用户名: 密码: 验证码:
酞菁化合物的合成及其非线性光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在目前人们研究的非线性材料中,酞菁分子具有特殊的碳氮共轭双键组成的18-π共轭电子体系,在光和热作用下具有较高的稳定性,酞菁分子的结构具有多样性、易裁剪性等特点,通过取代反应可衍生出具有不同取代配体的酞菁化合物,几乎可以和元素周期表中所有的金属元素发生配位,显示出良好的非线性光学性质,以酞菁为母体的非线性光学材料的开发和应用范围越来越广泛。
     传统酞菁的合成方法需要的合成温度较高、反应时间长,合成条件苛刻,限制了酞菁的应用。本文第三章在传统液相合成酞菁的方法基础上,采用了新的合成方法,使用中间体丙酮肟(N, N-二乙基羟胺),在温和的条件下合成出了具有金属配位的酞菁,简化了实验过程、提高了合成效率,并研究探讨了它们的反应条件及合成机理,并采用红外光谱、紫外光谱、液相质谱、1H核磁共振光谱等多种测试手段对合成出的酞菁进行检测,结果表明,我们所合成的酞菁化合物纯度较高并符合预期的分子结构,为酞菁的应用打下了基础。
     本文在实验部分使用Z-扫描技术分别在纳秒和飞秒激光脉冲作用下对酞菁化合物进行了非线性光学性质研究,分别研究了不同的样品浓度和输入光功率对酞菁化合物的非线性光学性质的影响,讨论了产生非线性光学吸收特性的物理机制、酞菁的结构对非线性光学性质的影响。而当飞秒激光脉冲与酞菁分子相互作用时会出现一些新的非线性光学现象,这与长脉冲激光作用产生的物理机制是不同的,酞菁溶液表现出较强的三光子吸收,并且随着溶液浓度的增加其三光子非线性吸收系数和非线性折射率都会增加,而当入射光功率逐渐增大时,其三光子非线性吸收系数基本上成线性变化,更加证实了三光子吸收是引起非线性吸收的主要原因。
     在本文所合成的四种酞菁中,苯氧基锌酞菁(Pc2)的非线性光学性能较好,是由于酞菁中引入金属Zn,中心离子会影响酞菁的π-共轭,电荷转移将在能级轨道之间产生新的能级差,酞菁材料的非线性光学性能就会发生改变。当酞菁外围引入取代基时,不管是吸电子基团还是给电子基团其非线性光学性能都比未取代的酞菁优异,这是因为将取代基引入酞菁分子,会影响酞菁体系的电子云密度和π电子共轭程度,从而使酞菁材料的非线性光学性能发生改变。本文从理论上提出了酞菁分子在激光脉冲作用下的有效能级模型,计算模拟了分子内部各能级粒子数随入射光强变化的动力学信息,当纳秒激光脉冲作用于酞菁分子上时,酞菁分子的三重态第一激发态对其非线性吸收起主要作用;而当飞秒激光脉冲作用于酞菁分子上时,酞菁分子的非线性吸收为三光子吸收,其非线性吸收主要由单重态高阶激发态吸收起主要作用。
In the study of nonlinear optical materials, phthalocyanines along with their metal derivatives are macromolecules with large number of delocalized electrons and have outstanding chemical and thermal stability. The macrocyclic structure and chemical reactivity of tetrapyrroles offers architectural flexibility and capability of phthalocyanines to accommodate different metallic ions in their cavity, possessing nonlinear optical properties finding extensive applications.
     Traditional method of phthalocyanine synthesis at high temperature, reaction time is long, harsh reaction conditions, limiting the application of phthalocyanine. In Chapter III, we succeeded in synthesising phthalocyanines using a new intermediate of acetoxime(N,N-Diethylhydroxylamine) under a mild reaction condition. The samples were characterized by IR, UV, LC/MS and 1HNMR techniques, and the results showed that the molecular structures of the samples were consistent with our expectations. We simplified the experiment process and also improved the efficiency of the synthesis, the foundation for the application of phthalocyanines.
     Using the nanosecond and femtosecond laser, the nonlinear optical properties of phthalocyanines molecules are studied by the Z-scan technique. The effects of solution concentration and input laser power on nonlinear optical properties of phthalocyanines are researched. Physical mechanism of nonlinear absorption and the influence of structure of phthalocyanines on the nonlinear optical properties have been discussed. Since interaction between femtosecond laser pulse and phthalocyanines molecules, a new nonlinear optical phenomenon has been found which physical mechanism is different from that with long laser pulse, phthalocyanine solution showed strong three-photon absorption, and with the increase of concentration of its three-photon nonlinear absorption coefficient and nonlinear refractive index will increase, and when the incident power increases, its three photon absorption coefficient is essentially linear, and more confirmed the three-photon absorption is mainly caused by nonlinear absorption.
     The nonlinear optical properties of phenoxy-phthalocyanine-Zn (Pc2) of the best, is due to the introduction of the metal Zn, the central ion will affect the phthalocyanineπ-conjugated, charge-transfer orbit in the level energy difference, nonlinear optical properties of phthalocyanine will change. When peripheral phthalocyanine substituent introduced, whether electron withdrawing group or electron donating group than the nonlinear optical properties of substituted phthalocyanine is not excellent, because the introduction of the substituted phthalocyanine molecules, will affect the phthalocyanine system, the electron density and the degree ofπelectron conjugation, so that the phthalocyanine nonlinear optical properties of materials change.
     An efficient energy-level model for the phthalocyanines molecules excited by laser pulse is developed, and the intensity dependence of level populations is obtained. When nanosecond pulses input, the absorption is mainly introduced by the first excited state of Triplet state, when femtosecond pulses input, the absorption is mainly introduced by the high excited state of singlet state.
引文
1. F. Bassani, G. C. Larocca, V. M. Granovich. Organic–Inorganic Junctions and Microcavities: New Effects and Applications. International Journal of Quantum Chemistry. 2000, 77: 973~981.
    2. J. M. Robertson. An X-ray Study of The Structure of The Phthalocyanines, Part I, The Metal-free, Nickel, Copper, and Platinum Compounds. Journal of the Chemical Society. 1935(1): 615~621.
    3. K. W. Poon, W. Liu, P. K. Chan, et al. Tetrapyrrole Derivatives Substituted with Ferrocenylethynyl Moieties. Synthesis and Electrochemical Studies. The Journal of Organic Chemistry. 2001, 66(5): 1553~1559.
    4. L. A. Tomachynskia, I. N. Tretyakovaa, V. Y. Cherniia. Synthesis and Spectral Properties of Zr(IV) and Hf(IV) Phthalocyanines withβ-diketonates as Axial Ligands. Inorganica Chimica Acta. 2008, 361(9-10): 2569~2581.
    5. S. Saydam, E. Ylmaz, F. Bagc. Synthesis, Characterization, Electrochemical, and Optic Limiting Properties of Novel Co-II, Cu-II, and Double-Decker Lu-III Phthalocyanines. European Journal of Inorganic Chemistry. 2009(14): 2096~2130.
    6.沈永嘉.酞菁的合成与应用.化学工业出版社, 2002: 5~10.
    7. E. D. P. A. Barrettc, R. P. Linstead. Phthalocyanines. Part VII. Phthalocyanine as a co-ordinating group. A general investigation of the metallic derivatives. Journal of the Chemical Society. 1936, 3: 1719 ~1736.
    8. W. E. Bennett, D. E. Broberg, N. C. Baenziger. Crystal Structure of Stannic Phthalocyanine, an Eight-Coordinated Tin Complex. Inorganic Chemistry. 1973, 12(4): 930~936.
    9.殷焕顺,邓建成,周燕.金属酞菁的固相法合成.染料与染色. 2004, 41(3): 150~152.
    10. J. Metz, O. Schneider, M. Hanck. Synthesis and Properties of Substituted (Phthalocyaninato)-Iron and -Cobalt Compounds and Their Pyridine Adducts. Inorganic Chemistry. 1983, 13: 1065~1071.
    11. D. W. Hrle, M. Eskes, K. Shigehara. A Simple Synthesis of 4,5-Disubstituted
    1,2-Dicyanobenzenes and Octasubstituted Phthalocyanines. Synthesis. 1993(2):194~196.
    12. W. Chidawanyikaa, E. Antunesa, T. Nyokong. Synthesis and Solvent Effects on The Photophysicochemical Properties of Novel Cadmium Phenoxy Phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry. 2008, 195(2-3): 183~190.
    13.薛金萍,刘宏,范长安.四-α-(2-甲基-8-喹啉氧基)酞菁金属配合物的合成、表征及光敏活性研究.化学学报. 2007, 65(16): 1605~1611.
    14. S. Eenberg, A. B. P. Lever, C. C. Leznoff. Approaches Towards the Synthesis of a 2,9,16,23-Tetrasubstitutedphthalocyanine as a Pure Isomer. Canadian Journal of Chemistry. 1988, 66: 1059~1064.
    15.司玉贵,龚跃法,张正波.多氟烷氧基取代金属酞菁配合物的简便合成及其光谱特征.高等学校化学学报. 1999, 20(3): 403~406.
    16. S. Makhseed, M. Al-Sawah, J. Samuel, et al. Synthesis, Characterization and Nonlinear Optical Properties of Nonaggregating Hexadeca-Substituted Phthalocyanines. Tetrahedron Letters. 2009, 50: 165~168.
    17. Y. z. Wu, H. Tian, K. Chen, et al. Synthesis and Properties of Soluble Metal-free Phthalocyanines Containing Tetra- or Octa-alkyloxy Substituents. Dyes and Pigments. 1998, 37(4): 317~325.
    18. S. Sasmaz, E. Agar, A. Agar. Synthesis and Characterization of Phthalocyanines Containing Phenothiazine Moieties. Dyes and Pigments. 1999, 42(2): 137~142.
    19. R. Decreau, M. Chanon, M. Julliard. Synthesis and Characterization of a Series of Hexadecachlorinated Phthalocyanines. Inorganica Chimica Acta. 1999, 193(1): 80~87.
    20. W. E. Ford, M. A. J. Rodgers, L. A. Schechtman, et al. Synthesis and Photochemical Properties of Aluminum, Gallium, Silicon, and Tin Naphthalocyanines. Inorganic Chemistry. 1992, 31(16): 3371~3377.
    21. R. Y. Zhua, X. Q. Qiua, Y. Chen. Effect of Axial Substitution on The Ultrafast Dynamics and Third-order Optical Nonlinearity of Metallophthalocyanines Films. Journal of Luminescence. 2006, 119~120(8): 522~527.
    22. K. Imakita, M. Ito, M. Fujii. Nonlinear Optical Properties of Phosphorous-doped Si Nanocrystals Embedded in Phosphosilicate Glass Thin Films. Optics Express. 2009, 17(9): 7368~7377.
    23. C. Sheng, R. A. Norwood, J. Wang, et al. Nonlinear Optical Transmission of Lead Phthalocyaninedoped Nematic Liquid Crystal Composites for Multiscale Nonlinear Switching from Nanosecond to Continuous Wave. Applied Optics. 2009, 48(14): 2731~2735.
    24. H. Yamane, H. Kikuchi, T. Kajiyama. Laser-addressing Rewritable Optical Information Storage of (Liquid Crystalline Side Chain Copolymer/Liquid Crystals/Photo-Responsive Molecule) Ternary Composite Systems. Polymer. 1999, 40(17): 4777~4785.
    25. M. Esselbach, G. Cedilnik, A. Kiessling, et al. Optical Information Storage Using Refresh via Phase Conjugation. Optics & Laser Technology. 1999, 31(8): 579~582.
    26. F. Gan, L. Hou, G. Wang, et al. Optical and Recording Properties of Short Wavelength Optical Storage Materials. Materials Science and Engineering B. 2000, 76(1): 63~68.
    27. H. K. Leea, K. Doia, A. Kanazawaa, et al. Light-Scattering-Mode Optical Switching and Image Storage in Polymer/Liquid Crystal Composite Films by Means of Photochemical Phase Transition. Polymer. 2000, 41(5): 1757~1763.
    28. G. Xua, Q. G. Yanga, J. Sia, et al. Application of All-Optical Poling in Reversible Optical Storage in Azopolymer Films. Optics Communications. 1999, 159(1-3): 88~92.
    29. C. J. He, Y. Chen, Y. X. Nie. Third Order Optical Nonlinearities of Eight-b-octa-octyloxy-Phthalocyanines. Optics Communications. 2007, 271: 253~256.
    30.姜建壮,吴基培,刘伟.对称的二层及三层三明治型金属酞菁配合物的研究进展.化学通报. 1999(5): 2~10.
    31.郭建华,吴英,叶开其.四苯基卟啉铂电致发光性能的研究.分子科学学报. 2005, 21(1): 1~5.
    32. G. d. l. Torre, P. Vazquez, F. Agullo-Lopez. Phthalocyanines and Related Compounds: Organic Targets for Nonlinear Optical Applications. Journal Materials Chemistry. 1998, 8(8): 1671~1683.
    33. T. Komatsu, K. Ohta, T. Fujimotob, et al. Chromic Materials Part 1-Liquid-crystalline Behaviour and Electrochromism in Bis (octakis-n-alkyl- phthalocyaninato)lutetium(iii)Complexes. Journal of Materials Chemistry.1994, 4(4): 533~536.
    34.何为,程传辉,于书坤. 2(3)-四-(2-异丙基-5-甲基苯氧基)钛氧酞菁的合成及其近红外发光特性.发光学报. 2008, 29(1): 727~731.
    35. M. Durmus, Z. B?y?kl?oglub, H. Kantekinb. Synthesis, Photophysical and Photochemical Properties of Crown Ether Substituted Zinc Phthalocyanines. Synthetic Metals. 2009, 159(15-19): 1563~1571.
    36.薛金萍,刘宏,范长安.四-α-(2-甲基-8-喹啉氧基)酞菁金属配合物的合成、表征及光敏活性研究.化学学报. 2007, 65(16): 1605~1611.
    37. R. F. Donnelly, C. M. Cassidy, R. G. Loughlin, et al. Delivery of Methylene Blue and Meso-tetra (N-methyl-4-pyridyl) Porphine TetraTosylate from Cross-Linked Poly(vinyl alcohol) Hydrogels: A Potential Means of Photodynamic Therapy of Infected Wounds. Journal of Photochemistry and Photobiology B: Biology. 2009, 96(3-4): 223~221.
    38. A. Siejak, D. Wróbel, P. Siejak, et al. Spectroscopic and Photoelectric Investigations of Resonance Effects in Selected Sulfonated Phthalocyanines. Dyes and Pigments. 2009, 83(3): 281~290.
    39. J. E. V. Lier, H. J. Tian, A. Hasrat, et al. Trisulfonated Porphyrazines: New Photosensitizers for the Treatment of Retinal and Subretinal Edema. Journal of Medicinal Chemistry. 2009, 52(14): 4107~4110.
    40. D. A. Fernández, J. Awruch, L. E. Dicelio. Synthesis and Photophysical Properties of a New Cationic Water-soluble Zn Phthalocyanine. Journal of Photochemistry and Photobiology B: Biology. 1997, 41(3): 227~232.
    41.刘尔生,戴志飞,黄剑东.金属酞菁的合成及其对癌细胞光动力灭活作用.生物化学与生物物理学报. 1998, 30(1): 31~34.
    42.官德斌,杨亚杰,刘学涌.一种新型有机气敏材料的成膜和低温气敏性能.传感技术学报. 2009, 22(1): 19~23.
    43. K. S. Karimov, I. Qazi, T. A. Khan, et al. Humidity and Illumination Organic Semiconductor Copper Phthalocyanine Sensor for Environmental Monitoring. Environmental Monitoring and Assessment. 2008, 141(1-3): 323~328.
    44. G. D. L. Torre, C. G. Claessens, T. Torres. Phthalocyanines: Old Dyes, New Materials. Putting Color in Nanotechnology. Chemical Communications. 2007: 2000~2015.
    45. G. J. Zhou, W. Y. Wong, C. Ye, et al. Optical Power Limiters Based onColorless Di-, Oligo-, and Polymetallaynes: Highly Transparent Materials for Eye Protection Devices. Advanced Functional Materials. 2007, 17(6): 963~975.
    46. Z. Z. Ho, C. Y. Ju, W. M. Hetherington. Third Harmonic Generation in Phthalocyanines. Journal of Applied Physics. 1987, 62: 716~718.
    47. M. A. D. Garcia, I. Ledoux, J. A. Duro, et al. Third-Order Nonlinear Optical Properties of Soluble Octasubstituted Metallophthalocyanines. The Jourana of Physical Chemistry. 1994, 98(35): 8761~8764.
    48. H. S. Nalwa, A. Kakuta, A. Mukob. Third-Order Nonlinear Optical Properties of a Vanadylnaphthalocyanine Derivative. The Journal of Physical Chemistry. 1993, 97(6): 1097~1100.
    49. J. S. Shirk, J. R. Lindle, F. J. Bartoli, et al. Third-Order Optical Nonlinearities of Bis(phthalocyanines). The Jouranl of Physical Chemistry. 1992, 96(14): 5847~5852.
    50. A. Sastre, M. A. Diaz-Garc?a, B. d. Rey, et al. Push-Pull Phthalocyanines: A Hammett Correlation between the Cubic Hyperpolarizability and the Donor-Acceptor Character of the Substituents. The Jouranl of Physical Chemistry A. 1997, 101(50): 9773~9777.
    51. A. Yamashitaa, S. Matsumotoa, S. Sakataa, et al. Third-Order Nonlinear Optical Properties of Vanadylphthalocyanine Derivative Films with Additional Rings. Optics Communications. 1998, 145(1-6): 141~144.
    52. F. Henari, A. Davey, W. Blau, et al. The Electronic and Non-linear Optical Properties of Oxotitanium Phthalocyanines. Journal of Porphyrins and Phthalocyanines. 1999, 3(5): 331~338.
    53. Y. Chen, S. O'Flaherty, M. Fujitsuka, et al. Synthesis, Characterization, and Optical-Limiting Properties of Axially Substituted Gallium(III) Naphthalocyanines. Chemistry of Materials. 2002, 14(12): 5163~5168.
    54. G. Shi, Y. X. Wang, D. J. Liu. Determination of Large Third-order Optical Nonlinearities in Tetra-tertbutyl Phthalocyaninatogallium Iodide Film. Journal of Applied Physics. 2008, 104: 113102.
    55. N. Kuznetsova, D. Makarov, V. Derkacheva. Intramolecular Energy Transfer in Rhodamine–Phthalocyanine Conjugates. Journal of Photochemistry and Photobiology A: Chemistry. 2008, 200: 161~168.
    56. A. Gouloumis, A. D. L. Escosura, P. Vazquez, et al. Photoinduced Electron Transfer in a New Bis(C60)-Phthalocyanine Triad. Organic Letters. 2006, 8(23): 5187~5190.
    57. B. Ballesteros, G. d. l. Torre, C. Ehli, et al. Single-Wall Carbon Nanotubes Bearing Covalently Linked Phthalocyanines - Photoinduced Electron Transfer. Journal of The American Chemical Society. 2007, 129(16): 5061~5068.
    58. W. T. Huang, S. F. Wang, R. S. Liang, et al. Ultrafast Third-order Nonlinear Optical Response of Diels–Alder Adduct of Fullerene C60 with a Metallophthalocyanine. Chemical Physics Letters. 2000, 324(5-6): 354~358.
    59.钱士雄,王恭明.非线性光学原理与进展.上海复旦大学出版社2001.
    60.石顺祥.非线性光学.西安电子科技大学出版社2000.
    61.沈元壤.非线性光学原理.科学出版社1987.
    62. J. L. Bredas, C. Adant, P. Tackx, et al. Third-Order Nonlinear Optical Response in Organic Materials: Theoretical and Experimental Aspects. Chemical Reviews. 1994, 94(1): 243~278.
    63. K. D. Belfield, M. V. Bondar, C. O. Yanez, et al. Two-photon Absorption and Lasing Properties of New Fluorene Derivatives. Journal of Materials Chemistry. 2009, 19: 7498~7502.
    64. I. C. Khoo, S. Webster, S. Kubo, et al. Synthesis and Characterization of the Multi-photon Absorption and Excited-State Properties of a Neat Lliquid 4-propyl 4'-butyl Diphenyl Acetylene. Journal of Materials Chemistry. 2009, 19: 7525~7531.
    65. L. A. Padilha, S. Webster, O. V. Przhonska, et al. Nonlinear Absorption in a Series of Donor-π-Acceptor Cyanines with Different. Journal of Materials Chemistry. 2009, 19: 7503~7513.
    66. J. Staromlynska, T. J. McKay, P. Wilson. Broadband Optical Limiting Based on Excited State Absorption in Pt:ethynyl. Journal of Applied Physics. 2000, 88(4): 1726~1732.
    67. Sutherland. Handbook of Nonlinear Optics. Marcel Dekker, Inc. New York Basel 2003.
    68.张福军,孙香冰,任诠.一种新型有机金属化合物纳秒时域饱和吸收特性研究.光子学报. 2008, 27(2): 247~251.
    69.孟现美,黄晓明,王传奎.有机杂环分子的双光子吸收特性.物理化学学报. 2007, 23(2): 228~231.
    70.吴文智,郑植仁,金钦汉.水溶性CdTe量子点的三阶光学非线性极化特性.物理学报. 2008, 57(2): 1177~1182.
    71.黎爱珍,李有君,朱伟玲.偶氮苯光致异构反饱和吸收的光学双稳态开关的理论研究.大学物理. 2008, 27(5): 33~36.
    72.蒋振,王涛,王冰.基于电子自旋弛豫全光开关中的瞬态特性.光学学报. 2008, 28(7): 1374~1378.
    73. R. Lopez, R. F. Haglund, L. C. Feldman. Optical Nonlinearities in VO2 Nanoparticles and Thin Films. Applied Physics Letters. 2004, 85(22).
    74. B. L. Yu, C. S. Zhu, F. X. Gan, et al. Optical Nonlinearities of Fe203 Nanoparticles Investigated by Z-scan Technique. Optical Materials. 1997, 8(4): 249~254.
    75. P. Zhou, G. J. You, Y. G. Li, et al. Linear and Ultrafast Nonlinear Optical Response of Ag:Bi2O3 Composite Films. Applied Physics Letters. 2003, 83(19): 3876~3878.
    76. B. L. Yu, C. S. Zhu, F. X. Gan. Optical Nonlinearity of Bi2O3 Nanoparticles Studied by Z-scan Technique. Journal of Applied Physics. 1997, 82(9): 4532~4537.
    77. H. I. Elim, W. Jia, A. H. Yuwono, et al. Ultrafast Optical Nonlinearity in Poly(methylmethacrylate)-TiO2 Nanocomposites. Applied Physics Letters. 2003, 82(16): 2691~2693.
    78. M. J. Moran, C. Y. She, R. L. Carman. Interferometric Measurements of The Nonlinear Refractive-Index Coefficient Relative to CS, in Laser-System-Related Materials. IEEE Journal of Quantum Electronice. 1975, 11(6): 259~263.
    79. R. Adair, L. L. Chase, S. A. Payne. Nonlinear Refractive-Index Measurements of Glasses Using Three-Wave Frequency Mixing. Journal of the Optical Society of America B. 1987, 4(6): 875~891.
    80. R. K. Jain, M. B. Klein. Degenerate four Wave Mixing Near The Band Gap of Semiconductors. Applied Physics Letters. 1979, 35(15): 454~456.
    81. A. Owyoung. Ellipse Rotation Studies in Laser Host Materials. IEEE Journal of Quantum Electronice. 1973, 9(11): 1064~1069.
    82.杨少辰,李志娟,刘夏萍.利用光束波前畸变扫描研究介质的非线性光学性质.北方交通大学学报. 1997, 21(466~471).
    83. M. Sheik-Bahae, A. A. Said, Tai Huei Wei, et al. Sensitive Measurement of Optical Nonlinearities Using a Single Beam. IEEE Journal of Quantum Electronice. 1990, 26(4): 760-769.
    84. G. Bo, X. X. Liang. Review on The Fundamental Theory and Technology of Z-scan. Journal of Functional Materials. 2006, 37(3): 474~477.
    85. H. Ma, C. B. d. Araújo. Two-color Z-scan Technique with Enhanced Sensitivity. Applied Physics Letters. 1995, 66: 1581~1583.
    86. J. Y. Yang, Y. L. Song. Direct Observation of The Transient Thermal-Lensing Effect Using The Phase-Object Z-scan Technique. Optics Letters. 2009, 34(2): 157~159.
    87. G. L. Wood, M. J. Miller, A. G. Mott. Investigation of Tetrabenzporphyrin by The Z-scan Technique. Optical Letters. 1995, 20(9): 973~975.
    88.焦洋,孙晓泉,卞进田.基于LabView的全自动激光2扫描实验系统.大气与环境光学学报. 2006, 1(2): 145~150.
    89. M. Samoc, A. Samoc, B. Luther-Davies, et al. Third-Order Optical Nonlinearities of Oligomers, Dendrimers and Polymers Derived from Solution Z-scan Studies. Optical Materials. 2003, 21(1-3): 485~488.
    90. B. Gu, H.-T. Wang, W. Ji. Z-scan Technique for Investigation of The Noninstantaneous Optical Kerr Nonlinearity. Optical Letters. 2009, 34(18): 2769~2771.
    91. T. Godin, M. Fromager, B. P?iv?nranta, et al. Considerations about Z-scan sensitivity improvement: theory versus experiments. Applied Physics B: Lasers and Optics. 2009, 95(3): 579~587.
    92. S. V. Rao, N. Venkatram, L. Giribabu, et al. Ultrafast Nonlinear Optical Properties of Alkyl-Phthalocyanine Nanoparticles Investigated Using Z-scan Technique. Journal of Applied Physics. 2009, 105: 053109.
    93.郭世方,田强. Z扫描实验高斯分解法分析的研究.北京师范人学学报(自然科学版). 2008, 44(6): 584~587.
    94. L. K. Michael, S. J. Albert, E. N. John, et al. Dichloro(phthalocyanino)silicon. Inorganic Chemistry. 1964, 2: 128~129.
    95. L. D. Gao, X. H. Qian, L. Zhang, et al. Tetra-Trifluoroethoxyl Zinc Phthalocyanine: Potential Photosensitizer for Use in The PhotodynamicTherapy of Cancer. Journal of Photochemistry and Photobiology B: Biology. 2001, 65(1): 35~38.
    96. R. D. George, A. W. Snow, J. S. Shirk, et al. The Alpha Substitution Effect on Phthalocyanine Aggregation. Journal of Porphyrins and Phthalocyanines. 1998, 2(1): 1~7.
    97. N. V. Kondratenko, V. N. Nemykin, E. A. Lukyanets, et al. The Synthesis and Properties of Some Polyfluoroalkoxy Substituted Phthalocyanines. Journal of Porphyrins and Phthalocyanines. 1997, 1(4): 341~347.
    98. H. Uchida, H. Tanaka, H. Yoshiyama. Novel Synthesis of Phthalocyanines from Phthalonitriles under Mild Conditions. Synlett. 2002, 10: 1649~1652.
    99. C. C. Leznoff, M. G. Hu, K. J. M. Nolan. The Synthesis of Phthalocyanines at Room Temperature. Chemical Communications. 1996: 1245~1246.
    100.王竹庭,鲁开娟,王晓药.酞菁氧钛的合成及晶型转化.应用化学. 1994, 11(1): 72~75.
    101.吴星,刘长庆,张国林.四苯氧基酞菁钴及其吡啶衍生物的配合物的合成和性质.高等学校化学学报. 1991, 12: 1563~1567.
    102.李洪式,周庆复,许慧君.新型LB成膜材料一两亲性侧链取代酞菁锌的合成.有机化学. 1996, 16: 160~164.
    103.邱玲,沈玉全,许慧君.可溶性氧钒酞普的非共振三阶非线性光学性质.化学学报. 1997, 22: 37~41.
    104. M. Hanack, S. Knecht, R. Pollcy, et al. Axially 1,4-Diisocyanobenzene Bridged Substituted Iron (II) Phthalocyanines and 2,3-Naphthalocyanines. Synthetic Metals. 1996, 80(2): 183~189.
    105. M. Hanack, M. Lang. Conducting Stacked Met allophthalocy anines and Related Compounds. Advanced Materials. 1994, 6(11): 819~833.
    106. G. Pawlowski, M. Hanack. A Convenient Synthesis of Octasubstituted Phthalocyanines. Synthesis. 1980, 19: 287~289.
    107.聂静涛,段武彪,杨素苓.在DBU存在下酞菁锰配合物的合成及溶剂影响.无机化学学报. 1996, 12(3): 246~250.
    108. J. Mack, M. J. Stillman. Assignment of The Optical Spectra of Metal Phthalocyanines Through Spectral band Deconvolution Analysis and ZINDO Calculations. Coordination Chemistry Reviews. 2001, 219-221: 993~1032
    109. J. G. Young, W. Onyebuagu. Synthesis and Characterization of Di-Disub-stituted Phthalocyanines. The Journal of Organic Chemistry. 1990, 55(7): 2155~2159.
    110. P. N. Day, Z. Q. Wang, R. Pachter. Calculation of The Structure and Absorption Spectra of Phthalocyanines in The Gas-Phase and in Solution. Journal of Molecular Structure: Theochem. 1998, 455(1): 33~50.
    111. M. Isaacs, M. J. Aguirre, A. Toro-Labbe?, et al. Comparative Study of The Electrocatalytic Activity of Cobalt Phthalocyanine and Cobalt Naphthalocyanine for The Reduction of Oxygen and The Oxidation of Hydrazine. Electrochimica Acta. 1998, 43(12-13): 1821~1827.
    112. P. D. Fuqua, B. Dunn, J. I. Zink. Optical Properties and Dimer Formation in Copper Phthalocyanine-Doped Sol-Gel Matrices. Journal of Sol-Gel Science and Technology. 1998, 11(3): 241~250.
    113.李娜君,姚社春,路建美.金属酞菁衍生物的合成及三阶非线性光学性能.高分子材料科学与工程. 2005, 21(4): 66~69.
    114. D. Dini, S. Vagin, M. Hanack. Nonlinear Optical Effects Related to Saturable and Reverse Saturable Absorption by Subphthalocyanines at 532 nm. Chemical Communications. 2005: 3796~3798.
    115.郭.赵德林,曹天德. Ni(mpo)_2的近双光子共振光学非线性特性的研究.光电子技术与信息. 2005, 18(4): 18~22.
    116. G. S. He, G. C. Xu, P. N. Prasad. Two-photon Absorption and Optical-Limiting Properties of Novel Organic Compounds. Optical Letters. 1995, 20(5): 435~437.
    117. S. M. O'Flaherty, V. H. Stephanie, J. C. Michael. Molecular Engineering of Peripherally And Axially Modified Phthalocyanines for Optical Limiting and Nonlinear Optics. Advanced Materials. 2003, 15(1): 19~32.
    118. F. Li, Q. Zheng, G. Yang. Optical Limiting Properties of Two Phthalocyanines Using 1064-nm Laser in Solution. Materials Letters. 2008, 62(7): 3059~3062.
    119.李德川,王明建,方香云.有机材料反饱和吸收特性分析.应用光学. 2009, 30(1): 172~177.
    120. H. A. Kurtz, J. J. P. Stewart, K. M. Dieter. Calculation of the Nonlinear Optical Properties of Molecules. Journal of Computational Chemistry. 1990, 11(1): 82~87.
    121. L. D. Boni, E. Piovesan, L. Gaffo, et al. Resonant Nonlinear Absorption inZn-Phthalocyanines. The Jouranl of Physical Chemistry A. 2008, 112(2): 6083~6087.
    122. T. C. Wen, I. D. Lian. Nanosecond measurements of nonlinear absorption and refraction in solutions of bis-phthalocyanines at 532 nm. Synthetic Metals. 1996, 83: 111~116.
    123. A. N. Okhrimenko, A. V. Gusev, M. A. J. Rodgers. Excited State Relaxation Dynamics of the Zinc(II) Tetraphenylporphine Cation Radical. The Journal Of Physical Chemistry A. 2005, 109(4): 7653~7656.
    124. Z. Lqbal, A. Lyubimtsev, M. Hanack. Anomerically Glycosylated Zinc(II) Naphthalocyanines. Tetrahedron Letters. 2009, 50(2): 5681~5685.
    125.邓晓旭,张学如,王玉晓.有机分子系统中反饱和吸收向饱和吸收转化的条件.光学学报. 2000, 20(3): 330~335.
    126. N. Venkatram, D. N. Rao, L. Giribabu. Femtosecond Nonlinear Optical Properties of Alkoxy Phthalocyanines at 800 nm Studied Using Z-Scan Technique. Chemical Physics Letters. 2008, 464: 211~215.
    127. G. Maa, L. Guoa, J. Mi. Femtosecond Nonlinear Optical Response of Metallophthalocyanine Films. Solid State Communications. 2001, 118(2): 633~638.
    128. H. Long, G. Yang, A. Chen, et al. Femtosecond Z-scan Measurement of Third-order Optical Nonlinearities in Anatase TiO2 Thin Films. Optics Communications. 2009, 282(7): 1815~1818.
    129. T. C. Lin, G. S. He, Q. Zheng. Degenerate Two-/Three-photon Absorption and Optical Power-Limiting Properties in Femtosecond Regime of a Multi-Branched Chromophore. Journal of Materials Chemistry. 2006, 16(9): 2490~2498.
    130. K. P. Unnikrishnan, J. Thomas, V. P. N. Nampoori. Nonlinear absorption in certain metal phthalocyanines at resonant and near resonant wavelengths. Optics Communications. 2003, 217(1-6): 269~274.
    131. D. G. Kong, W. B. Duan, X. R. Zhang. Ultrafast Third-order Nonlinear Optical Properties of ZnPc(OBu)6(NCS)/DMSO Solution. Optics Leetters. 2009, 34(16): 2471~2474.
    132. V. N. Nemykin, R. G. Had, R. V. Belosludov. Influence of Molecular Geometry, Exchange-Correlation Functional, and Solvent Effects in the Modeling ofVertical Excitation Energies in Phthalocyanines Using Time-Dependent Density Functional Theory (TDDFT) and Polarized Continuum Model TDDFT Methods: Can Modern Computational Chemistry Methods Explain Experimental Controversies. The Journal of Physical Chemistry A. 2007, 111: 12901~12913.
    133. S. Polyakov, F. Yoshino, M. Liu. Nonlinear Refraction and Multiphoton Absorption in Polydiacetylenes from 1200 to 2200 nm. Physical Review B. 2004, 69(11): 115421.
    134. Y. P. Han, J. L. Sun, H. A. Ye, et al. Nonlinear Refraction of Silver Nanowires from Nanosecond to Femtosecond Laser Excitation. Applied Physics B: Lasers and Optics. 2009, 94: 233~237.
    135. T. T. Lu, M. Xiang, H. L. Wang, et al. Density Functional Theory Studies of N-protonation of The Free Base Phthalocyanine. Journal of Molecular Structure: Theochem. 2008, 860(11): 141~149.
    136. X. Cai, Y. X. Zhang, D. D. Qi, et al. Density Functional Theory Study on the Semiconducting Properties of Metal Phthalocyanine Compounds: Effect of Axially Coordinated Ligand. The Journal of Physical Chemistry A. 2009, 113(11): 2500~2506.
    137. J. He, W. Ji, J. Mi. Three-Photon Absorption in Water-Soluble ZnS Nanocrystals. Applied Physics Letters. 2006, 88: 181114.
    138. M. Drobizheva, A. Rebanea, Z. Suoc, et al. One-,Two- and Three-Photon Spectroscopyofπ-Conjugated Dendrimers: Cooperative Enhancement and Coherent Domains. Journal of Luminescence. 2005, 111: 291~305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700