抗弯强度最高。用同等含量的Ni粉、Fe粉代替Co粉,所得试样与WC-6Co试样相比性能低。
Microwave sintering is a densification method through using the heating produced by the couple of microwave with the microstructure of materials and which have these features on bulk heating, selective heating and non-therm effect. It is a significant process capable of fabricating advanced materials with high performance and traditional materials with new properties. In this paper, the behaviour and mechnical of microwave heating pure metal powders was investigated, and the kinetics and mechanism of microwave sintering deoxidized ferrous powder was researched. The process, properties, microstructure and feature of microwave sintered Fe-Cu-C alloy, W-Ni-Fe alloy and WC/Co alloy are studied, and compared with conventional sintered alloy. Through these studies, we could know the microwave sintering characteristic on powder metallurgy materials. On the base of study, the major results of this paper are shown as following.
     (1)The mechnical of microwave heating metal powder existed electricity conducting loss, magnetism loss (eddy current loss, magnetism hysteresis loss, remain loss) and electron arc discharge loss. The sort of metal powders decided the effect degree of the microwave loss mechnical. The effect of eddy current loss, magnetism hysteresis loss and remain loss are obvious in magnetic materials, and electricity conducting loss is more in the materials with higher conductivity. The microwave heating therm profiles of same kind metal powders are dependent on partical size, porosity and output power. The little of partical size is, the faster of heating rate and higher of final temperature are. The larger of porosity is, the faster of heating rate is, but the final temperature don't depend on the porosity. And the higher of output power is, the faster of heating rate is. SiC is fast heated at low temperature and don't effect the Fe green heated at high temperature, so it is a ideal susceptor materials for metal green reducing the microwave heating time.
     (2) The relationship between microwave sintered densities and temperature of deoxidized ferrous powder with fcc structure was accorded with Huang Peiyun's synthesized sintering theory. The microwave sintering main mechanism of deoxidized ferrous powder is grain boundary diffusion, and there also exists volume diffusion. The apparent activated energy is 76.21 kJ/mol and it is close to conventional sintered.
     (3) Compared with the conventional sintering, the microwave heating rate is faster and reduce processing time for Fe-2Cu-0.6C steel alloy. Soaking time for 10min, Fe-2Cu-0.6C steel alloy sintered at 1150℃via microwave irradiation has a superior properties. The as-sintered sample has a density, HRB, tensile strength and elongation up to 7.20 g/cm3,75,413.9 MPa and 6.0%, respectively. At temperature 1150℃, Fe-2Cu-0.6C steel alloy sintered for 15min via microwave irradiation has a superior properties. The as-sintered sample has a density, HRB, tensile strength and elongation up to 7.22 g/cm3,78,416.8 MPa and 5.5%, respectively. In comparison with the conventional sintered, the microwave sintered sample has slightly low HRB and obviously high tensile properties. Sintering mode influences the pore morphology and porosity in the sintered alloy. Lower porosity, small and isolated pores are formed in the microwave sintered sample, in contrast with the large, connected and angular ones in conventional sintered counterpart. Flaky and granular pearlite plus ferrite are presented in the alloy after microwave sintering, different from the predominant ferrite and minor pearlite in conventional sintered sample. Microstructure discrepancy elucidates the different properties possessed by the sintered alloys. Fracture analysis indicates that microwave sintering generates a mixed fracture mode consisting of ductile and brittle manners, other than the single brittle one in conventional sintered sample.
     (4) The little of W particle size is, the higher of the properties of 90W-7Ni-3Fe alloy sintered at the same temperature are. On the contrary little particle has low performance at high temperature. There are optimal properties at appropriate temperature for every kind of sample. The A sample sintered at 1440℃via microwave irradiation has tensile strength 919 MPa and hardness HRC35.8, and B sample at 1460℃has tensile strength 899 MPa and hardness HRC34.5, then C sample at 1480℃has tensile strength 884 MPa and hardness HRC34.5. Compared with conventional sintered, microwave sintered sample has more little distortion and more small and uniform tungsten grain. TEM shown that some local orient stripes were found in W-Ni-Fe alloy sintered via microwave irradition, it was the result of microwave non-therm effect.
     (5) Soaking time for 15min, YG8 cemented carbide sintered at 1500℃via microwave irradition has a optimal properties. The as-sintered sample has a HRA up to 90.3. Compared with conventional sintered, microwave sintered sample had higher hardness and badly lower bending strength, it existedηphase and lost carbon in microwave sintering sample, and the same time WC grain dissolution-deposition is slow. Microstructural investigations showed that microwave sintered sample were small and uniform in grain sizes. The formation ofηphase attributes to oxygen gas existed in the microwave sintering furnace. The samples sintered at 1460℃WC-6Co has the maximum hardness, and WC-9Co has the best bending strength. Compared with WC-6Co sample, WC-3Ni-3Fe sintered via microwave irradition has low properties.
引文
[1]黄培云.粉末冶金原理(第2版)[M].北京:冶金工业出版社,1997
    [2]German R M. Liquid phase sintering [M]. New York:Plenum Press.1985.
    [3]曾德麟.粉末冶金材料[M].北京:冶金工业出版社,1988
    [4]郭庚辰.液相烧结粉末冶金材料[M].北京:化学工业出版社,2003
    [5]黄伯云,易健宏.现代粉末冶金材料和技术发展现状(一)[J].上海金属,2007,29(3):1-7
    [6]韩凤麟,马福康,曹勇家.中国材料工程大典(第14卷)(粉末冶金材料工程)[M].北京:化学工业出版社,2006
    [7]韩凤麟,陈越.2007年中国粉末冶金零件生产进展[J].粉末冶金工业,2008,18(4):28-30
    [8]易健宏,黄伯云.中国粉末冶金发展概况[C].2009全国粉末冶金学术会议,湖南张家界,2009,10:1
    [9]孔昭庆,刘良先,田雪芹.2007年中国钨工业发展报告[J].中国钨业,2008,2
    [10]刘一波.金刚石工具国际市场现状的几点认识和建议[C].第二届中国金刚石相关材料及应用学术研讨会.2008,6
    [11]郑丽,赵文东,宋月清,等.金刚石工具的现状与发展趋势[J].石材,2009,1:33-36
    [12]罗阳.磁材产业的发展近况[J].新材料产业,2009,2:45-49
    [13]左培文,张超.我国专用汽车2009年市场分析与2010年预测[J].专用汽车,2010,(3):12-16
    [14]钱洪森.微波加热技术及应用[J].哈尔滨:黑龙江科学技术出版社,1985
    [15]刘韩星,欧阳世翕.无机材料微波固相合成方法与原理[M].北京:科学出版社,2006:1
    [16]赵克玉,许福永.微波原理与技术[M].北京:高等教育出版社,2006:439
    [17]张瑜,郝文辉,高金辉.微波技术及应用[M].西安:西安电子科技大学出版社,2006:206-207
    [18]Kassner E E W. Apparatus for the generation of short electromagnetic waves. U.S. Patent 2094602, Oct.5,1937
    [19]John M Osepchuk. A History of Microwave Heating Applications[J]. IEEE Trasactions on Microwave Theory and Techniques,1984, MTT32(9):1200-1224
    [20]Broida H P, Moyer J W. J. Opt. Soc. Am.,1952,42:37
    [21]刘岐山.微波能应用[M].北京:电子工业出版社,1990:8
    [22]Puschner, Herbert.. Heating with Microwaves:Fundamentals, Components, and Circuit Technique. Philips Technical Library. New York Springer-Verlag.1966
    [23]Ernest C. Okress. Microwave power engineering[M]. New York, Academic Press, 1968
    [24]Levison M L. U.S. Patent 3585258,1971
    [25]Tinga W R, Voss WAG. Microwave Power Engineering [M]. New York, Academic Press,1968
    [26]Gedye R, Smith F, Westaway K, et al. Tetrahedron Lett.,1986,27 (3):279
    [27]Berteand A J, Badot J C. High temperature microwave heating in refractary materials[J]. Journal of Microwave Power,1976,11(4):315-320
    [28]Sutton W H. Microwave processing of ceramic materials[J]. American Cermica Society Bulletin,1989,68(2):376-386
    [29]Roy R, Agrawal D, Cheng J P, et al. Full sintering of powdered metal bodies in a microwave field[J]. Nature,1999,399(17):668
    [30]Das S, Mukhopadhyay A K, Datta S, et al. Prospects of microwave processing: An overview[J]. Bulletin of Materials Science,2008,31(7):943-956
    [31]Wise R J, Froment I D. Microwave welding of thermoplastics[J]. Jounal of Materials Science,2001,36:5935-5954
    [32]Bruce Ralph W, Fliflet Arne W, Huey Hugo E. Microwave sintering and melting of titanium powder for low-cost processing[J]. Key Engineering Materials,2010, 436:131-140
    [33]Pickles C A. Microwaves in extractive metallurgy:Part 1-Review of fundamentals[J]. Minerals Engineering,2009,22(13):1102-1111
    [34]Agrawal D. Latest global developments in microwave materials processing[J]. Materials Research Innovations,2010,14(1):3-8
    [35]John M. Osepchuk. Microwave Power Applications[J]. IEEE Transactions on Microwave Theory and Techniques,2002,50(3):975-985
    [36]Stuchly M A, Stuchly S S. Industrial, scientific, medical and domestic applications of micro waves [J]. Proc. Inst. Elect. Eng., A,1983,130(8):467-503
    [37]张兆镗,钟若青.微波加热技术基础[M].北京:电子工业出版社,1988
    [38]李翰如.电介质物理导论[M].成都:成都科技大学出版社,1990
    [39]关振铎,张中太,焦金.无机材料物理性能[M].北京:清华大学出版社,1992
    [40]全峰.微波烧结WC-10Co硬质合金的结构与性能[D].武汉:武汉理工大学,2007:71-74
    [41]步文博.吸波材料的基础研究及微波损耗机理的探讨[J].材料导报,2001,15(5):34-37
    [42]周克省,黄可龙.吸波材料的物理机制及其设计[J].中南工业大学学报,2001,22(6):617-621
    [43]李黎明,徐政.吸波材料的微波损耗机理及结构设计[J].现代陶瓷技术,2004(2):31-35
    [44]Barnsley B P. Microwave processing of materials[J]. Metals and materials Bury St Edmunds,1989,5(11):633-636
    [45]钱鸿森.微波加热技术及应用[M].黑龙江:黑龙江科技出版社,1985
    [46]Agrawal D. Microwave processing of materials at high temperatures:successes and challenges[C].13th China National Conference on MW Power Applications, Changsha, China,2007,10:14-16
    [47]王艳,柯家骏.微波场中碳化硅的加热特性研究[J].稀有金属,1995,19(4):306-308
    [48]赵世玺,徐伏秋,史尚钊.微波加热碳化硅[J].中国陶瓷,1996,32(1):25-27
    [49]彭金辉,马骏骑.对微波弱吸收物质的辅助性加热[J].微波学报,1997,13(4):333-336
    [50]刘智,杨林,于传斌,等.微波混合加热中SiC预加热体工艺参数对升温特性的影响[J].大连轻工业学院学报,2006,25(2):135-138
    [51]Kudra T, Raghavan G S V, Voort F R. Microwave heating characteristics of rutile[J]. J. Appl. Phys.,1993,73(9):4534-4540
    [52]Zhijian Huang, Gotoh M, Hirose Y. Improving sinterability of ceramics using hybrid microwave heating[J]. J. Mater. Process. Technol.,2009,209(5): 2446-2452
    [53]Ma J, Diehl JF, Johnson EJ, et al. Systematic study of microwave absorption, heating, and microstructure evolution of porous copper powder metal compacts[J]. Journal of Applied Physics,2007,101:074906.
    [54]Chemat F, Esveld D C, Poux M, et al. The role of selective heating in the microwave activation of heterogeneous catalysis reactions using a continuous microwave reactor[J]. J. Microw. Power Electromagn. Energy,1998,33(2): 88-94
    [55]Tanaka M, Kono H, Maruyama K. Selective heating mechanism of magnetic metal oxides by a microwave magnetic field[J]. Phys. Rev. B,2009,79(10): 104420-104424
    [56]Standard O C, Zheng X Q, Sorrell C C. Thermal gradients in zirconia during microwave heating and microwave hybrid heating[J]. J. Australas. Ceram. Soc.,2003,39(1):8-14
    [57]Siores E, Do Rego D. Microwave applications in materials jioning[J]. J. Mater. Proce. Techn.,1995,48:619-625
    [58]Du Guanben, Wang Siqun, Cai Zhiyong. Microwave drying of wood strands[J]. Dry. Technol.,2005,23(12):2421-2436
    [59]Kriegsmann G A. Thermal runaway in microwave heated ceramics:A one-dimensional model [J]. J. Appl. Phys.,1992,71(44):1960-1996.
    [60]Kama Huang, Xiaoqing Yang, Wei Hua, et al. Experimental evidence of a microwave non-thermal effect in electrolyte aqueous solutions[J]. New Journal of Chemistry,2009,33,1486-1489
    [61]苟斌,吴菊清,李祥萍,等.微波与物质相互作用过程中非热效应的机理分析[J].上海有色金属,2001,22(1):6-8
    [62]Link G, Miksch S, Takayama S, et al. Anisotropic sintering in polarized microwave fields—evidence for nonthermal microwave effects[C]. Conference Digest of the Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics, Shanghai, China, September 2006:285
    [63]Upadhyaya A, Tiwari S K, Mishra P. Microwave sintering of W-Ni-Fe alloy [J]. Scripta Materialia,2007,56:5-8
    [64]Janney M A, Kimrey H D, Allen W R, et al. Enhanced difussion in sapphire during microwave heating[J]. J Mater Sci.,1997,32 (5):1347-1355
    [65]Freeman S A, Booske J H, Cooper R F1 Modelling and numerical simulations of microwave-induced ionic transport[J]. J Appl Phys.,1998,7 (11):5761-5766
    [66]Sethi G, Upadhyaya A, Agrawal D. Microwave and conventional sintering of pre-mixed and prealloyed Cu-12Sn bronze[J]. Sci of Sintering,2003,35:49
    [67]Anklekar R M, Agrawal D K, Roy R. Microwave sintering and mechanical properties of PM copper steel[J]. Powder Met allurgy,2001,44(5):355-362
    [68]Huang Guohua, Zhou Dongxiang, Xu Jianmei, et al. Low-temperature sintering and microwave dielectric properties of (Zr, Sn)TiO4 ceramics[J]. Mater. Sci. Eng. B,2003,B99(1-3):416-420
    [69]朱文玄,吴一平,徐正达,等.微波烧结技术及进展[J].材料科学与工程,1998,16(2):61-64
    [70]Bruce Ralph W, Fliflet Arne W, Huey Hugo E, et al. Microwave sintering and melting of titanium powder for low-cost processing[J]. Key Eng. Mat.,2010,436: 131-140
    [71]史尚钊,刘万生,赵世玺.微波加热技术在材料工程中的应用与进展[J].耐火材料,1995,29(4):231-233
    [72]Ahmad I, Silberglitt R, Black W M, et al. Microwave joining of silicon carbide using several different approaches [J]. Material Research Society spring meeting, San Francisco, CA (United States),1992
    [73]De A, Ahmad I, Whitney E D, et al. Microwave (Hybrid) Heating of Alumina at 2.45 GHZ: Ⅰ. Microstructural Uniformity and Homogeneity [J]. Material Research Society spring meeting, San Francisco, CA (United States),1992
    [74]Manoj Gupta, Eugene Wong. Microwave and Metal[M]. John Wiley & Sons (Asia) Pre Ltd,Singapone,2007
    [75]易健宏,罗述东,唐新文,等.微波烧结粉末冶金零件的机理[J].粉末冶金工业,2003,13:22-25
    [76]National Research Council. Microwave processing of materials[M]. National Academy Press,Washington, D.C.,1994
    [77]Avijit Mondal, Anish Upadhyaya, Dinesh Agrawal. Effect of heating mode on sintering of tungsten [J]. Int. Journal of Refractory Metals and Hard Materials,28 (2010)597-600
    [78]Tang X, Tian Q, Zhao B, Hu K. The microwave electromagnetic and absorption properties of some porous iron powders[J]. Mater. Sci. Eng. A 2007,445-446:135-140
    [79]Marquardt P, Nimtz G. Size-governed electromagnetic absorption by metal particles[J]. Phys. Rev. B 1989,40:7996-7998
    [80]Nimtz G, Marquardt P, Gleiter H. Size-induced metal-insulator transition in metals and semiconductors[J]. J. Cryst. Growth 1990,86:66-71
    [81]Mishra P, Sethi G, Upadhyaya A. Modeling of microwave heating of particulate metals[J]. Metall. Mater. Trans.B 2006,37:839-845
    [82]Rybakov K I, Semenov V E, Egorov S V, et al. Microwave heating of conductive powder materials[J]. J. Appl. Phys.2006,99:023506
    [83]Ripley Edward B, Douglas Dametria M. An introduction to microwave processing of metals[C].2004 AIChE Annual Meeting, Conference Proceedings, American Institute of Chemical Engineers,2004:1661
    [84]Gedevanishvili S, grawal D, Roy R. Microwave combustion synthesis and sintering of intermetallics and alloy[J]. J. Mat. Sci. Lett.,1999,18:665
    [85]Takayama S, Saitou Y, Sato M, et al. Sintering behavior of metal powders involving microwave-enhanced chemical reaction[J]. Japan. J. Appl. Phys. 2006,45:1816-1822
    [86]Gedevanishvili S, Agrawal D, Roy R. Microwave combustion synthesis and sintering of intermetallics and alloys[J]. J. Mater. Sci. Lett.1999,18:665-668
    [87]Peng Yuandong, Yi Jianhong, Luo Shudong, et al. Microstructure analysis of microwave sintered ferrous PM alloys[J]. Journal of Wuhan Univ. Tech,2009, (1):214-217
    [88]陈丽芳,易健宏,彭元东.烧结工艺对低合金钢性能的影响[J].粉末冶金材料科学与工程,2009,14(2):119-122
    [89]Panda S S, Singh V, Upadhyaya A,et al. Effect of conventional and microwave sintering on the properties of yttria alumina granet-dispersed austenitic stainless steel[J]. Metall. Mater. Trans. A 2006,37:2253-2260.
    [90]Panda S S, Singh V, Upadhyaya A, Agrawal D. Sintering response of austenitic (316L) and ferritic (434L) stainless steel consolidated in conventional and microwave furnaces[J]. Scripta Mater.2006,54:2179-2183
    [91]Anklekar R M, Agrawal D K, Roy R. Microwave sintering and mechanical properties of PM copper steel[J]. Powder Metall.2001,44:355-362
    [92]Anklekar R M, Bauer K, Agrawal D K, Roy R. Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts[J]. Powder Metall.2005,48:39-46
    [93]Saitou K. Microwave sintering of iron, cobalt, nickel, copper and stainless powders[J]. Scripta Mater.2006,54:875-879
    [94]Takayama S, Link G, Miksch S, et al. Millimetre wave effects on sintering behavior of metal powder compacts[J]. Powder Metall.2006,49:274-280
    [95]Luo Shudong, Yi Jianhong, Guo Yingli, et al. Microwave sintering W-Cu composites:Analyses of densification and microstructural homogenization[J]. Journal of Alloys and Compounds,2008
    [96]Upadhyaya A, Sethi G. Effect of heating mode on the densification and microstructural homogenization response of premixed bronze[J]. Scripta Mater. 2007,56:469-472
    [97]Sethi G, Upadhyaya A, Agrawal D. Microwave and conventional sintering of premixed and prealloyed Cu-12Sn bronze[J]. Sci. Sintering 2003,35:49-65
    [98]Gupta M, Wong W L E. Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering[J]. Scripta Mater.2005,52:479-483
    [99]Thakur S K, Kong T S, Gupta M. Microwave synthesis and characterization of metastable (Al/Ti) and hybrid (Al/Ti+SiC) composites[J]. Mater. Sci. Eng. A 2006; 452-453:61-69
    [100]Wong W L E, Gupta M. Development of Mg/Cu nanocomposites using microwave assisted rapid sintering[J]. Compos. Sci. Technol.2007,67: 1541-1552
    [101]Tun K S, Gupta M. Improving mechanical properties of magnesium using nano-yttria reinforcement and microwave assisted powder metallurgy method[J]. Compos. Sci. Technol.2007,67(13):2657-2664
    [102]周承商,易健宏,罗述东,等.微波烧结W-Ni-Fe高密度合金的变形现象及显微组[J].粉末冶金材料科学与工程,2010,15(3):300-304
    [103]Zhou Chengshang, Yi Jianhong, Luo Shudong, et al. Effect of heating rate on the microwave sintered W-Ni-Fe heavy alloys[J]. J. Alloys Compd., 2009,482(1-2):6-8
    [104]彭元东,易健宏,吴彬,等.微波烧结W-Ni-Fe高比重合金及其机理研究[J].稀有金属材料与工程,2008,37(1):125-129
    [105]Avijit Mondal, Anish Upadhyaya, Dinesh Agrawal. Microwave and conventional sintering of 90W-7Ni-3Cu alloys with premixed and prealloyed binder phase[J]. Materials Science and Engineering A,2010,527,6870-6878
    [106]Guo Yingli, Yi Jianhong, Luo Shudong, et al. Fabrication of W-Cu composites by microwave infiltration[J]. Journal of Alloys and Compounds, 2010,492:75-78
    [107]郭颖利,易健宏,罗述东,等.W-Cu触头材料的微波烧结[J].中南大学学报,2009,40(3):670-675
    [108]Avijit Mondal, Anish Upadhyaya, Dinesh Agrawal. Effect of heating mode on sintering of tungsten [J]. Int. Journal of Refractory Metals and Hard Materials, 2010,28:597-600
    [109]Prabhu G, Amitava Chakraborty, Bijoy Sarma. Microwave sintering of tungsten[J]. Int. Journal of Refractory Metals & Hard Materials,2009,27:545-548
    [110]Jain M, Skandan G, Martin K, et al. Microwave sintering:a new approach to fine-grain tungsten-Ⅰ [J]. Int. J. Powder Metall.2006,42:45-50.
    [111]Jain M, Skandan G, Martin K, et al. Microwave sintering:a new approach to fine-grain tungsten-Ⅱ [J]. Int. J. Powder Metall.2006,42:53-57
    [112]Perelaer J, Gans B de, Schubert U. Ink-jet printing and microwave sintering of conductive silver tracks[J]. Adv. Mater.2006,18:2101-2104
    [113]朱凤霞,易健宏,彭元东.微波烧结金属纯铜压坯[J].中南大学学报,2009,40(1):106-111
    [114]Ebadzadeh T, Valefi M. Microwave-assisted sintering of zircon[J]. J. alloys Compos.2008,448(1-2):246-249
    [115]Roy R, Agrawal D K, Cheng J. Process for sintering powder metal components[P]. US Patent 6,805,835, Oct.2004:1-8
    [116]Gerdes T, Willert-Porada M, Park H S. Microwave sintering of ferrous PM materials [C]. Powder Met 2006—International Conference on Powder Metallurgy & Particulate Materials, San Diego, California, June 2006.
    [117]Poli G, Sola R, Veronesi P. Microwave-assisted combustion synthesis of NiAl intermetallicsin a single mode applicator:Modeling and optimization[J]. Mater. Sci. Eng. A 2006,441:149-156
    [118]罗述东.微波加热技术在金属材料制备中的应用研究—微波烧结与焊接工艺[D].长沙:中南大学,2008
    [119]Kenkre V M, Skala L, Weiser M W, et al. Theory of microwave interactions in ceramic materials:the phenomenon of thermal runaway [J]. Journal of Materials Science,1991,26(9):2483-2489
    [120]Kriegsmann G A. Thermal runaway in microwave heated ceramics:A one-dimensional model[J]. Journal of Applied Physics,1992,71(4):1960-1966
    [121]Gupta N, Midha V, Balakotaiah V, et al. Bifurcation analysis of thermal runaway in microwave heating of ceramics[J].1999,146(12):4659-4665
    [122]James M. Hill and Timothy R. Marchant. Modelling microwave heating[J]. Appl. Math. Modelling,1996,20:3-15
    [123]李建保,谢志鹏,黄勇.微波在无机材料处理中的应用[J].应用基础与工程科学学报,1996,4(1):45-57
    [124]Coleman C J. On the microwave hotspot problem[J]. J. Aust. Math. Soc. Ser. B, 1991,33:1-8
    [125]Roussy G, Bennani A, Thiebaut J. Temperature runaway of microwave irradiated materials[J]. J. Appl. Phys.1987,62:1167-1170.
    [126]Kriegsmann G A. Thermal runaway and its control in microwave heated ceramics[J]. In:(3rd edition ed.), Mat. Res. Soc. Symp. Proc.1992,269: 257-264.
    [127]常爱民.氧化物电子陶瓷材料的微波处理研究[D].成都:电子科技大学,2002
    [128]靳先静,常爱民,张惠敏,等.Mn0.43Ni0.9CuFe0.67O4 NTC热敏材料的Pechini法制备及微波烧结特性研究[J].无机材料学报,2009,24(5):1113-1118
    [129]Janney M A, Kimery H D. Microwave processing of ceramic materials Ⅱ[C]. Materials Research Society Symposium Proceedings 189, edited by Snyder Jr W B, Sutton W H, Iskander M F, et al. Materials Research Society. Pittsburgh, PA,1991:215
    [130]Janney M A, Kimery H D, Schmidt M A, et al. Grain growth in microwave-anneled alumina[J]. J. Am. Ceram. Soc.,1991,74(7):75-81
    [131]Booske John H, Cooper Reid F, Ian Dobson. Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solids[J]. J. Mater. Res.,1992,17(2):495-501
    [132]黄向东,李建保,谢志鹏,等.微波促进陶瓷烧结的微观机制[J].应用基础与工程科学学报,1997,5(2):187-192
    [133]翟华嶂,李建保,黄向东,等.微波非热效应诱发的陶瓷材料中物质各向异性扩散[J].材料工程,2003,(6):29-32
    [134]黄向东,李建保.陶瓷材料吸收微波的微观机制[J].福州大学学报,2004,32(2):169-172
    [135]Gedye R N. The question of non-thermal effects in the rate enhancement of organic reactions by microwaves[J]. Microwaves:Theory and Application in Materials Processing,1997,4,165-172.
    [136]Gibson C, Matthews I, Samuel A. Microwave enhanced diffusion in polymeric materials[J]. J. Microw. Power Electromagn. Energy,1988,23(1):17-28
    [137]Katz J D, Blake R D, Petrovic J J. Microwave Sintering of Alumina-SiC Composites at 2.45 and 60 GHz[J]. Conference on composite materials and structures, Cocoa Beach, FL, USA,20 Jan 1988:1-24
    [138]Domonkos M T, Patterson M J, Foster J E, et al. Extending ion engine technology to NEXT and beyond [J]. IEEE Conference Record-Abstracts. 2002 IEEE International Conference on Plasma Science (Cat. No.02CH37340), 2002:173
    [139]Wroe R, Rowley A T. Evidence for a non-thermal microwave effect in the sintering of partially stabilized zirconia[J]. J. Mater. Sci.,1996,31(8): 2019-2026
    [140]Martin L P, Dadon D, Rosen M, et al. Ultrasonic and dielectric characterization of microwave-sintered and conventionally sintered zinc oxide[J]. J. Am. Ceram. Soc.,1996,79(10):2652-1658
    [141]姜寿亭,李卫.凝聚态磁性物理[M].北京:科学出版社,2004
    [142]郭木森.电工学[M].北京:高等教育出版社,2001,277,264-266.
    [143]金晓昌.感应加热技术中的趋肤效应[J].武汉化工学院学报,1995,17(4):65-68.
    [144]鲁百佐,刘志存.趋肤效应的实验研究[J].物理测试,2004,4:16-18.
    [145]Jiping Cheng, Rustum Roy, Dinesh Agrawal. Radically different effects on materials by separated microwave electric and magnetic fields[J]. Mat Res Innovat,2002(5):170-177.
    [146]赵雨,王锦辉,刘公强,等.锰锌铁氧体的磁损耗研究[J].中国科技论文在线,2005,39(12):2102-2104
    [147]Thorsten Gerdes, Monika Willert-Porada, Ho-Seon Park. Microwave sintering of ferrous PM materials[J]. International Conference on Powder Metallurgy & Particulate Materials, San Diego, California US,2006.
    [148]Sadatsugu TAKAYAMA, Yasushi SAITO, Motoyasu SATO, et al. Sintering Behavior of Metal Powders Involving Microwave-Enhanced Chemical Reaction[J]. Japanese Journal of Applied Physics,2006,45(3A):1816-1822
    [149]王零森,杨义斌,张金生,等.碳化硼烧结动力学和烧结机制[J].中南工业大学学报,1999,30(5):505-508
    [150]果世驹.粉末烧结理论[J].北京:冶金工业出版社,1998
    [151]王昆林.材料工程基础[M].北京:清华大学出版社,2003:71
    [152]Le Claire A D. The theory of DO in the Arrhenius equation for self-diffusion in cubic metals[J]. Acta Metallurgica,1953,1(4):438-447
    [153]Buffington F S, Hirano K, Cohen M. Self diffusion in iron[J]. Acta Metallurgica, 1961,9(5):434-439
    [154]Saitou K. Microwave sintering of iron, cobait, nickel, copper and stainless powders[J]. Scripta Materialia,2006,54:875-879
    [155]Sheppard L. Manufacturing cermics with microwave:the potential for economic production[J]. Am. Ceram. Soc. Bull,1988,67(10):1556-1561.
    [156]Sutton W H. Microwave processing of ceramic materials[J]. Ceramic Bullitin,1989,68:376-385
    [157]Brosnan K H, Messing G L, Agarwal D K.. Microwave sintering of alumina at 2.45 GHz[J]. Journal of the American Ceramic Society,2003,86(8): 1307-1312
    [158]Kishimoto A, Ito M, Fujitsu S. Microwave sintering of ion conductive zirconia based composite dispersed with alumina[J]. Journal of Materials Science Letters,2001,20(10):943-945
    [159]周健,程吉平,袁润章,等.微波烧结WC-Co细晶硬质合金的工艺与性能[J].中国有色金属学报,1999,9(3):465-468
    [160]Zhen Xiong, Gangqin Shao, Xiaoliang Shi, et al. Ultrafine hardmetals prepared by WC-10 wt.%Co composite powder[J]. International Journal of Refractory Metals & Hard Materials 2008,26:242-250
    [161]Gedevanishvili S, Agrawal D, Roy R. Microwave combustion synthesis and sintering of intermetallics and alloy[J]. J Mat Sci Lett,1999,18:665.
    [162]Anklekar R M, Agrawal D K, Roy R. Microwave sintering and mechanical properties of PM copper steel[J]. Powder Metallurgy,2001,44(5):355-362.
    [163]Anklekar R M, Bauer K, Agrawal D K, et al. Improved mechanical properties and microstructureal development of microwave sintered copper and nickel steel PM parts[J]. Powder Metallurgy,2005,48(1):39-45.
    [164]Panda S S, Singh V, Upadhyaya A, et al. Effect of conventional and microwave sintering on the properties of Yttria Alumina Garnet-dispersed austenitic stainless steel[J]. Metallurgical and Materials Transactions A,2006,37A: 2253-2264
    [165]张华诚.粉末冶金实用工艺学[M].北京:冶金工业出版社,2004.
    [166]Wong W L E., Gupta M. Development of Mg/Cu nanocomposites using microwave assisted rapid sintering[J]. Composites Science and Technology, 2007, (67):1541-1552.
    [167]Panda S S, Singh V, Upadhyaya A, et al. Effect of conventional and microwave sintering on the properties of yttria alumina garnet-dispersed austenitic stainless steel[J]. Metallurgical and materials transactions A,2006, 37A:2253-2264.
    [168]崔忠圻,刘北兴.金属学与热处理原理[M].哈尔滨:哈尔滨工业大学出版社,2005:191.
    [169]张九渊.表面工程与失效分析[M].杭州:浙江大学出版社,2006.
    [170]Yih S W H, Wang C T. Tungsten-Sources, Metallurgy, Properties and Application[M]. New York:Plenum Press,1979:340-408
    [171]范景莲.钨合金及其制备新技术[M].北京:冶金工业出版社,2006
    [172]彭元东,易健宏,吴彬,等.微波烧结W-Ni-Fe高比重合金及其机理研究[J].稀有金属材料与工程,2008,37(1):125-129
    [173]周承商.微波烧结W-Ni-Fe高密度合金研究[D].长沙:中南大学,2009
    [174]赵慕岳,范景莲,王伏生.我国钨基高密度合金的发展现状与展望[J].中国钨业,1999,14(5-6):38-41
    [175]郭庚辰.液相烧结粉末冶金材料[M].北京:化学工业出版社,2003
    [176]周国安.硬质合金制造工艺学[M].北京:冶金工业出版社,2006
    [177]王玉金,宋桂明,周玉,等.合金元素及第二相对钨的影响[J].宇航材料工艺,1998,5:11-15
    [178]叶途明,易健宏,李丽娅,等.高比重钨合金研究的新进展[J].材料导报,2003,17(12):15-18
    [179]王志法.钨基片的超高压成形与低温烧结新工艺探讨[J].中国钨业,1999,14(5-6):163-165
    [180]范景莲,黄伯云,曲选辉,等.二步烧结法控制高比重合金的变形及其对组织与性能的影响[J].稀有金属,2000,24(1):43-46
    [181]Ryu Ho J., Song Song H., Baek Woon H. Microstructure and mechanical properties of mechanically alloyed and solid-state sintered tungsten heavy alloys[J]. Materials Science and Engineering A,2000(291):91-96
    [182]Song Song H., Ryu Ho J.. Combination of mechanical alloying and two-stage sintering of a 93W-5.6Ni-1.4Fe tungsten heavy alloy[J]. Materials Science and Engineering A,2003(344):253-260
    [183]马运柱.纳米级钨基复合粉末的制备及其合金特性研究[D].长沙:中南大学,2004
    [184]王辅忠,李荣华.高密度钨合金中的沉淀相和强化研究[J].兵器材料科学与工程,2003,26(1):69-72
    [185]刘桂荣,刘国辉,王铁军等.W-Ni-Fe高比重合金断口形貌研究[J].中国钨 业,2004,19(3):36-38
    [186]郭颖利.微波熔渗法制备W-Cu合金研究[D].长沙:中南大学,2010
    [187]唐长国,朱金华,周惠久.应变率对钨合金抗拉强度及断口形貌的影响[J].稀有金属,1996,20(6):421-424
    [188]Meadows GW. Anisodimensional tungsten carbide platelets bonded with cobalt. US Patent US 3 647 401 (1972).
    [189]Upadhyaya G S. Materials Science of Cemented Carbides an Overview[J]. Materials and Design,2001,(22):483-489.
    [190]PETERSSON A, AGREN J. Constitutive behaviour of WC-Co materials with different grain size sintered under load[J]. Acta Materialia,2004,52: 1847-1858.
    [191]王国栋.硬质合金生产原理[M].北京:冶金工业出版社,1988
    [192]梅沢三造.硬质合金刀具常识及使用方法[M].北京:机械工业出版社,2009
    [193]羊建高.梯度结构硬质合金的制备原料及梯度形成机理研究[D].长沙:中南大学,2004
    [194]鲍瑞.微波烧结超细WC-8Co硬质合金[D].长沙:中南大学,2010
    [195]杨亚杰.微波烧结粗晶WC-Co硬质合金[D].长沙:中南大学,2010
    [196]史晓亮,杨华,邵刚勤,等.微波烧结法制备WC-lOCo硬质合金[J].中南大学学报,2006,37(4):665-669
    [197]Sunil B Ratna, Sivaprahasam D, Subasri R. Microwave sintering of nanocrystalline WC-12Co:Challenges and perspectives [J]. Int. Journal of Refractory Metals & Hard Materials,2010,28:180-186
    [198]王光信,孟阿兰,任志华.物理化学[M].北京:化学工业出版社,2007
    [199]胡英,吕瑞东,刘国杰.物理化学[M].北京:高等教育出版社,2007
    [200]熊继,羊建高,张静静,等.稀土对硬质合金中WC晶粒度和碳的影响[J].硬质合金,1994,11(3):134
    [201]Breval E, Cheng J P, Agrawal D K, et al. Comparison between microwave and conventional sintering of WC/Co composites[J]. Materials Science and Engineering A,2005(391):285-295

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700