用户名: 密码: 验证码:
超级电容器用低阶煤基活性炭的制备及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器是一种介于传统电容器与电池之间的新型储能元件,具有广阔的应用前景和巨大的经济价值。活性炭是制造超级电容器电极的首选材料,其结构及性质对超级电容器的性能起着关键性作用。本文以低阶煤为原料,采用低温N_2吸附法、XRD、SEM、FTIR及XPS等方法,系统考察了KOH活化法制备超级电容器用低阶煤基活性炭的制备工艺、低阶煤种类及煤炭有机显微组分等对活性炭孔结构和性能的影响;探索了微波加热活化法(微波法)及中低温(<600℃)活化条件下制备超级电容器用活性炭的工艺及方法;深入研究了活性炭的孔结构、微观结构及表面化学性质对其电极材料电化学性能的影响规律及KOH活化法制备低阶煤基活性炭的活化机理。
     研究表明,以低阶煤为原料可制备出孔结构及表面化学性质可调的超级电容器用活性炭。原料煤原生孔隙丰富、挥发分高有利于促进活性炭中孔结构的发育;煤中无机矿物成分不仅会削弱活化反应剧烈程度,而且会降低活性炭的质量及性能。以褐煤为原料,KOH为活化剂,可制备出比表面积为665~3885m~2/g,总孔容为0.356~2.211cm~3/g,中孔率为18.8~74.9%的煤基活性炭。改变碱炭比及活化温度等工艺参数,可以有效调控活性炭的孔结构和表面化学性质。煤炭显微组分对活性炭孔结构、表面化学性质及电化学性能有一定影响。惰质组所制活性炭的比表面积最大,中孔率及氧含量最高,其电极材料在KOH和有机电解液体系中的电化学性能最优,其次为镜质组与壳质组所制活性炭。
     对活性炭电极材料电化学性能的研究发现,在KOH电解液体系中,微孔对电极材料比电容的贡献稍大于中孔,当活性炭的BET比表面积超过2500m2/g后,表面化学性质对提高电极材料的比电容比孔结构更为重要;在有机电解液体系中,中孔对比电容的贡献远大于微孔,活性炭的孔结构是影响电极材料比电容的主要因素,表面含氧官能团对提高电极材料的比电容基本没有促进作用。针对两种电解液体系对活性炭电极材料孔结构和表面化学性质的要求不同,制备出在KOH及有机电解液体系中比电容分别高达420F/g和197F/g的低阶煤基活性炭,并形成了按不同电解液体系设计、制备超级电容器用煤基活性炭的思路。
     将微波法用于低阶煤基活性炭的制备,实现了活性炭的高效活化。以褐煤为原料,KOH为活化剂,采用微波法可制备出比表面积为2097m~2/g,总孔容为1.193cm~3/g,中孔率为53.6%的超级电容器用煤基活性炭。改变碱炭比及微波加热时间可以对活性炭的孔结构进行调控。
     探索出中低温活化条件制备超级电容器用活性炭的新方法。该方法所制活性炭具有中等比表面积,丰富的表面官能团,高的成型密度等特点,在KOH电解液体系中具有优异的电化学性能,其质量比电容最高可达369F/g,面积比电容可达23.1μF/cm~2,体积比电容可达215F/cm~3。通过微波法对该活性炭进行二次活化处理,可大幅度提高其在有机电解液体系中的电化学性能。
     提出KOH活化法制备低阶煤基活性炭的分段活化机理:脱水阶段(<200℃),主要是活化料中水分脱除;预活化阶段(200~400℃),主要是在原料煤表面引入活性组分;中低温活化阶段(400~600℃),主要是活性炭微孔的形成与发展;高温活化阶段(600℃以上),主要是活性炭微孔的扩展。
Supercapacitor is a new energy storage device which between conventional capacitor and battery, it has wide application prospect and huge economic value. Activated carbon is the first choice electrode materials for supercapacitor, its structure and properties play a key role to supercapacitor performance. In this paper, activated carbons for supercapacitor were prepared from low-rank coal by KOH chemical activation. The effects of the preparation technological, low-rank coal types and organic maceral components on the pore structure and performance of activated carbon were systematically investigated by nitrogen adsorption at77K, XRD, SEM, FTIR and XPS. Preparation technology and method of activated carbon for supercapacitor prepared by microwave heating and moderate temperature (<600℃) activation condition were discussed. The influence of pore structure, microstructure and surface chemical properties of activated carbon to the electrochemical performance of electrode materials were also studied. Finally, activation mechanism of preparation low-rank coal based activated carbon by KOH chemical activation was investigated.
     The results showed that activated carbon with adjustable pore structure and surface chemical properties for supercapacitor can be prepared from low-rank coal. Abundant primitive pores and high volatile of raw coal were advantageous to develop mesopore, and the mineral not only weakened the activation reaction intensity, but also degraded the quality and performance of activated carbon. Activated carbons were prepared from lignite with KOH as activation agent, which specific surface area was665~3885m2/g, total pore volume was0.356~2.211cm3/g and the ratio of mesopore was18.8~74.9%. The pore structure and surface chemical properties of activated carbon can be tailored effectively by changing technological conditions, such as the weight ratio of KOH to coal, activation temperature and so on. Moreover, the pore structure, surface chemical properties and electrochemical performance of activated carbon were affected by maceral components. Activated carbon prepared from inertinite of low-rank coal had the largest specific surface area, highest ratio of mesopore and oxygen content, therefore its electrode materials had the most excellent electrochemical performance in KOH and (C2H5)4NBF4/PC electrolyte, secondly were activated carbons prepared from vitrinite and exinite.
     Based on investigating the electrochemical performance of activated carbon electrode materials, it was found that the contribution of micropore to the specific capacitance was slightly more important than mesopore in KOH electrolyte, when the specific surface area of activated carbon exceeded2500m2/g, surface chemical properties was more important than pore structure to improve the specific capacitance of electrode materials. In (C2H5)4NBF4/PC electrolyte, the contribution of mesopore to the specific capacitance was remarkable more important than micropore, the pore structure was crucial factor to affect the specific capacitance of activated carbon electrode materials, the surface oxygen-containing functional groups of activated carbon had no effect to improve the specific capacitance. In view of KOH and (C2Hs)4NBF4/PC electrolyte had different requirements to pore structure and surface chemical properties of activated carbon electrode materials, activated carbons were prepared from low-rank coal, which specific capacitance reached420F/g and197F/g, respectively. The opinion about designing and preparing coal based activated carbons for supercapacitor according to different electrolyte was also pointed out
     The efficient activation of low-rank coal based activated carbon was realized by microwave heating. Activated carbon for supercapacitor was prepared from lignite by microwave heating with KOH as activation agent, which specific surface area was2097m2/g, total pore volume was1.193cm3/g and the ratio of mesopore was53.6%. The pore structure of activated carbon can be tailored effectively by changing the weight ratio of KOH to coal and microwave heating time.
     A new method of preparation activated carbon for supercapacitor under moderate temperature activation condition was explored. The activated carbon prepared under moderate temperature activation condition exhibited moderate specific surface area, abundant surface functional groups and high pressing density, and it had excellent electrochemical performance in KOH electrolyte. Furthermore, the gravimetric specific capacitance, surface specific capacitance and volumetric specific capacitance of the as-prepared activated carbon can reach369F/g,23.1μF/cm2and215F/cm3, respectively. The electrochemical performance in (C2Hs)4NBF4/PC electrolyte can be improved remarkably after reactivated by microwave heating.
     Segmented activation mechanism of preparation low-rank coal based activated carbon by KOH chemical activation was propounded, such as dehydration (<200℃) pre-activation (200~400℃), moderate temperature activation (400~600℃) and high temperature activation (>600℃). The main function of each stage are shown as following, dehydration was to removal moisture from activation materials, pre-activation was to induce active components on the raw coal surface, moderate temperature activation was to form and develop micropores, and high temperature activation was to widen micropores of activated carbon.
引文
[1]A. Chu, P. Braatz. Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles:I. Initial characterization [J]. Journal of Power Sources,2002,112(1):236-246
    [2]P. Sharma, T.S. Bhatti. A review on electrochemical double-layer capacitors [J]. Energy Conversion and Management,2010,51(12):2901-2912
    [3]张浩,曹高萍,杨裕生,等.电化学双电层电容器用新型炭材料及其应用前景[J].化学进展,2008,20(10):1495-1500
    [4]刘辰光,刘敏,王茂章,等.电化学电容器中炭电极的研究及开发Ⅱ.炭电极[J].新型炭材料,2002,17(2):71-79
    [5]B.E. Conway著.陈艾,吴孟强,张绪礼,等译.电化学超级电容器科学原理及技术应用[M].北京:化学工业出版社,2005
    [6]袁国辉.电化学电容器[M].北京:化学工业出版社,2006
    [7]A. Burke. Ultracapacitors:why, how, and where is the technology [J]. Journal of Power Sources,2000,91(1):37-50
    [8]R.A. Huggins. Supercapacitors and electrochemical pulse sources[J]. Solid State Ionics,2000,134(1-2):179-195
    [9]王嘉善,王海杰.超级电容器电动车-城市公共交通现代化新模式[J].城市车辆,2009,(12):58-60
    [10]M. Uzunoglu, M.S. Alam. Dynamic modeling, design and simulation of a PEM fuel cell/ultra-capacitor hybrid system for vehicular applications [J]. Energy Conversion and Management,2007,48(5):1544-1553
    [11]O. Erdinc, B. Vural, M. Uzunoglu. A wavelet-fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid vehicular power system [J]. Journal of Power Sources,2009,194(1):369-380
    [12]B. Vural, A.R. Boynuegri, I. Nakir, et al. Fuel cell and ultra-capacitor hybridization:A prototype test bench based analysis of different energy management strategies for vehicular applications [J]. International Journal of Hydrogen Energy,2010,35(20):11161-11171
    [13]刘亚菲·超级电容器活性炭电极材料的孔径调控和表面改性[D].上海:同济大学,2008
    [14]J.P. Zheng, J. Huang, T.R. Jow. The limitations of energy density for electrochemical capacitors [J]. Journal of the Electrochemical Society,1997,144(6):2026-2031
    [15]M. Inagaki, H. Konno,O. Tanaike. Carbon materials for electrochemical capacitors[J]. Journal of Power Sources,2010,195(24):7780-7903
    [16]P. Kurzweil. Electrochemical double-Layer capacitors:carbon materials[J]. Encyclopedia of Electrochemical Power Sources,2009,634-648
    [17]P.Simon, Y. Gogotsi. Materials for electrochemical capacitors [J]. Nature Materials,2008,(7):845-854
    [18]S. Sarangapani, B.V. Tilak, C.P. Chen. Materials for electrochemical capacitors [J]. Journal of the Electrochemical Society,1996,143(11):3791-3799
    [19]M. Winter, R.J. Brodd. What Are Batteries, Fuel Cells, and Supercapacitors [J]. Chemical Reviews,2004,104(10):4245-4269
    [20]Y. Zhang, H. Feng, X.B. Wu, et al. Progress of electrochemical capacitor electrode materials: A review[J]. International Journal of Hydrogen Energy,2009,34(11):4889-4899
    [21]C. Lin, J.A. Ritter, B.N. Popov, et al. A mathematical model of an electrochemical capacitor with double-layer and faradaic processes [J]. Journal of the Electrochemical Society,1999,146(9):3168-3175
    [22]张治安,杨邦朝,邓梅根,等.金属氧化物超大容量电容器电极材料的研究进展[J].材料导报,2004,18(7):30-33
    [23]刘希邈.双电层电容器活性炭电极材料的电化学性能研究[D].上海:华东理工大学,2007
    [24]吕进玉,林志东.超级电容器导电聚合物电极材料的研究进展[J]材料导报,2007,21(3):29-31
    [25]陈光铧,徐建华,杨亚杰,等.超级电容器有机导电聚合物电极材料的研究进展[J].材料导报,2009,23(10):109-113
    [26]王永刚·高比能量电化学电容器的研究[D].上海:复旦大学,2007
    [27]于凌宇.世界高端新产品超级电容器技术应用新格局[J].电源技术应用,2010,13(3):7-11
    [28]程立文,汪继强,谭玲生.超级电容器的技术与应用市场发展简评[J].电源技术,2007,31(11):921-925
    [29]江奇,瞿美臻,张伯兰,等.电化学超级电容器电极材料的研究进展[J].无机材料学报,2002,17(4):649-656
    [30]A.G. Pandolfo, A.F. Hollenkamp. Carbon properties and their role in supercapacitors [J]. Journal of Power Sources,2006,157(1,19):11-27
    [31]解强,边炳鑫.煤的炭化过程控制理论及其在煤基活性炭制备中的应用[M].徐州:中国矿 业大学出版社,2002
    [32]苏伟,周理.高比表面积活性炭制备技术的研究进展[J].化学工程,2005,33(2):44-47
    [33]崔静,赵乃勤,李家俊.活性炭制备及不同品种活性炭的研究进展[J].气体净化,2005,5(3):7-12
    [34]马蓉,张丽芳,张双全,等.太西无烟煤制备微孔活性炭的试验研究[J].新型炭材料,2004,19(1):57-60
    [35]李兰廷,解强,郝丽娜,等.电极用金属活性炭的催化制备与表征[J].中国矿业大学学报,2008,37(2):225-230
    [36]李兰廷,郝丽娜,张军,等.掺锰活性炭的制备及其电化学性能[J].新型炭材料,2008,23(2):269-275
    [37]F.C. Wu, P.H. Wu, R.L.Tseng, et al. Preparation of activated carbons from unburnt coal in bottom ash with KOH activation for liquid-phase adsorption [J]. Journal of Environmental Management,2010,91(5):1097-1102
    [38]C.X.Zhang, R. Zhang, B.L.Xing, et al. Effect of pore structure on the electrochemical perform-ance of coal-based activated carbons in non-aqueous electrolyte [J]. New Carbon Materials,2010,25(2):129-133
    [39]H.Deng, G.X.Li, H.B.Yang, et al.Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3activation [J]. Chemical Engineering Journal,2010,163(3):373-381
    [40]Y. Sait, V. Naile, D. Hakan. Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2activation[J]. Microporous and Mesoporous Materials,2009,122(1-3):189-194
    [41]D. Prahas, Y. Kartika, N. Indraswati, et al. Activated carbon from jackfruit peel waste by H3PO4chemical activation:Pore structure and surface chemistry characterization [J]. Chemical Engineering Journal,2008,140(1-3):32-42
    [42]D. Lozano-Castello, M.A. Lillo-Rodenas, D. Cazoria-Amoros. Preparation of activated carbons from Spanish anthractite Ⅰ.Activation by KOH [J]. Carbon,2001,39(5):741-749
    [43]B.L.Xing, C.X.Zhang, L.J.Chen, et al. Preparation of activated carbons from lignite for electrochemical capacitors by microwave and electrical furnace heating [J]. Advanced Materials Research,2011,(194-195):2472-2479
    [44]K. Kierzek, E. Frackowiak, G. Lota, et al.Electrochemical capacitors based on highly porous carbons prepared by KOH activation[J]. Electrochimica Acta,2004,49(4):515-523
    [45]X.J. He, J.W. Lei, Y.J. Geng, et al. Preparation of microporous activated carbon and its electrochemical performance for electric double layer capacitor [J]. Journal of Physics and Chemistry of Solids,2009,70(3-4):738-744
    [46]任军,徐斌,张世超,等PVDC基活性炭的制备与电容性能[J].电池,2008,38(3):136-138
    [47]D. Kalpana, S.H. Cho, S.B. Lee, et al. Recycled waste paper-A new source of raw material for electric double-layer capacitors [J]. Journal of Power Sources,2009,190(2):587-591
    [48]R. Encarnacion, L. Fabrice, B. Francois. A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer[J]. Advanced Materials,2006,18(14):1877-882
    [49]Z.B. Wen, Q.T. Qu, Q. Gao, et al. An activated carbon with high capacitance from carbonization of a resorcinol-formaldehyde resin[J]. Electrochemistry Communications,2009,11(3):715-718
    [50]郑祥伟,胡中华,刘亚菲,等.中等比表面积高容量活性炭电极材料制备和表征[J].复旦学报,2009,48(1):58-64
    [51]刘亚菲,胡中华,任炼文,等.高性能活性炭电极材料在双电层电容器中的应用[J].新型炭材料,2007,24(4):355-360
    [52]杨静,刘亚菲,陈晓妹,等.高能量密度和功率密度炭电极材料[J].物理化学学报,2008,24(1):13-19
    [53]时志强,赵朔,陈明鸣,等.预炭化对KOH活化石油焦的结构及电容性能的影响[J].无机材料学报,2008,23(4):799-804
    [54]C.X. Zhang, D.H. Long, B.L. Xing, et al. The superior electrochemical performance of oxygen-rich activated carbons prepared from bituminous coal[J]. Electrochemistry Communications,2008,10(11):1809-1811
    [55]X.J. He, Y.J. Geng, J.S. Qiu, et al. Effect of activation time on the properties of activated carbons prepared by microwave-assisted activation for electric double layer capacitors [J]. Carbon,2010,48(5):1662-1669
    [56]肖超,唐斌,吴孟强,等.超级电容器电极材料的研究进展[J].绝缘材料,2007,40(1):44-47
    [57]I. Tanahashi, A. Yoshida, A. Nishino. Electrochemical characterization of activated carbon-fiber cloth polarizable electrodes for electric double-layer capacitors [J]. Journal of the Electrochemical Society,1990,137(10):3052-3057
    [58]C.W. Huang, Y.T. Wu, C.C. Hu, et al.Textural and electrochemical characterization of porous carbon nanofibers as electrodes for supercapacitors[J]. Journal of Power Sources,2007,172(1):460-467
    [59]C.Kim, Y.O.Choi, W. J. Lee, et al.Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions [J]. Journal of Power Sources,2004,50(2-3):883-887
    [60]刘凤丹,王成扬,杜嬛,等.苎麻基活性炭纤维超级电容器材料的制备[J].电源技术,2009,33(12):1086-1089
    [61]陈秋飞,张学军,田艳红.沥青基活性碳纤维的电容特性[J].北京化工大学学报,2008,35(2):55-59
    [62]刘志玲,李包顺,潘鼎.超级电容器用活性炭纤维的研制[J].炭素,2006,128(4):22-26
    [63]K. Leitner, A. Lerf, M. Winter, et al. Nomex-derived activated carbon fibers as electrode materials in carbon based supercapacitors[J]. Journal of Power Sources,2006,153(2):419-423
    [64]B. Xu, F. Wu, R.J. Chen, et al. Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte [J]. Journal of Power Sources,2010,195(7):2118-2124
    [65]H. Oda, A. Yamashita, S. Minoura, et al. Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor[J]. Journal of Power Sources,2006,158(2):1510-1516
    [66]H. Nakagawa, A. Shudo, K. Miura. High-capacity electric double-layer capacitor with high-density-activated carbon fiber electrodes [J]. Journal of the Electrochemical Society,2000,147(1):38-42
    [67]袁定胜,胡向春,刘应亮,等.超级电容器用炭材料的研究进展[J].电池,2007,37(6):466-468
    [68]王康,余爱梅,郑华均.超级电容器电极材料的研究发展[J].浙江化工,2010,41(4):18-12
    [69]P. Gouerec, D. Miousse, F. Tranvan, et al. Characterization of pyrolized poly aerylonitrile aerogel thin films used in double layer supercapacitors[J]. Journal of New Materials for Electrochemical Systems,1999,2(4):221-226
    [70]E. Frackowiak, F. Beguin. Carbon materials for the electrochemical storage of energy in capacitors [J]. Carbon,2001,39(6):937-950
    [71]夏笑虹,刘洪波,陈杰,等.醇溶剂对炭气凝胶结构和电化学性能的影响[J].湖南大学学报(自然科学版),2009,36(11):47-52
    [72]蒋亚娴,陈晓红,宋怀河.用于超级电容器电极材料的球形炭气凝胶[J].北京化工大学学 报,2007,34(6):616-620
    [73]Y.J. Lee, J.C. Jung, J. Yi, et al. Preparation of carbon aerogel in ambient conditions for electrical double-layer capacitor[J]. Current Applied Physics,2010,10(2):682-686
    [74]B.Z. Fang, L. Binder. A modified activated carbon aerogel for high-energy storage in electric double layer capacitors [J]. Journal of Power Sources,2006,163(1):616-622
    [75]B.Z. Fang, L. Binder. Influence of hydrophobisation of carbon surface on electrochemical capacitor performance[J]. Journal of Electroanalytical Chemistry,2007,609(2):99-104
    [76]B.Z. Fang, L. Binder. Enhanced surface hydrophobisation for improved performance of carbon aerogel electrochemical capacitor[J]. Electrochimica Acta,2007,52(24):6916-6921
    [77]Y.Z.Wei, B. Fang, S. Iwasa, et al. A novel electrode material for electric double-layer capacitors [J]. Journal of Power Sources,2005,141(2):386-391
    [78]吴锋,徐斌.碳纳米管在超级电容器中的应用研究进展[J].新型炭材料,2006,21(2):176-184
    [79]C. Niu, E.K. Sichel, R. Hoch, et al. High power electrochemical capacitors based on carbon nanotube electrodes [J]. Applied Physics Letters,1997,70(11):1480-1482
    [80]J.H. Chen, W.Z. Li, D.Z. Wang, et al. Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors [J]. Carbon,2002,40(8):1193-1197
    [81]M.M. Yang, B. Cheng, H.H. Song. Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor[J]. Electrochimica Acta,2010,55(23):7021-7027
    [82]P.W. Ruch, R. Kotz, A.Wokaun. Electrochemical characterization of single-walled carbon nanotubes for electrochemical double layer capacitors using non-aqueous electrolyte [J]. Electrochimica Acta,2009,54(19):4451-4458
    [83]K. Jurewicz, K. Babel, R. Pietrzak, et al. Capacitance properties of multi-walled carbon nanotubes modified by activation and ammoxidation[J]. Carbon,2006,44(12):2368-2375
    [84]M.K. Seo, S.J. Park. Influence of air-oxidation on electric double layer capacitances of multi-walled carbon nanotube electrodes [J]. Current Applied Physics,2010,10(1):241-244
    [85]Y. Zhang, C.G. Liu, B. Wen, et al. Preparation and electrochemical properties of nitrogen-doped multi-walled carbon nanotubes [J]. Materials Letters,2011,65(1):49-52
    [86]K. Jurewicz, S. Delpeux, V. Bertagna, et al. Supercapacitors from nanotubes/polypyrrole composites [J]. Chemical Physics Letters,2001,347(1-3):36-40
    [87]V. Khomenko, E. Frackowiak, F. Beguin. Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations [J]. Electrochimica Acta,2005,50(12):2499-2506
    [88]臧杨,郝晓刚,王忠德,等.碳纳米管/聚苯胺/铁氰化镍复合膜的电化学共聚制备与电容性能[Jl.物理化学学报,2010,26(2):291-298
    [89]江奇,张倩,杜冰,等.有限域聚合法制备碳纳米管.聚苯胺复合材料及其电化学性能[Jl.物理化学学报,2008,24(9):1719-1723
    [90]B. Tarik, B. Daniel. Development of new nanocomposite based on nanosized-manganese oxide and carbon nanotubes for high performance electrochemical capacitors [J]. Electrochimica Acta,2010,55(9):3428-3433
    [91]B.E. Conway. Transition from"supercapacitor"to"Battery"behavior in electrochemical energy storage[J]. Journal of the Electrochemical Society,1991,138(6):1539-1548
    [92]J.P. Zheng, P.J. Cygan, T.R. Jow. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors [J]. Journal of the Electrochemical Society,1995,142(8):2699-2703
    [93]J.P. Zheng, T.R. Jow, Q.X. Jia, et al. Proton insertion into ruthenium oxide film prepared by pulsed laser deposition[J]. Journal of the Electrochemical Society,1996,143(3):1068-1070
    [94]B.O. Park, C.D. Lokhande, H.S. Park, et al. Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes-effect of film thickness [J]. Journal of Power Sources,2004,134(1):148-152
    [95]K.H. Chang, C.C. Hua, C.Y. Chou. Textural and pseudocapacitive characteristics of sol-gel derived RuO2.xHO:Hydrothermal annealing vs. annealing in air[J]. Electrochimica Acta,2009,54(3):978-983
    [96]T.P. Gujar, V.R. Shinde, C.D. Lokhande, et al Spray deposited amorphous RuO2for an effective use in electrochemical supercapacitor[J]. Electrochemistry Communications,2007,9(3):504-510
    [97]V.D. Patake, C.D. Lokhande, O.S. Joo. Electrodeposited ruthenium oxide thin films for supercapacitor:Effect of surface treatments [J]. Applied Surface Science,2009,255(7):4192-4196
    [98]S.L. Chou, F.Y. Cheng, J. Chen. Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2films [J]. Journal of Power Sources,2006,162(1):727-734
    [99]J. Li, X.Y. Wang, Q.H. Huang, et al. A new type of MnO2-xH2O/CRF composite electrode for supercapacitors[J]. Journal of Power Sources,2006,160(1):1501-1505
    [100]D.D. Zhao, M.W. Xu, W.J. Zhou, et al. Preparation of ordered mesoporous nickel oxide film electrodes via lyotropic liquid crystal templated electrodeposition route[J]. Electrochimica Acta,2008,53(6):2699-2785
    [101]王虹,唐致远,李中延,等.V2O5/C电化学电容器有机电解液的性能研究[J].电化学,2008,14(2):125-129
    [102]曾俊,刘亚菲,程庚金生,等.金属氧化物改性炭电极及EDLC性能研究[J].电子元件与材料,2007,26(5):25-27
    [103]K. R. Prasad, N. Munichandraiah. Fabrication and evaluation of450F electrochemical redox supercapacitors using inexpensive and high-performance, polyaniline coated, stainless-steel electrodes [J]. Journal of Power Sources,2002,112(2):443-451
    [104]V. Gupta, N. Miura. High performance electrochemical supercapacitor from electrochemically synthesized nanostructured poly aniline [J]. Materials Letters,2006,60(12):1466-1469
    [105]R. Ganesan, S. Shanmugam, A. Gedanken. Pulsed sonoelectrochemical synthesis of polyaniline nanoparticles and their capacitance properties [J]. Synthetic Metals,2008,158(21-24):848-853
    [106]S.K. Mondal, K.R. Prasad, N. Munichandraiah. Analysis of electrochemical impedance of polyaniline films prepared bygalvanostatic, potentiostatic and potentiodynamic methods [J]. Synthetic Metals,2005,148(3):275-286
    [107]张爱勤,王力臻,张勇,等.盐酸掺杂聚吡咯的电化学电容性能[J].电池,2010,40(1):10-12
    [108]冉奋,党国静,孔令斌,等.珊瑚状聚吡咯的制备及其超级电容性能[J].电子元件与材料,2009,28(3):13-15
    [109]W.K. Li, J.Chen, J.J.Zhao, et al. Application of ultrasonic irradiation in preparing conducting polymer as active materials for supercapacitor[J]. Materials Letters,2005,59(7):800-803
    [110]王琴,李建玲,高飞,等.超级电容器用聚苯胺/活性炭复合电极的研究[J].新型炭材料,2008,23(3):275-280
    [111]毛定文,田艳红.掺锂聚苯胺/活性炭超级电容器电极材料的制备及电性能[J].北京化工大学学报,2007,34(2):612-615
    [112]张晶,孔令斌,蔡建军,等.电化学混合电容器用新型聚吡咯/介孔碳纳米复合电极[J].物理化学学报,2010,26(6):1515-1520
    [113]C.Yang, P.Liu, Y.Q. Zhao. Preparation and characterization of coaxial halloysite/polypyrrole tubular nanocomposites for electrochemical energy storage [J]. Electrochimica Acta,2010,55 (22):6857-6864
    [114]沈曾民,张文辉,张学军.活性炭材料的制备与应用[M].北京:化学工业出版社,2006
    [115]梁大明.中国煤质活性炭[M].北京:化学工业出版社,2008
    [116]蒋剑春.活性炭应用理论与技术[M].北京:化学工业出版社,2010
    [117]D. Hakan, D. Ilknur, K. Belgin, et al.Production of activated carbon from olive bagasse by physical activation[J]. Chemical Engineering Research and Design,2011,89(2):206-213
    [118](日)立本英机,安部郁夫.活性炭的应用技术[M].高尚愚译.南京:东南大学出版社,2002
    [119]邢伟,张明杰,阎子峰.超级活性炭的合成及活化反应机理[J].物理化学学报,2002,18(4):340-345
    [120]M.A. Lillo-Rodenas, D. Cazorla-Amoros, A. Linares-Solano. Understanding chemical reactions between carbons and NaOH and KOH:An insight into the chemical activation mechanism [J]. Carbon,2003,41(2):267-275
    [121]M.A. Lillo-Rodenas, D. Lozano-Castello, D. Cazorla-Amoros, et al. Preparation of activated carbons from Spanish anthracite Ⅱ. Activation by NaOH [J]. Carbon,2001,39(5):751-759
    [122]M.A. Lillo-Rodenas, D. Cazorla-Amoro. About reactions occurring during chemical activation with hydroxides [J]. Carbon,2004,42(7):1371-1375
    [123]张传祥,张睿,成果,等.协同活化对煤基活性炭物化性能的调控[J].煤炭转化,2008,31(2):52-56
    [124]乔文明,刘朗.高比表面积活性炭的研究与应用[J].新型炭材料,1996,11(1):25-31
    [125]Y. Yamashita, K. Ouchi. Influence of alkali on the carbonization process:carbonization of3,5-dimethylphenol-formaldehyde resin with NaOH[J]. Carbon,1982,20(1):41-45
    [126]K.J. Hutinger, R. Minges. Catalytic water vapour gasification of carbon:importance of melting and weting behaviour of the "catalyst"[J]. Fuel,1985,64(4)491-494
    [127]D. Lozano-Castello, D. Cazorla-Amoro, A. Linares-Solano, et al. Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte [J]. Carbon,2003,41(9):1765-1775
    [128]T.C. Weng, H. Teng. Characterization of high porosity carbon electrodes derived from mesophase pitch for electric double-layer capacitors [J]. Journal of the Electrochemical Society,2001,148(4):368-373
    [129]H. Teng, Y.J. Chang, C.T. Hsieh. Performance of electric double-layer capacitors using carbons prepared from phenol-formaldehyde resins by KOH etching. Carbon,2001,39(3): 1981-1987
    [130]张翠,王成扬,姚国富.酚醛泡沫NaOH化学活化制备超级电容器用活性炭[J].炭素,2007,132(4):23-27
    [131]张传祥.煤基活性炭电极材料的制备及性能[M].北京:煤炭工业出版社,2009
    [132]H. Shi. Activated carbons and double layer capacitance[J].Electrochimica Acta,1996,41(10):1633-1639
    [133]J.A. Fernandez, S. Tennison,O. Kozynchenko, et al. Effect of mesoporosity on specific capacitance of carbons [J]. Carbon,2009,47(6):1598-1604
    [134]A.B. Fuertes, G. Lota, T.A. Centenob, et al. Templated mesoporous carbons for supercapacitor application [J]. Electrochimica Acta,2005,50(14):2799-2805
    [135]江奇,赵晓峰,黄彬,等.活性炭二次活化对其电化学容量的影响[J].物理化学学报,2009,25(4):757-761
    [136]G. Gryglewicz, J. Machnikowski, E.L. Grabowska. Effect of pore size distribution of coal-based activated carbons on double layer capacitance [J]. Electrochimica Acta,2005,50(5):1197-1206
    [137]E. Frackowiak. Carbon materials for supercapacitor application[J]. Physical Chemistry Chemical Physics,2007,9:1774-1785
    [138]Y.B.Xie, W.M.Qiao, W.Y.Zhang, et al. Effect of the surface chemistry of activated carbon on its electrochemical properties in electric double layer capacitors [J]. New Carbon Materials,2010,25(4):248-254
    [139]T.A. Centeno, F. Stoeckli. The role of textural characteristics and oxygen-containing surface groups in the supercapacitor performances of activated carbons [J]. Electrochimica Acta,2006,52(2):560-566
    [140]C.T. Hsieh, H. Teng. Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics [J]. Carbon,2002,40(5):667-674
    [141]O. Hirokazu, Y. Akira, M. Shinsaku, et al. Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor[J]. Journal of Power Sources,2006,158(2):1510-1516
    [142]H. Denisa, S. Mykola, G. Q. Lu, et al. Effect of surface phosphorus functionalities of activated carbons containing oxygen and nitrogen on electrochemical capacitance[J]. Carbon,2009,47(6):1576-1584
    [143]R. Pietrzak, K. Jurewicz, P. Nowicki. Microporous activated carbons from ammoxidised anthracite and their capacitance behaviours[J]. Fuel,2007,86(7):1086-1092
    [144]R. Pietrzak, K. Jurewicz, P. Nowicki. Nitrogen-enriched bituminous coal-based active carbons as materials for supercapacitors[J]. Fuel,2010,89(11):3457-3467
    [145]H. Denisa, K. Masaya, H. Hiroaki. Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors[J]. Chemistry of Materials,2006,18(9):2318-2326
    [146]M.J. Bleda-Martinez, D. Lozano-Castello, E. Morallon, et al. Chemical and electrochemical characterization of porous carbon materials [J]. Carbon,2006,44(13):2642-2651
    [147]K. Jurewicz, K. Babel, A. Ziolkowski, et al. Capacitance behaviour of the ammoxidised coal[J]. Journal of Physics and Chemistry of Solids,2004,65(2-3):269-273
    [148]孟庆函.双电层电容器电极材料的制备及电化学性能研究[D].太原:中科院山西煤化所,2002
    [149]L. Bonnefoi, P. Simon, J.F. Fauvarque. Electrode optimization for carbon supercapacitors[J]. Journal of Power Sources,1999,79(1):37-42
    [150]I. Bispo-Fonseca, J. Aggar, C. Sarrazin. Possible improvements in making carbon electrodes for organic supercapacitors[J]. Journal of Power Sources,1999,79(2):238-241
    [151]郭春雨,王成扬,陈静远.膨胀石墨复合活性炭制备超级电容器电极[J].电源技术,2006,30(11):929-932
    [152]苏岳锋,吴锋,赵淑红.纳米碳材料改善电化学电容器性能研究[J].功能材料,2004,35(2):188-191
    [153]D.W.Wang, F.Li, M.Liu, et al.3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angew. Chem. Int. Ed.,2008,47:373-376
    [154]刘朝军,梁晓怿,王琴,等.沥青基球状活性炭的热处理改性及其浸润性能的研究[J].炭素,2008,133(1):14-19
    [155]C.X.Zhang, Y.L. Duan, B.L.Xing, et al. Influence of nitrogen hetero-substitution on the electrochemical performance of coal-based activated carbons measured in non-aqueous electrolyte[J]. Mining Science and Technolog,2009,19(3):295-299
    [156]胡耀强,刘希邈,张丽明,等.活性炭孔结构及润湿性对混合型超级电容器电化学性能的影响[J].炭素,2007,129(1):9-11
    [157]高淑玲,刘炯天.低阶煤表面改性制备超净煤初探[J].煤炭技术,2004,23(9):68-70
    [158]顾小愚.低阶煤热力改性提质加工的研究[J].洁净煤技术,2009,15(1):89-92
    [159]常春祥,熊友辉,蒋泰毅.高水分褐煤燃烧发电的集成干燥技术[J].选煤技术,2006,(2):19-21
    [160]沈国娟,张明旭,王龙贵.浅谈褐煤的利用途径[J].煤炭加工与综合利用,2005,(6):25-27
    [161]张文辉,李书荣,王岭.金属化合物对煤岩显微组分所制活性炭吸附性能的影响[J].新型炭材料,2005,20(1):63-66
    [162]张文辉,李书荣,陈鹏.大同烟煤镜质组、惰质组制备活性炭的试验研究[J].煤炭学报,2000,25(3):299-302
    [163]张文辉,李书容,陈鹏,等.太西无烟煤镜质组、丝质组制备活性炭试验研究[J].新型炭材料,2000,15(2):61-64
    [164]张双全,吴国光.煤化学[M].徐州:中国矿业大学出版社,2004
    [165]谢克昌.煤的结构及反应性(第一版)[M].北京:科学出版社,2002
    [166]谢广元.选矿学[M].徐州:中国矿业大学出版社,2001
    [167]Y.R. Nian, H. Teng. Influence of surface oxides on the impedance behavior of carbonbased electrochemical capacitors[J]. Journal of Electroanalytical Chemistry,2003,540(2):119-127
    [168]C. Portet, P.L. Taberna, P. Simon, et al. Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications [J]. Electrochimica Acta,2004,49(6):905-912
    [169](日)近藤精一,石川达熊,安部郁夫.吸附科学[M].李国希译.北京:化学工业出版社,2005
    [170]邢宝林,张传祥,谌伦建.双电层电容器用煤基活性炭的制备与电化学性能表征[J].材料导报,2009,23(22):106-109
    [171]许慎启,周志杰,代正华,等.碱金属及灰分对煤焦碳微晶结构及气化反应特性的影响[J].高校化学工程学报,2010,24(1):64-70
    [172]赵卫东,刘建忠,周俊虎,等.褐煤等温脱水热重分析[J].中国电机工程学报,2009,29(14):74-79
    [173]罗陨飞,李文华.中低变质程度煤显微组分大分子结构的XRD研究[J].煤炭学报,2004,19(3):338-341
    [174]S. Biniak, G. Szymanski, J.Siedlewski, et al. The characterization of activated carbons with oxygen and nitrogen surface groups [J]. Carbon,1997,35(12):1799-1810
    [175]翁诗甫.傅里叶变换红外光谱分析[M].北京:化学工业出版社,2009
    [176]Y.C. Chiang, C.Y. Lee, H.C. Lee. Surface chemistry of polyacrylonitrile-and rayon-based activated carbon fibers after post-heat treatment. Materials Chemistry and Physics,2007,101 (1,15):199-210
    [177]K. Babel, K. Jurewic. KOH activated carbon fabrics as supercapacitor material[J]. Journal of Physics and Chemistry of Solids,2004,65(2):275-280
    [178]韩露,李开喜,高峰.工艺参数及灰分对煤基活性炭吸附性能的影响[J].煤炭转化,2008,31(3):71-76
    [179]王月红,郭立稳,张九零.开滦煤显微组分结构特征与吸附CO的关系[J].辽宁工程技术大学学报(自然科学版),2010,29(3):373-376
    [180]F.K. Yuen, B.H. Hameed. Recent developments in the preparation and regeneration of activated carbons by microwaves[J]. Advances in Colloid and Interface Science,2009,149(1,2):19-27
    [181]M. Kubota, A. Hata, H. Matsuda.Preparation of activated carbon from phenolic resin by KOH chemical activation under microwave heating[J]. Carbon,2009,47(12):2805-2811
    [182]W.Li, L.B.Zhang, J.H.Peng, et al. Preparation of high surface area activated carbons from tobacco stems with K2CO3activation using microwave radiation[J]. Industrial Crops and Products,2008,27(3):341-347
    [183]K.B. Yang, J.H.Peng, C. Srinivasakannan, et al.Preparation of high surface area activated carbon from coconut shells using microwave heating [J]. Bioresource Technology,2010,101(15):6163-6169
    [184]T.H. Wang, S. Tan, C.H. Liang.Preparation and characterization of activated carbonfrom wood via microwave-induced ZnCl2activation [J]. Carbon,2009,47(12):1880-1883
    [185]艾艳玲,李铁虎,冀勇斌.微波加热与传统加热制备高比表面积活性炭的对比研究[J].西北工业大学学报,2009,27(4):527-531
    [186]H. Teng, S.C. Wang. Preparation of porous carbons from phenol-formaldehyde resins with chemical and physical activation [J]. Carbon,2000,38(6):817-824
    [187]M.O. Marin, J.A.Fernandez, M.J. Lazaro, et al. Cherry stones as precursor of activated carbons for supercapacitors[J]. Materials Chemistry and Physics,2009,114(1):323-327
    [188]詹亮,张睿,王艳莉,等.超级电容器用活性炭电极的制备及其电极性能研究[J].炭素,2002,3:3-7
    [189]李强,李开喜,王芙蓉,等.针状焦基活性炭的制备及其作为EDLCs电极材料的电化学性能[J].新型炭材料,2005,20(4):335-342
    [190]陈再华,王正郁.一种用生物质为原料的极性电极用活性炭的制造方法[P].中国发明专 利,申请号:200810121556.0
    [191]谢应波,张维燕,张睿,等.采用KOH与NaOH活化剂所制活性炭表面化学性质及孔结构的比较[J].炭素,2008,134(2):18-23
    [192]L. Zhao, L.Z. Fan, M.Q. Zhou, et al. Nitrogen-Containing Hydrothermal Carbons with Superior Performance in Supercapacitors[J].Advanced Materials,2010,22(45):5202-5206
    [193]C.T. Hsieh, H. Teng. Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics[J]. Carbon,2002,40(2):667-674
    [194]Y.S.Wang, C.Y.Wang, C.Y. Guo, et al. Influence of carbon structure on performance of electrode material for electric double-layer capacitor [J]. Journal of Physics and Chemistry of Solids,2008,69(1):16-22
    [195]陈进富,李兴存,李术元.石油焦活化机理的研究[J].燃料化学学报,2004,32(1):54-58
    [196]乔文明,查庆芳,刘朗.KOH活化动力学及活化机理的初探[J].炭素技术,1994,4:8-11
    [197]J. D. Teran, D.M. Nevskaia, J.L. Fierro, et al. Study of chemical activation process of a lignocellulosic material with KOH by XPS and XRD [J]. Microporous and Mesoporous Materials,2003,60(1-3):173-181
    [198]谌伦建,邢宝林,张传祥等.一种反应快速终止装置[P].中国实用新型专利,授权号:CN201632255U
    [199]E.R. Pinero, P. Azais, T. Cacciaguerra, et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation[J]. Carbon,2005,43(4):786-795

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700