用户名: 密码: 验证码:
PEDOT:PSS薄膜的掺杂改性及其在有机太阳能电池中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前困扰有机太阳能电池发展的主要问题是器件效率偏低,如何提高它的能量转换效率是其能否商业化和与传统无机光伏电池竞争的关键。本文围绕有机太阳能电池阳极修饰层聚3,4-乙撑二氧噻吩:聚(对苯乙烯磺酸)根阴离子(PEDOT:PSS)薄膜的掺杂改性及其在有机太阳能电池中的应用研究开展了相关工作,主要内容与结论如下:
     1.采用共混-旋涂法在石英玻片上分别制备出经多壁碳纳米管(MWCNTs)、山梨醇、溴三种掺杂剂掺杂的PEDOT:PSS透明导电膜,研究了不同掺杂剂的加入对薄膜透光性能与导电性能的影响。
     ①在550nm~850nm波段,多壁碳纳米管掺杂使PEDOT:PSS薄膜透光性能有所降低,山梨醇与溴掺杂则有利于PEDOT:PSS薄膜透光性能的提高。
     ②多壁碳纳米管、山梨醇、溴掺杂均可提高PEDOT:PSS薄膜的导电性能。其中,8wt%山梨醇掺杂可以使PEDOT:PSS薄膜的导电能力提高400多倍。6wt%溴掺杂可以使PEDOT:PSS薄膜的导电能力提高近300倍。0.20wt%多壁碳纳米管掺杂可以使PEDOT:PSS薄膜的导电能力提高约40倍。
     2.根据X射线衍射(XRD),扫描电镜(SEM),原子力显微镜(AFM),X射线光电子能谱(XPS)等检测结果,详细研究了多壁碳纳米管、山梨醇、溴三种掺杂剂的加入与PEDOT:PSS薄膜导电性能变化之间的内在联系。
     ①多壁碳纳米管掺杂PEDOT:PSS薄膜的导电机理可以概括为二种效应,一是“共轭效应”,二是碳管“网络效应”。在多壁碳纳米管微量掺杂阶段(0.04wt%),碳管在薄膜中零星分布,相互之间少有接触,此时,多壁碳纳米管会与PEDOT主链中五元噻吩环发生π-π共轭作用,引起二者之间电子云密度的变化,从而增加了PEDOT主链载流子的离域化程度,有利于薄膜导电性能的提高。当多壁碳纳米管掺杂含量达到0.10wt%时,多壁碳纳米管在薄膜内部形成网络结构,新导电通道形成,有效提高薄膜导电性能。掺杂量超过0.20wt%时,由于碳管相互接触电阻增大,薄膜导电性能开始下降。
     ②山梨醇掺杂PEDOT:PSS薄膜导电机理:山梨醇的加入致使PEDOT主链结构发生发生苯-醌变化。苯式结构的PEDOT分子以无规线团形卷曲状存在,而醌式结构的PEDOT分子表现为伸展形卷曲状或直线状。相比较而言,伸展形卷曲状或直线状链形态中局部有序结构大幅增加,有利于载流子在PEDOT链中的迁移,从而表现为PEDOT:PSS薄膜电导率增加。
     ③溴掺杂PEDOT:PSS薄膜导电机理:溴加入PEDOT:PSS水溶液中,会与水反应生成具有弱氧化性的氢溴酸;同时,溴在水中饱合时,还存在具有弱氧化性的溴分子。二种弱氧化物的存在,对于PEDOT:PSS薄膜会产生二种作用:一是释放更多的电子,使PEDOT主链上空穴载流子浓度增加,增加薄膜导电性能;二是由于其氧化性的存在,对PEDOT的主链结构会有所破坏,降低薄膜导电性能。当第一种效应大于第二效应时,薄膜的导电性能表现为增加;而当第二种效应大于第一种效应时,薄膜的导电性能表现为下降。
     3.以聚(3-己基噻吩)与1-(3-甲氧基羧基)-丙基-1-苯基-(6,6)C61共混物为光电活性层,制备了器件结构不同的有机太阳能电池,分别考察了经多壁碳纳米管、山梨醇、溴掺杂处理后的PEDOT:PSS薄膜对器件光伏性能与稳定性能的影响。
     ①多壁碳纳米管与山梨醇的掺杂,增加了器件中的漏电流,降低了器件的并联电阻,不利于器件效率的改善。溴掺杂对器件漏电流与并联电阻未有明显影响。
     ②多壁碳纳米管、山梨醇、溴掺杂均可降低器件串联电阻,提高光电池能量转换效率。6wt%溴掺杂条件下,器件开路电压为0.60V,短路电流为10.31mA/cm2,FF为51.1,能量转换效率为3.16%,较未掺杂器件效率提高了约49%。8wt%山梨醇掺杂条件下,器件开路电压为0.53V,短路电流为11.27 mA/cm2,FF为49.1,能量转换效率为2.93%,较未掺杂器件效率提高了约38.2%。0.04wt%多壁碳纳米管掺杂条件下,器件开路电压为0.55V,短路电流为9.52 mA/cm2,FF为44.8,能量转换效率为2.35%,较未掺杂器件效率提高了约13%。
     ③器件稳定性能实验显示:多壁碳纳米管(0.04wt%)与山梨醇(8wt%)掺杂对置于手套箱(高纯氩气;水、氧含量<1ppm;室温)中器件的稳定性能未有影响(20天);相同实验环境中,溴(6wt%)掺杂则使器件效率在12天上开始下降。
At present, the major disadvantage to organic solar cells is the low efficiency. How to improve its power conversion efficiency(PCE) has become crucial in its industrial development and competitiveness against traditional inorganic photovoltaics devices. In this paper, as anode decoration layer, the doping and modification of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) film and its application in organic solar cells have been studied. The results are shown as follows:
     1. The PEDOT:PSS doped with multi-walled carbon nanotubes(MWCNTs), sorbital, and bromine transparent conducting thin films are fabricated separately on quartz substrates by blending-spin coating method. The effects of different dopants on the optical and electrical properties of PEDOT:PSS film have been investigated.
     ①The optical transmission of PEDOT:PSS film in the wavelength region 550-850nm decreases after the addition of MWCNTs, while the sorbitol and bromine doping favor the improvement of PEDOT:PSS film optical transmittance
     ②The electronic conductivity of PEDOT:PSS films doped with MWCNTs, sorbital, bromine are superior to that of the pristine PEDOT:PSS film. The conductivity of PEDOT:PSS film can be 400 times acvtive by doping of sorbitol (8wt%). The conductivity with bromine(6wt%) is appropriatly 300 times higher. The conductivity of MWCNTs (0.20wt%) doped PEDOT:PSS film is about 40 times higher than that of the non-doped film.
     2. The effects of the incorporation of three different types of dopants(MWCNTs, sorbitol and bromine) on corresponding changes in conductivity of PEDOT:PSS films have been studied and results was obtained by carrying out X-ray diffraction (XRD), scanning electron microscope (SEM), atom force microscope (AFM), X-ray photo-electron spectrum (XPS), etc.
     ①The mechanism of conductivity enhancement in PEDOT:PSS film doped with MWCNTs mainly attribute to two effects:the "π-πinteraction" effect and the "net" effect. The former effect results fromπ-πinteractions between the thiophene rings of PEDOT backbone and MWCNTs when the individual nanotubes are dispersed in the PEDOT:PSS matrix at 0.04wt%, and at the same time the nanotubes are not contacting each other. The electronic density transfer occurs from PEDOT to MWCNTs in MWCNTNs-PEDOT:PSS help the charge more delocalized on the PEDOT chains. The latter stems from the formation of some conductive MWCNTs channels in the PEDOT:PSS matrix when the concentration of MWCNTs is 0.10wt%. These two effects can help charge transport and enhance the conductivity of composite films. Moreove, concentration of MWCNTs higher than 0.20wt% leads to a decrease in film conductivity resulting from the high contact resistance of MWCNTs each other.
     ②The mechanism of conductivity enhancement in PEDOT:PSS film doped with sorbitol attributeds to the change of the resonant structure of PEDOT chain from a 'benzoid' to a 'quinoid'structure, which represents a conformational change of the PEDOT chains from the coil structure into expanded-coil or linear structure. The more partially ordered structures in the expanded-coil or linear structure over the coil structure may yield additional benefits to the charge transfer leading to an improvement of the conductivity of PEDOT:PSS films.
     ③The mechanism of conductivity enhancement in PEDOT:PSS film doped with bromine is affected by the oxidative characteristics of hydrobromic acid and bromine oxidation on PEDOT chains. Bromine reacts with water gives hydrobromic acid when bromine is added to PEDOT:PSS aqueous solutions, and there are some bromine molecules in Br2-saturated aqueous solutions. Hydrobromic acid and bromine molecules function as relatively weak oxidants and produce two effects on PEDOT chains. The first effect is necessary to achieve high hole carrier concentration by releasing more electrons from PEDOT chains which gave an increase in film conductivity cosequently, the other effect is because oxidantion of molecules damages the p-conjugation of PEDOT resulting in the loss of PEDOT:PSS film conductivity to some extent. The conductivity of PEDOT:PSS film is impoved once the former effect has a much greater impact on mechanism. Otherwise the conductivity of PEDOT:PSS film decreases.
     3. We also investigated the effects of MWCNTs, sorbitol and bromine doping on the photovoltaic performance and stability of polymer photovoltaic devices based on blends of poly(3-hexylthiophene) and [6,6]-phenyl-C61-buytyric acid methyl ester have been investigated separately.
     ①The device performance is limited by lower shunt resistance due to the leakage current, the current gradually increased with increasing concentration of MWCNTs and sorbitol. However, the bromine doping of film can not affect the device leakage current and shunt resistance.
     ②The efficiency of polymer PVs have been improved by reducing the device series resistance by doping PEDOT:PSS films with MWCNTs, sorbitol and bromine. For optimized bromine concentration(6wt%), the device exhibits pronounced improvement with ISC=11.27 mA/cm2, VOC=0.60V, and FF=51.1%. The corresponding PCE is 3.16%, which is higher about 49% than PCE of device with pure PEDOT:PSS film. The addition of the sobitol(8wt%) increased both the device short-circuit current(ISC=10.31 mA/cm2) and fill factor(FF=49.1%) resulting in an increase in efficiency by about 38.2% compared to the device with pure PEDOT:PSS film, although open-circuit voltage (VOC=0.53V)decreases a little after the addition of sobitol. With 0.4mg of MWCNTs(0.04wt%) added, the ISC and FF increase to 9.52 mA/cm2 and 44.8 respectively, while Voc remains nearly constant at 0.55V. And, thus, the PCE also increases to 2.35%, which is more about 13% than PCE of device without MWCNTs doping.
     ③Solar stability experiments show that the stability of the device doped with MWCNTs(0.04wt%) and sorbitol(8wt%) are unchanged within 20 days at room temperature under high-purity argon atmosphere with less than 1 ppm oxygen and moisture in a glove box, while there is a decrease in the efficiency of the device doped with bromine(6wt%) after 12 days at the same experimental conditions.
引文
[1]杨德仁.太阳电池材料.北京:化学工业出版社,2006:5
    [2]鄢红陵,张秋禹,张力,等.太阳能电池在飞艇上的应用研究进展.材料科学与工程学报,2008,26(5):824~828
    [3]Manolakos D., Kosmadakis G., Kyritsis S., et al.. On site experimental evaluation of a low-temperature solar organic Rankine cycle system for RO desalination. Solar Energy,2009,83 (5):646~656
    [4]李蛟,刘俊成,高从堦,等.太阳能在海水淡化产业中的应用与研究进展.水处理技术,2009,35(10):11~15
    [5]孟昭渊.太阳能电池在照明灯具上的应用.光源与照明,2004,1:25~27
    [6]Wikipedia.. Solar cell. http://en.wikipedia.org/wiki/Solar_cell.2010-04-03.
    [7]Chapin D.M., Fuller C.S., Pearson G.L.. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics,1954,25(8):676~677
    [8]Margolis R.M., Kammen D.M.. Underinvestment:the energy technology and R&D policy challenge. Science,1999,285:690~691
    [9]Klaus Petritsch Dipl.Ing.. Organic Solar Cell Architectures. PhD Thesis. Cambridge and Graz, 2000
    [10]章丛福.新一代砷化镓太阳能电池效率突破50%.半导体信息,2009,4:20~21.
    [11]Kearns D., Calvin M.. Photovoltaic effect and photoconductivity in laminated organic systems. Journal of Chemical Physics,1958,29:950~951
    [12]Tang C.W.. Two-layer organic photovoltaic cell. Applied Physics Letters,1986,48:183~185
    [13]Sariciftci N.S., Smilowitz L., Heeger A.J., et al.. Photoinduced Electron-Transfer from a Conducting Polymer to Buckminsterfullerene. Science,1992,258 (5087):1474~1476
    [14]G Yu., Gao J., Hummelen J.C., et al.. Polymer Photovoltaic Cells-Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science,1995,270(5243):1789~1791
    [15]Chen H.Yu., Hou J.H., Zhang S.Q., et al.. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature photonics,2009,3:649~653
    [16]Richard M.G.. Plastic Solar Breakthrough:Efficiency Record Broken by Solarmer. http://www.treehugger.com/files/2009/12/solarmer-plastic-solar-panels-cells-efficiency-record.php. 2010-04-03.
    [17]Koster L.J.A., Mihailetchi V.D., Blom P.W.M.. Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Applied Physics Letters,2006,88(093511):1~3
    [18]Rand B.P., Burk D.P., Forrest S.R.. Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells. Physical Review B,2007, 75(115327):1~11
    [19]20%转化率不再是梦.传感器世界,2008,10:48
    [20]杨德仁.太阳电池材料.北京:化学工业出版社,2006:49~53
    [21]密保秀,高志强,邓先宇,等.基于有机薄膜的太阳能电池材料与器件研究进展.中国科学,B辑:化学,2008,38(11):957~975
    [22]沐俊应,徐娟,粱氏秋水,等.有机薄膜太阳能电池的研究进展.电子工艺技术,2007,28(2):93~96
    [23]黎立桂,鲁广昊,杨小牛,等.聚合物太阳能电池研究进展.科学通报,2006,51(21):2457~2468
    [24]Yang F., Shtein M., Forrest S.R.. Controlled growth of a molecular bulk heterojunction photovoltaic cell. Nature Materials,2005,4(1):37~41
    [25]Wanlass M.W., Emery K.A., Gessert T.A., et al.. Practical considerations in tandem cell modeling. Solar Cells,1989,27(1-4):191~204
    [26]Kim J.Y., Lee K., Coates N.E., et al.. Efficient tandem polymer solar cells fabricated by all-solution processing. Science,2007,317:222~225
    [27]张正华,李陵岚,叶楚平,等.有机太阳能电池与塑料太阳电池.北京:化学工业出版社,2006,25
    [28]Parker I.D.. Carrier tunneling and device characteristics in polymer light-emitting diodes. Journal of Applied Physics,1994,75:1656~1666
    [29]Brabec C.J., Cravino A., Meissner D., et al.. Origin of the open circuit voltage of plastic solar cells. Advanced Functional Materials,2001,11:374~380
    [30]Brabec C.J., Cravino A., Meissner D., et al.. The influence of materials work function on the open circuit voltage of plastic solar cells. Thin Solid Films,2002,403-404:368~372
    [31]Chirvase D., Chiguvare Z., Knipper M., et al.. Temperature dependent characteristics of poly(3 hexylthiophene)-fullerene based heterojunction organic solar cells. Journal of Applied Physics,2003,93(6):3376~3383
    [32]Brabec C.J., Shaheen S.E., Winder C., et al.. Effect of LiF/metal electrodes on the performance of plastic solar cells. Applied Physics Letters,2002,80(7):1288~1290
    [33]Sun S.S., Saricifci N.S.. Organic photovoltaics. CRC Press Taylor & Francis Group,2006
    [34]Zhu M., Cui T., Varahramyan K.. Experimental and Theoretical Investigation of MEH-PPV-based Schottky Diodes. Microelectronic Engineering,2004,75:269~274
    [35]Scharber M.C., Muhlbacher D., Koppe M., et al.. Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency. Advanced Materials, 2006,18(7):789~794
    [36]Koster L.J.A., Mihailetchi V.D., Blom P.W.M.. Bimolecular recombination in. polymer/fullerene bulk heterojunction solar cells. Applied Physics Letters,2006,88 (9):3511~ 3515
    [37]Yang X.N., Loos J., Janssen R.A.J., et al.. Nanoscale morphology of high-performance polymer solar cells. Nano Letters,2005,5(4):579~583
    [38]Erb T., Zhokhavets U., Brabec C.J., et al.. Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cell. Advanced Functional Materials,2005,15(7):1193~1196
    [39]Campos L.M., Sariciftci N.S., Wudl F., et al.. Extended photocurrent spectrum of a low band gap polymer in a bulk heterojunction solar cell. Chemistry of Materials,2005,17(16):4031~ 4033
    [40]Duren J.K.J., Dhanabalan A., Hal P.A, et al.. Low-bandgap polymer photovoltaic cells. Synthetic Metals,2001,121 (1-3):1587~1588
    [41]Colladet K., Fourier S., Cleij T.J., et al.. Low Band Gap Donor-Acceptor Conjugated Polymers toward Organic Solar Cells Applications. Macromolecules,2007,40(1):65~72
    [42]Thompson B.C., Kim Y.G., Reynolds J.R.. Spectral broadening in MEH-PPV:PCBM-based photovoltaic devices via blending with a narrow band gap cyanovinylene-dioxythiophene polymer. Macromolecules,2005,38(13):5359~5362
    [43]Shi C.J., Yang Y., Pe Q.B., et al.. Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application. Journal of the American Chemical Society,2006,128:8980~8986
    [44]Xiao S.Q., Li Y.L., Zhu D.B., et al.. Fullerene-based molecular triads with expanded absorptions in the visible region:synthesis and photovoltaic properties. The Journal of Physical Chemistry B,2004,108:16677~16685
    [45]Hou J.H., Yang C.H., Li Y.F., et al.. Poly[3-(5-octyl-thienylene-vinyl)-thiophene]:A side-chain conjugated polymer with very broad absorption band. Chemical Communications,2006, 871:871~873
    [46]Sun M.L., Wang L., Du B., et al.. Narrow band-gap oligomer for solution-processed heterojunction organic solar cells. Synthetic Metals,2008,158 (3-4):125~129
    [47]Yang R., Tian R.Y., Cao Y., et al.. Deep-red electroluminescent polymers:synthesis and characterization of new low-band-gap conjugated copolymers for light-emitting diodes and photovoltaic devices. Macromolecules,2005,38(2):244~253
    [48]van Mullekom H.A.M., Vekemans J.A.J.M., Meijer E.W., et al.. Developments in the chemistry and band gap engineering of donoracceptor substituted conjugated polymers. Materials Science and Engineering R,32:1~40
    [49]Persson N.K., Sun M.T., Inganas O., et al.. Optical properties of low band gap alternating copolyfluorenes for photovoltaic devices. Journal of Chemical Physics,2005,123:204718
    [50]Koeppe R., Sariciftci N.S., Buchtemann A.. Enhancing photon harvesting in organic solar cells with luminescent concentrators. Applied Physics Letters,2007,90(181126):1~3
    [51]Chan M.Y., Lai S.L., Fung M.K., et al.. Doping-induced efficiency enhancement in organic photovoltaic devices. Applied Physics Letters,2007,90(023504):1~3
    [52]於黄忠,彭俊彪,周晓明.不同比例的MEH-PPV与PCBM共混体系光电池性能研究.物理学报,2008,57(6):3898~3904
    [53]Ma W.L., Yang C.Y., Gong X., et al.. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced Functional Materials, 2005,15:1617~1622
    [54]於黄忠,彭俊彪.热处理对P3HT与PCBM共混体系光电性能的影响.物理化学学报,2008,24(5):905~908.
    [55]Kim H., So W.W., Moon S.J.. The importance of post-annealing process in the device performance of poly(3-hexylthiophene):Methanofullerene polymer solar cell. Solar Energy Materials & Solar Cells,2007,91 (7):581~587
    [56]Bertho S., Janssen G., Cleij T.J., et al.. Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer:fullerene solar cells. Solar Energy Materials & Solar Cells,2008,92(7):753~760
    [57]Guo T.F., Wen T.C., Pakhomov G.L., et al.. Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells. Thin Solid Films,2008,516 (10):3138~3142.
    [58]Pivrikas A., Stadler P., Neugebauer H., et al.. Substituting the postproduction treatment for bulk-heterojunction solar cells using chemical additives. Organic Electronics,2008,9 (5):775~ 782
    [59]Shaheen S.E., Brabec C.J., Sariciftci N.S..2.5% efficient organic plastic solar cells. Applied Physics Letters,2001,78(6):841~843
    [60]Yang X.N., van Duren J.K.J., Loos J., et al.. Crystalline organization of a methanofullerene as used for plastic solar-cell applications. Advanced Materials,2004,16(9-10):802~806
    [61]Maher A.I., Oliver A., Steffi S., et al.. Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene):Fullerene. Applied Physics Letters, 2005,86 (20):1~3
    [62]於黄忠,彭俊彪.溶剂及器件结构对MEH-PPV与PCBM电池性能影响.物理化学学报,2007,23(10):1637~1641
    [63]Kim K.C., Park J.H., Park O.K.. New approach for nanoscale morphology of polymer solar cells. Solar Energy Materials & Solar Cells,2008,92(10):1188~1191
    [64]Li G., Shrotriya V., Huang J., et al.. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Mater.,2005,4:864~868
    [65]Huynh W.U., Dittmer J.J., Alivisatos A.P.. Hybrid nanorod-polymer solar cells. Science, 2002,295:2425~2427
    [66]Drolet N., Morin J.F., Leclerc M., et al..2,7-carbazolenevinylenebased oligomer thin-film transistors:High mobility through structural ordering. Advanced Materials,2005,15(10):1671~ 1682
    [67]Dittmer J.J., Marseglia E.A., Friend R.H.. Electron trapping in dye/polymer blend photovoltaic cells. Advanced Materials,2000,12(17):1270~1274
    [68]Yang X.N., Loos J., Janssen R.A.J., et al.. Nanoscale morphology of high-performance polymer solar cells. Nano Letters,2005,5(4):579~583
    [69]Kim Y., Cook S., Tuladhar S.M., et al.. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nature Materials,2006,5:197~203
    [70]Drolet N., Morin J.F., Leclerc M., et al..2,7-carbazolenevinylenebased oligomer thin-film transistors:High mobility through structural ordering. Advanced Materials,2005,15(10):1671~ 1682
    [71]Somani P.R., Somani S.P., Flahaut E., et al.. Improving the photovoltaic response of a poly(3-octylthiophene)/n-Si heterojunction by incorporating double-walled carbon nanotubes. Nanotechnology,2007,18(185708):1~5
    [72]Kim K., Carroll D.L.. Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heterojunction photovoltaic devices. Applied Physics Letters, 2005,87(203113):1~3
    [73]Schilinsky P., Asawapirom U., Scherf U., et al.. Influence of the molecular weight of poly(3-hexylthiophe ne) on the performance of bulk heterojunction solar cells. Chemistry of Materials,2005,17:2175~2180
    [74]Ko C.J., Lin Y.K., Chen F.C., et al.. Modified buffer layers for polymer photovoltaic devices. Applied Physics Letters,2007,90(063509):1~3
    [75]Wu H.R.. Song Q.L., Wang M.L., et al.. Stable small-molecule organic solar cells with 1,3,5-tris(2-N-phenylbenzimidazolyl) benzene as an organic buffer. Thin Solid Films.,2007,515: 8050~8053
    [76]Rand B.P., Li J., Xue J., et al.. Organic double-heterostructure photovoltaic cells employing thick tris(acetylacetonato)ruthenium(iii) exciton-blocking layers. Advanced Materials,2005,17: 2714~2718
    [77]张正华,李陵岚,叶楚平,等.有机太阳能电池与塑料太阳电池.北京:化学工业出版社,2006,258~260.
    [78]Mihailetchi V.D., Hummelen J.C., Rispens M.T., et al.. Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells. Journal of Applied Physics,2003,94(10):6849~6854
    [79]Brabec C.J., Shaheen S.E., Denk P., et al.. Effect of LiF/metal electrodes on the performance of plastic solar cells. Applied Physics Letters,2002,80(7):1288~1290
    [80]Shaheen S.E., Brabec C.J., Sariciftci N.S., et al.. Effects of inserting highly polar salts between the cathode and active layer of bulk heteroj unction photovoltaic devices. Materials Research Society Symposium-Proceedings,2001,665:C5.51.1~5
    [81]朱文清,蒋雪茵,张志林,等.有机电致发光器件中的阳极界面修饰的特点与类型.功能材料,2004,35:276~280
    [82]Wu C.C., Wu C.I., Sturm J.C., et al.. Surface modification of indium tin oxide by plasma treatment:An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices. Applied Physics Letters,1997,70:1348~1350
    [83]Kim J.S., Park J.H., Lee J.H., et al.. Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics. Applied Physics Letters,2007,91(112111)1~3
    [84]Shrotriya V., Li G., Yao Y., et al.. Transition metal oxides as the buffer layer for polymer photovoltaic cells. Applied Physics Letters,2006,88(073508):1~3
    [85]Tong S.W., Zhang C.F., Jiang C.Y., et al.. Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer. Chemical Physics Letters,2008,453:73~76
    [86]赵文元,王亦军.功能高分子材料化学.北京:化学工业出版社,2005:74~75
    [87]王韶旭.无机纳米粒子/导电聚苯胺纳米复合材料的研究.博士学位论文.大连:中国科学院大连化学物理所,2005
    [88]杨亚杰.导电聚合物纳米材料的制备与特性研究.博士学位论文.成都:电子科技大学,2007
    [89]Shirakawa H., Louis E.J., MacDiarmid A.G., et al.. Synthesis of electrically conducting organic polymers:halogen derivatives of polyacetylene,(CH)x, Journal of the Chemical Society, Chemical Communications,1977,16:578~580
    [90]Gerhard H., Friedrich J.. Poly(alkylenedioxythiophene)s-new,very stable conducting polymers. Advanced Materials,1992,4:116~118
    [91]Carlberg C., Chen X.W., Inganas O.. Ionic transport and electronic structure in poly (3,4-ethylenedioxythio-phene). Solid State Ionics,1996,85(1-4):73~78
    [92]Kim T.Y., Kim J.E., Kim Y.S., et al.. Preparation and characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) using partially sulfonated poly(styrene-butadiene-styrene) triblock copolymer as a polyelectrolyte. Current Applied Physics, 2009,9:120~125
    [93]Groenendaal L., Jonas F., Freitag D., et al, Poly(3,4-ethylenedioxythiophene) and its derivatives:past,present,and future. Advanced Materials,2000,12:481~494
    [94]Crispin X., Marciniak S., Osikowicz W., et al.. Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrenesulfonate):A photoelectron spectroscopy study. Journal of Polymer Science, B,2003,41(21):2561~2583
    [95]Yang Y., Jiang Y., Xu J., et al.. Conducting PEDOT-PSS composite films assembled by LB technique, Colloids and Surfaces A:Physicochem Eng Aspects,2007,302(1-3):157~161
    [96]Wang G.F., Tao X.M., Wang R.X.. Fabrication and characterization of OLEDs using PEDOT:PSS and MWCNT nano-composites. Composites Science and Technology,2008,68 (14): 2837~2841
    [97]Steirer K.X., Berry J.J., Reese M.O., et al.. Ultrasonically sprayed and inkjet printed thin film electrodes for organic solar cells. Thin Solid Films,2009,517(8):2781~2786
    [98]Colsmann A., Stenzel F., Balthasar G., et al.. Plasma patterning of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) anodes for efficient polymer solar cells. Thin Solid Films,2009,517:1750~1752
    [99]Steirer K.X., Reese M., Rupert B.L., et al.. Ultrasonic spray deposition for production of organic solar cells. Solar Energy Materials & Solar Cells.,2009,93(4):447~453
    [100]Na S.I., Kim S.S., Jo J., et al.. Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Ploymer Anodes. Advanced Materials,2008,20:4061
    [101]Nguyen T.P., Le Rendu P., Long P.D., et al.. Chemical and thermal treatment of PEDOT:PSS thin films for use in organic light emitting diodes. Surface and Coatings Technology, 2004,180-181:646~649
    [102]Brown T.M., Kim J.S., Friend R.H., et al.. Built-in field electroabsorp tion spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylenedioxythiophene) hole injection layer. Applied Physics Letters,1999,75 (12):1679~1681
    [103]Zhang F., Gadisa A., Inganas O., et al.. Influence of buffer layers on the performance of polymer solar cells. Applied Physics Letter,2004,84:3906~3010
    [104]Aernouts T., Geens W., Poortmans J., et al.. Extraction of bulk and contact components of the series resistance in organic bulk donor-acceptor-heterojunctions. Thin Solid Films.,2002, 403-404:297~301
    [105]Moujoud A., Oh S.H., Heo K.Y., et al.. Indium zinc oxide ohmic contact to poly (3,4-ethylenedioxythioph-ene)poly(styrenesulfonate) induced by UV light. Organic Electronics, 2009,10(5):785~790
    [106]Steirer K.X., Berry J.J., Reese M.O., et al.. Ultrasonically sprayed and inkjet printed thin film electrodes for organic solar cells. Thin Solid Films,2009,517(8):2781~2786
    [107]Padinger F., Rittberger R.S., Sariciftci N.S.. Effects of postproduction treatment on plastic solar cells. Advanced Functional Materials,2003,13 (1):85~88
    [108]Li Y., Hou Y., Wang Y., et al.. Thermal treatment under reverse bias:Effective tool for polymer/fullerene bulk heterojunction solar cell. Synthetic Metals,2008,158 (5):190~193
    [109]Kim J.Y., Jung J.H., Lee D.E., et al.. Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synthetic Metals,2002,126(2-3):311~316
    [110]Louwet F., Groenendaal L., Dhaen J., et al.. PEDOT/PSS:synthesis, characterization, properties and applications. Synthetic Metals,2003(135-136):115~117
    [111]王铁军,齐英群,徐景坤,等.聚乙二醇对PEDOT-PSS导电性能的影响.科学通报,2003,48(19):2036~2037
    [112]Eom S.H., Senthilarasu S., Uthirakumar P., et al.. Polymer solar cells based on inkjet-printed PEDOT:PSS layer. Organic Electronics,2009,10(3):536~542
    [113]黄春辉,李富友,黄维.有机电致发光材料与器件导论.上海:复旦大学出版社,2005.56~58
    [114]王振交,杨辉,席曦,等.有机光电导电材料PEDOT-PSS薄膜制备工艺研究.功能材料,2007,38:393~395
    [115]Scharber M.C., Muhlbacher D., Koppe M., et al.. Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency. Advanced Materials, 2006,18:789~794
    [116]Bettignies R. D., Leroy J., Firon M., et al. Accelerated lifetime measurements of P3HT:PCBM solar cells. Synthetic Metals,2006,156(7-8):510~513
    [117]Liao H.H., Yang C.M., Liu C.C., Dynamics and reversibility of oxygen doping and de-doping for conjugated polymer. Journal of Applied Physics,2008,103:104506-1~3
    [118]杨小震.分子模拟与高分子材料.北京:科学出版社,2001.
    [119]杨红军.PI/Al2O3和PI/SiO2纳米复合薄膜结构与性能模拟.硕士学位论文.哈尔滨:哈尔滨理工大学,2006
    [120]Iijima S.. Helical microtubules of graphitic carbon. Nature,1991,354 (6348):56~58
    [121]Kymakis E., Amaratunga G.A.J.. Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Applied Physics Letters,2002,80(1):112~114
    [122]Somani S.P., Somani P.R., Umeno M.. Carbon nanotube incorporation:A new route to improve the performance of organic-inorganic heterojunction solar cells. Diamond and Related Materials,2008,17(4-5):585~588
    [123]Pasquier A.D., Unalan H.E., Kanwal A., et al.. Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Applied Physics Letters,2002,87 (11):203511~203514
    [124]Jonsson S.K.M., Birgerson J., Crispin X., et al.. The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films. Synthetic Metals,2003,139(1):1~10
    [125]Kim J.Y., Jung J.H., Lee D.E., et al.. Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synthetic Metals,2002,126(2-3):311~316
    [126]Aernouts T., Geens W., Poortmans J., et al.. Extraction of bulk and contact components of the series resistance in organic bulk donor-acceptor-heterojunctions. Thin Solid Films.,2002, 403-404:297~301
    [127]Baughman R.H., Zakhidov A.A., de Heer W.A.. Carbon nanotubes-the route toward applications. Science,2002,297(5582):787~792
    [128]Winey K.I., Kashiwagi T., Mu M.. Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. MRS Bulletin,2007,32(4):348~353
    [129]Zhang J., Mine M., Zhu D., et al.. Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshold. Carbon, 2009,47:1311~1320.
    [130]Saini P., Choudhary V., Singh B.P., et al.. Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Materials Chemistry and Physics,2009,113:919~926
    [131]Zhou C., Wang S., Zhuang Q., et al.. Enhanced conductivity in polybenzoxazoles doped with carboxylated multi-walled carbon nanotubes. Carbon,2008,46(9):1232~1240
    [132]Hatton R. A., Blanchard N. P., Tan L. W., et al.. Oxidised carbon nanotubes as solution processable, high work function hole-extraction layers for organic solar cells. Organic Electronics, 2009,10(3):388~395
    [133]宋群梁.有机小分子太阳能电池的界面研究.博士学位论文.上海:复旦大学,2006
    [134]Li X., Huang Y.D., Liu L., et al.. Preparation of multiwall carbon nanotubes /poly(p-phenylene benzobisoxazole) nanocomposites and analysis of their physical properties. Journal of Applied Polymer Science,2006,102(3):2500~2508
    [135]刘则安,王平华,刘春华,等.PBT/碳纳米管复合材料结构与性能研究.塑料工业,2008,36(12):54~56
    [136]王川,邢哲,夏延致,等.多壁碳纳米管的处理及其在芳纶1313中的分散.功能材料,2009,40(2):325~327
    [137]Britto P.J., Santhanam K.S.V., Rubio A., et al.. Improved charge transfer at carbon nanotubes electrodes. Advanced Materials,1999,11(2):154~157
    [138]Shanmugharaj A.M., Bae J.H., Kwang Y.L., et al.. Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and it s influence on the properties of natural rubber composites. Composites Science and Technology,2007,67:1813~1818
    [139]Saunders B.R., Turner M.L.. Nanoparticle-polymer photovoltaic cells. Advances in Colloid and Interface Science,2008,138(1):1~23
    [140]Ghosh S., Inganas O.. Self-assembly of a conducting polymer nanostructure by physical crosslinking:applications to conducting blends and modified electrodes. Synthetic Metals,1999, 101(1-3):411~416
    [141]Sandier J. K.W., Kirk J. E., Kinloch I. A., et al.. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer,2003,44(19):5893~5899
    [142]于爱国.聚芳醚/碳纳米管复合梯度膜的制备.硕士学位论文.长春:吉林大学,2004
    [143]饶早英,王蜀霞,牛君杰,等.碳纳米管的电学性质.重庆工学院学报,2008,22(1):52~54
    [144]Yang Z.L., Pu H.T., Yuan J.J., et al.. Phthalocyanines-MWCNT hybrid materials: Fabrication, aggregation and photoconductivity properties improvement. Chemical Physics Letters, 2008,465:73~77
    [145]王红敏,晋圣松,唐国强,等.聚噻吩/多壁碳纳米管复合材料的导电性能.化学学报,2007,65(24):2923~2928
    [146]Baughman R.H., Zakhidov A.A., de Heer W.A.. Carbon nanotubes-the route toward applications. Science,2002,297:787~792
    [147]Kim K.H., Jo W.H.. A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Carbon,2009,47:1126~1134
    [148]Phang S.W., Tadokoro M., Watanabe J., et al.. Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO2 nanoparticles and carbon nanotubes. Synthetic Metals,2008,158(6):251~258
    [149]Zhan L., Song Z., Zhang J., et al.. PEDOT:Cathode active material with high specific capacity in novel electrolyte system. Electrochimica Acta,2008,53(28):8319~8323
    [150]Zhou C., Wang S., Zhuang Q., et al.. Enhanced conductivity in polybenzoxazoles doped with carboxylated multi-walled carbon nanotubes. Carbon,2008,46(9):1232~1240
    [151]Zhao L.P., Gao L.. Coating of multi-walled carbon nanotubes with thick layers of tin(Ⅳ)oxide. Carbon,2004,42(8-9):1858~1861
    [152]汪斌华,邓永红,戈钧,等.不同溶剂中导电聚合物PEDOT的化学氧化聚合及光谱研究.功能材料,2005,36(10):1610~1612
    [153]Garreau S., Louarn G., Buisson J. P., et al.. In Situ Spectroelectrochemical Raman Studies of Poly(3,4-ethylenedioxythiophene) (PEDT). Macromolecules,1999,32(20):6807~6812
    [154]唐国强,王红敏,晋圣松,等.多壁碳纳米管与溴的相互作用及导电机理.化学学报,2006,66(6):675~679
    [155]Yang Z.L., Chen H.Z., Cao L., et al.. Synthesis and photoconductivity study of carbon nanotube bonded by tetrasubstituted amino manganese phthalocyanine. Materials Science and Engineering:B,2004,106(1):73~78
    [156]Kumar S., Dang T.D., Arnold F.E., et al.. Synthesis, structure, and properties of PBO/SWNT composites. Macromolecules,2002,35(24):9039~9043
    [157]Zhang J., Mine M., Zhu D., et al.. Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshold. Carbon, 2009,47(5):1311~1320
    [158]胡陈果,叶翠兰,陈杨.碳纳米管膜电阻率的测定与导电机理.重庆大学学报(自然科学版),2005,28(9):112~115
    [159]Braun D., Heeger A.J., Kroemer H.. Improved efficiency in semiconducting polymer light-emitting diodes. Journal of Electronic Materials,1991,20:945~948
    [160]Chu J. K., Yi K.L., F C.C., et al.. Modified buffer layers for polymer photovoltaic devices. Applied Physics Letters,2007,90(063509):1~3
    [161]Hopkins A.R., Reynolds J.R., Crystallization Driven Formation of Conducting Polymer Networks in Polymer Blends. Macromolecules,2000,33 (14):5221~5226
    [162]Louwet F., Groenendaal L., Dhaen J., et al.. PEDOT/PSS:synthesis, characterization, properties and applications. Synthetic Metals,2003,135-136:115~117
    [163]Ouyang J., Xu Q., Chu C.W., et al.. On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer, 2004,45(25):8443~8450
    [164]Pettersson L.A.A., Ghosh S., Ingan O.. Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate). Organic Electronics,2002, 3(3-4):143~148
    [165]Ouyang J., Chu C.W., Chen F.C., et al.. Polymer Optoelectronic Devices with High-Conductivity Poly(3,4-Ethylenedioxythiophene) Anodes. Journal of macromolecular science, Part A-Pure and Applied Chemistry,2004,41(12):1497~1511
    [166]Anderson H.C.. Moleeular Dynamics Simulation at Constant Pressure and/or Temperature. Journal of Chemical Physics,1980,72:2384~2393
    [167]Swope W.C., Anderson H.C., Berens P.H.. A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Cluster of Molecules: Application to the Small Water Clusters. Journal of Chemical Physics,1982,76:637~649
    [168]Nardes A.M., Kemerink M., de Kok M.M., et al.. Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol. Organic Electronics,2008, 9:727~734
    [169]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,2005:399
    [170]Wu C.G., Chien L.N.. The π-π interaction induced secondary doping in conducting poly-3-alkylthiophenes. Synthetic Metals,2000,110(3):251-255
    [171]MacDiarmid A.G., Epstein A. J.. The concept of secondary doping as applied to polyaniline. Synthetic Metals,1994,65(2-3):103~116
    [172]常建华,董绮功.波谱原理及解析.北京:科学出版社,2005:119
    [173]Cornil J., dos Santos D. A., Beljonne D., et al.. Electronic Structure of Phenylene Vinylene Oligomers:Influence of Donor/Acceptor. Substitutions. Journal physical chemistry,1995, 99(15):5604~5611
    [174]Dkhissi A., Louwet F., Groenendaal L., et al. Theoretical investigation of the nature of the ground state in the low-bandgap conjugated polymer, poly(3,4-ethylenedioxythiophene). Chemical Physics Letters,2002,359(5-6):466~472
    [175]Lapkowski M., Pron A.. Electrochemical oxidation of poly_3,4-ethylenedioxythiophene/-"in situ" conductivity and spectroscopic investigations. Synthetic Metals,2000,110(1):79-83
    [176]Garreau S., Duvail J.L., Louarn G.. Spectroelectrochemical studies of poly(3,4-ethylenedioxythiophene) in aqueous medium. Synthetic Metals,2001,125(3):325~329
    [177]Jitendra K., Rajiv K. S., Ramadhar S., et al.. Effect of FeCl3 on the stability of p-conjugation of electronic polymer. Corrosion Science,2008,50(2):301~308
    [178]潘睿.聚酰亚胺结构与性能的分子模拟与分子设计研究.博士学位论文.成都:四川大学,2006
    [179]何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,2005:37
    [180]赵文元,王亦军.功能高分子材料化学.北京:化学工业出版社,2005:86~87
    [181]Flory, P. J., McIntyre, A. D.. Mechanism of crystallization in polymers. Journal of Polymer Science,1955,18:592~594
    [182]Flory P.J.. Statistical mechanics of dilute polymer solutions. Journal of Chemical Physics, 1949,17:1347~1348
    [183]Flory P.J., Krigbaum W. R.. Statistical mechanics of dilute polymer solutions. Ⅱ. Journal of Chemical Physics,1950,18:1086~1094.
    [184]Wang X.J., Perzon E., Delgado J.L.. Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative. Applied Physics Letters,2004, 85(21):5081~5087
    [185]Gadisa A., Svensson M., Andersson M.R., et al.. Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative. Applied Physics Letters,2004,84(9):1609~1611.
    [186]Yamanari T., Taima T., Sakai J., et al.. Origin of the open-circuit voltage of organic thin-film solar cells based on conjugated polymers. Solar Energy Materials & Solar Cells,2009, 93(6-7):759~761.
    [187]Brabec C J., Cravino A., Meissner D., et al.. Origin of the open circuit voltage of plastic solar cells. Advanced Functional Materials,2001,11(5):374~380.
    [188]Frohne H., Shaheen S E., Brabec C J., et al.. Influence of the anodic work function on the performance of organic solar cells. Chemical Physics chemistry,2002,3(9):795~799.
    [189]Cartera S.A., Scott J.C., Brock P.J.. Enhanced luminance in polymer composite light emitting devices. Applied Physics Letters,1997,71 (9):1145~1147
    [190]Chiang C. K., Fincher C. R., Park Jr., Y. W., et al.. Electrical Conductivity in Doped Polyacetylene. Physical Review Letters,1977,39:1098~1101
    [191]Ozaki J., Sunami I., Nishiyama Y.. Influence of bromine doping on the electrical conductivity of carbonized poly(vinylidene chloride). The Journal of Physical Chemistry,1990, 94(9):3839~3843
    [192]Zhan X.W., Yang M.J., Shen Y.Q., et al.. Vibration and photoelectron spectroscopies of iodine-doped poly(p-diethynylbenzene). European Polymer Journal,2002,38(12):2349~2355
    [193]Brabec C.J., Padinger F., Hummelen J.C., et al.. Realization of large area flexible fullerene-conjugated polymer photocells:A route to plastic solar cells. Synthetic Metals,1999, 102(1-3):861~864
    [194]Touihri S., Bernede J.C., Molinie P., et al.. Modification of poly(N-vinyl-carbazole) thin film by bromine doping. Polymer,2002,43(10):3123~3129
    [195]Safoula G., Touihri S., Postic M., et al.. Proprietes du poly(N-vinylcarbazole) dope au chlore. Journal of Chemical Physics,1997,94:1602~1613
    [196]Bernede J.C., Alimi K., Safoula G., et al.. Iodine doping of poly(N-vinylcarbazole) thin films:Thermal degradation. European Polymer Journal,1998,34(2):269~275
    [197]Safoula G., Touihri S., Bernede J.C., et al.. Properties of the complex salt obtained by doping the poly(Nvinylcarbazole) with bromine. Polymer,1999,40(2):531~539
    [198]Gregg B.A., Chen S.G., Cormier R.A.. Coulomb Forces and Doping in Organic Semiconductors. Chemistry of Materials,2004,16:4586-4599
    [199]Clarke H. T., Taylor E. R.. a-BROMO-n-CAPROIC ACID. Organic Syntheses, Coll.1942, 1:21~22.
    [200]孙以材.半导体测试技术.北京:冶金工业出版社,1984:133~148
    [201]Hwang J., Amy F., Kahn A.. Spectroscopic study on sputtered PEDOT/PSS:Role of surface PSS layer. Organic Electronics,2006,7(5):387~396

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700