用户名: 密码: 验证码:
稻麦两熟制不同耕作栽培方式对农田生态环境和周年生产力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻麦免耕套种与秸秆还田是一种新型的耕作栽培方式,不同程度地改变了农田生态环境,直接影响稻麦的生长。通过稻麦两熟制不同耕作栽培方式对农田生态环境、稻麦生长发育、产量品质和周年效益的研究,揭示新型耕作栽培方式土壤供肥特征和稻麦吸肥与生长发育规律,为稻麦轻型高产、优质、高效栽培提供技术和理论支撑,为有效地开展免耕、合理轮耕和秸秆还田提供科学依据。本研究通过网室和大田小区3年4种不同耕作栽培方式的定位试验,研究了稻麦两熟条件下,免耕套种与秸秆还田对农田生态环境和周年生产力的影响。主要结果如下:
     (1)稻田免耕套种小麦留茬高度超过30 cm时,对晴天的透光率影响较大,影响小麦苗期生长。因此,从透光对小麦生长和秸秆自然还田两方面考虑,留茬高度在20~30 cm时较为适宜。免耕与秸秆覆盖麦田苗期高温晴天中午土壤的温度降低,而早晚的土温略高,土温的日较差比较小,日均土温稍有降低,而低温晴天和阴天的日均土温略高。
     (2)麦田干旱时免耕覆盖土壤含水率较高,下雨后透水性较好。免耕覆盖有助于防止土壤水分蒸发,降低地表径流,增加水分渗透。
     在网室水泥池不渗漏的情况下,稻田秸秆还田后水体的pH值降低,化学耗氧量(COD)提高。还田30天内,pH值免耕覆盖还田比翻耕不还田最多降低1.0左右;翻耕还田、免耕高茬、免耕覆盖还田的COD分别为翻耕不还田的3倍、8-12倍和11-17倍。大田水体的pH值和COD变化没有这样大,对水稻生长不会产生明显影响。
     (3)免耕套种的耕层土壤容重和穿透阻力均有所增加,但不会明显影响稻麦的生长。秸秆还田3年后,土壤肥力提高,有机质、全氮、速效磷、速效钾翻耕还田比翻耕不还田分别增加2.0%-8.3%、2.9%-4.7%、0.1%-3.1%、10.7%-23.5%,以速效钾增加的幅度最高。秸秆还田对土壤速效氮有一定的缓冲和调节作用,翻耕秸秆还田处理前期有一定程度的下降,而后期速效氮含量明显上升。秸秆还田为土壤微生物活动繁殖提供了充足的能源和碳源,利于土壤微生物活动,促进磷、钾的有效化,也有利于后期土壤速效磷、钾的提高,微生物生物量N增加,麦收时翻耕秸秆还田处理耕层土壤微生物量N最高,稻收时以免耕覆盖还田微生物量N最高,均为翻耕不还田的1倍。
     (4)麦田埋在土层7cm和14cm的秸秆腐解速度较快,且以埋深14cm最快,覆盖在表层较慢,说明秸秆与土壤密切接触,有利于秸秆腐解。稻田由于有水层的作用和高温高湿的环境,覆盖在表层秸秆腐解也较快。麦季稻秸覆盖还田一季后秸秆残留率在60%左右,埋在土层的残留率在40%左右;稻季麦秸覆盖还田一季后秸秆残留率在25%左右,而埋在土层的残留率在20%左右。覆盖还田秸秆固定的氮素较多,对稻麦生长供应的氮素没有翻入土壤的多,但可起到很好的调节作用,提高氮肥利用率。随着还田秸秆的腐解,秸秆含氮率逐渐增加,全碳含量逐渐下降,秸秆C/N比降低。麦田稻秸表层C/N比一直较高,而稻田的麦秸表层C/N比最低,7cm最高。麦田和稻田前期不同埋深对秸秆全碳的影响不显著,C/N比主要取决于秸秆的含氮率。一季后麦田稻秸的C/N比在30左右,稻田麦秸的C/N比在15以上,比土壤腐殖质的C/N比高,说明一季后秸秆还都未完成其腐殖化过程。
     (5)秸秆覆盖会影响小麦种子的发芽出苗,基本苗减少,秸秆较多处小麦冻害较重。小麦累积干物重以翻耕处理较高,免耕处理较低,成熟期免耕比翻耕平均低15%左右,而免耕秸秆覆盖还田与翻耕秸秆覆盖还田、免耕高茬与翻耕不还田差异不显著。由于免耕套种小麦的含N、P率略低,含K率持平,累积N、P、K吸收量比翻耕处理低20%左右。在同期播种,相同播量的情况下,免耕套种小麦穗数较少,千粒重较高,第一年实际产量略低。但随着连续免耕时间的延长,残留秸秆较多,稻田水绵严重,影响套种小麦出苗,免耕处理产量明显降低,免耕秸秆覆盖还田比翻耕不还田平均降低7.27%,必须改变播种方式或轮耕。耕翻秸秆覆盖还田在麦季的产量有增有减,比翻耕不还田平均减产1%左右。免耕与秸秆还田的小麦容重降低,但出粉率提高,可改善小麦的商品品质。在土壤肥力较低时,免耕处理粗蛋白质和湿面筋含量有降低趋势。而秸秆覆盖还田可提高粗蛋白质和湿面筋含量,有利于改善中、强筋专用小麦的品质。
     (6)与移栽稻相比,免耕套种水稻株高较低,单茎叶面积略小,生物量低,但生育后期干物质累积量增加迅速。从秸秆还田来看,水稻干物质的积累翻耕秸秆还田低于翻耕不还田,免耕套种覆盖低于免耕高茬,翻耕移栽秸秆还田处理在拔节期表现尤其明显。随着生育期的推进,植株含氮磷钾率逐渐下降,秸秆还田前期与水稻争氮,后期又释放氮素供水稻吸收,植株含氮率成熟期免耕套种与移栽相差不大,但无论是秸秆还是籽粒,免耕和翻耕秸秆还田都显著高于翻耕不还田。成熟期植株含P、K率也以免耕和翻耕秸秆还田处理为高,翻耕不还田较低。累积吸收N、P、K的量均以免耕覆盖和翻耕秸秆还田处理较高,免耕高茬和翻耕不还田较低,免耕覆盖还田与翻耕还田、免耕高茬与翻耕不还田间差异不明显。解决好套种水稻的立苗和草害等问题,套种水稻的产量可与移栽水稻的产量持平或略增。翻耕秸秆还田的水稻产量最高,平均比翻耕不还田增产3%左右。免耕套种覆盖还田也能获得较高产量,比翻耕不还田增产0.8-3.1%。在亩穗数相差不大的情况下,免耕套种水稻每穗实粒数较少,千粒重较高,套种水稻可获得较高产量。主要是水稻后期根系活力强,干物质积累多,抗病抗逆性强。水稻免耕套种可明显改善稻米的加工品质和外观品质,提高其出糙率、精米率和整精米率,降低垩白率和垩白度。翻耕移栽秸秆还田也能提高整精米率,垩白率、垩白度略有降低。水稻免耕套种和秸秆还田可提高稻米蛋白质含量,降低直链淀粉的含量,使其胶稠度变软,稻米品质变优;而水稻移栽秸秆还田条件下蛋白质含量提高,直链淀粉含量略增,胶稠度变硬。
     (7)土壤肥力数值化综合评价表明,不同处理养分肥力指标(NFI)以免耕秸秆还田最高,耕翻不还田最低;但综合肥力指标(IFI)却以耕翻秸秆还田最高,免耕高茬最低,主要受土壤容重影响。可以认为,综合肥力指标是耕地现实持续生产力的标志,养分肥力指标是耕地潜在持续生产力的标志。翻耕秸秆还田耕地现实持续生产力最好,免耕秸秆还田有较高的耕地潜在持续生产力。
     免耕套种的小麦产量较低,水稻产量有所增加,考虑节省的秧田种植小麦,则稻麦年产量免耕套种高于翻耕。从技术经济角度分析,在掌握一定的栽培技术后,采用稻麦免耕套种方式,能增加稻麦两熟的周年产量,具有明显的节本增收效果。稻麦周年产量生产力和经济生产力以免耕套种秸秆还田最高,免耕高茬次之,翻耕秸秆还田较低,翻耕不还田最低。翻耕秸秆还田比不还田有一定的增产增收效果,如果考虑到秸秆还田后所带来的土壤肥力效应和减少肥料用量,增产增收效果更为明显。
     高产、高效、可持续发展是现代农业所追求的目标。运用综合评分法对稻麦两熟制不同耕作栽培方式周年生产力综合评价,选择产量和产值作为高产的指标,选用低成本和纯收入作为高效的指标,选用土壤肥力综合评价指标NFI和IFI作为可持续发展指标。根据高产、高效和可持续等总指标的相对重要性,高产为35%,高效为35%,可持续为30%,确定各指标的权重。高产指标中年产量为20%,总产值为15%:高效指标中总成本为15%,纯收入为20%,可持续指标中NFI为10%,IFI为20%。4个耕作栽培方式综合评分结果:免耕套种秸秆还田得分最高,周年生产力最好,免耕高茬次之,耕翻还田再次,耕翻不还田得分最低,周年生产力最差。
No-tillage plus inter-planting and straw return is a recently-developed farming practicein China, which produces profound effects on cropland eco-environment and the growthof rice and wheat. In order to provide a solid technological and theoretical support forlight-duty, high yield, high quality and efficient production in rice and wheat, and toprovide a scientific guidance for carrying out no-tillage, reasonable rotation tillage andstraw returning more efficiently, different tillage and cultivation methods were adopted tostudy their effects on cropland eco-environment, nutrition supply in soil and absorptionin rice and wheat, rice and wheat growth, yield and grain quality, and yearly productivity.Four different tillage and cultivation treatments lasting 3 consecutive years (no-tillageplus straw mulching, NTS; no-tillage plus high stubble remaining, NTH; conventionaltillage plus straw returning, CTS; and conventional tillage plus no straw returning, CT)were carried out both in net house and in the open field. The main results were asfollows.
     1. Under NTS, the height of rice stubble remained on the field significantly affectedthe light transmission rate in sunny days,with an optimal height of 20-30 cm. NTS andCTS decreased soil temperature at noon in sunny and warm days, but slightly increased itin the morning and evening, which led to a less diurnal difference. The average diurnaltemperature under NTS and CTS was lower in sunny day, but higher in cloudy day.
     2. Under NTS, soil water content was higher under drought condition, and soilpermeability after irrigation was better, which was propitious to the growth of wheat..NTS was suitable to prevent water evaporation, decrease surface runoff and better waterpermeability in soil. In concrete ponds in net house where no water leaking, PH readingwas decreased and COD was increased under NTS,NTH and CTS. PH reading within30d under NTS was at most 1 lower than under CT. COD under CTS, NTH and NTS was3, 8-12 and 11-17 times as much as under CT. While in the open field, the variations ofPH reading and COD were not so big, producing insignificant effects of rice growth.
     3. Under NTS and NTH, both the soil bulk and penetration resistance of topsoil increased,but no apparent adverse effects of them were observed on wheat and rice growth. Strawreturning significantly improved soil structure and increased soil nutrients content. After3 years straw returning, soil organic matter, total N, available P and K in CTS treatmentincreased 4.7%-13.0%, 0%-10.6%, 0.25%-10.6% and 8.4%-15.5%, respectively,compared with that in CT. Of which, the increments of available K were the biggest.Straw returning also produced certain buffer and regulating effects on available N in soil.In CTS treatment, available N content in soil decreased to some degree at the earlierstage of treatment, but increased significantly at the later stage. Straw returning providedadequate energy and carbon sources for the aggregation of soil microorganisms, whichwas helpful to the validation of available P and K, especially at the later stage. Strawreturning increased soil microbial biomass nitrogen content. When wheat was harvested,soil microbial biomass N was highest in CTS, but when rice was harvested, that washighest in NTS. Both were twice as much as under CT.
     4. Rice straw embedded into soil layer in wheat field decomposed faster than mulchedon the surface. And the highest decomposition rate was detected at the embedding depthof 14cm. This indicated that the closer contact between soil and straw was helpful tostraw decomposition. Owing to the water layer, higher moisture and temperature in ricefield, the wheat straw embedded in rice field decomposed faster than the rice strawembedded wheat field. Through the decomposition of one cropping season, the residualrates of the rice straw in wheat field and that of embedded the rice straw in wheat fieldwere 60% and 40%, respectively. While the residual rates of wheat straw in rice field andthe residual rates of embedded wheat straw in rice field were 25% and 20%, respectively.Compared with CTS, NTS fixed more nitrogen, produced less nitrogen for wheat andrice growth, but it increased the utility rate of nitrogen. Through decomposition, C/Nratio decreased due to the loss of total C. The C/N ratio of rice straw in surface layer ofwheat field remained high, while that of wheat straw was the lowest in surface layer andwas the highest in mid-layer of rice field. The C/N ratios of crop straws at earlydecomposition stage were not significantly affected by embedding depth but were closerelated to their initial nitrogen contents. The C/N ratio of rice and wheat straw after onecropping season was around 30 and 15, respectively, higher than that in humus, whichindicated that the decomposition process was not fully accomplished.
     5. Straw returning inhibited the germination and emergence rate in wheat, which led toa smaller population of basic seedlings. Straw returning also made the damage offreezing to wheat seedlings more serious. Dry matter accumulations in wheat in NTS andNTH were lower than that in CT, i.e. 15% less in average was detected at the ripeningstage. But no significant differences were observed between NTS and NTH, CTS and CT.Due to slightly lower content of N and P in wheat grains, the total accumulations of N, P and K under NTS and NTH were 20% lower in average than that under CTS and CT.Under the same planting date and seeding amount, the number of spikes under NTS andNTH was smaller, but the kilo-grain weight was higher. The grain yield was slightly butnot significantly lower under NTS in the first year. With more lodged stubble and weedsin the second and third year of no-tillage, which affected wheat germination and seedlingemergence, leading to a significant decrease in wheat yield. On average,the grain yield inNTS treatment was 7.27% lower than that in CT. In order to increase grain yield, seedingmethod must be optimized, or rotation tillage must be adopted. Compared with CT,wheat yield of CTS was higher or lower in different years. But the average yield in 3years was 1% lower than that of CT. The wheat test weight under NTS was low, but flourrate was high, with the best commercial quality. When the soil was infertile, the crudeprotein content and wet gluten content tended to decrease. While NTS and CTS increasedthe crude protein content and wet gluten content, which was beneficial to theoptimization of wheat commercial quality.
     6. Compared with CT, NTS and NTH reduced the height of rice plants, leaf area perplant and the biomass of rice plants, but the treatments accumulated the biomass morequickly at the later stage. As for dry matter accumulation in rice, CTS was lower than CT,especially at the elongation stage, and NTS was also lower than NTH. With rice growth,the content of N, P and K in rice plants decreased gradually. At the ripening stage, thedifference of the content of N in rice plants between NTS and CTS was insignificant. Butthe content of N in both rice plants and rice grains under NTS and CTS was significantlyhigher than CT. At the ripening stage, the content of P and K under NTS and NTH washigher than CT. The accumulated content of N, P and K under NTS and CTS was higherthan NTH and CT, but the differences between NTS and CTS, NTH and CT were bothinsignificant. If the problems of seedlings erectness and weeding could be solved, therice yield under NTS and NTH could be as high as, or even slightly higher than thatunder CT. In all treatments, the rice yield under CTS was the highest, 3% higher than CTon average. The rice yield under NTS was also high, 0.8-3.1% higher than CT in average.When the difference between the number of spikes per unit area was not significant, thenumber of kernel per spike under NTS and NTH was smaller, but the kilo-grain-weightwas higher, and the rice yield was also higher than CT. The main reason was that rootactivity under NTS and NTH was higher, and more dry matter was accumulated at thelater stage, and the resistance to diseases and insects was also stronger. Rice under NTSand NTH enhanced the processing quality and eternal quality significantly, thepercentage of brown, milled and head rice increased while chalky rice and chalkinessdecreased. CTS also increased percentage of head rice and slightly reduced chalky riceand chalkiness. The cooking quality of NTS and NTH was improved due to the increaseof protein, decline of amylose content and the increase of gel consistency of rice starch, while CTS increased both protein and amylose contents and decreased gel consistency,which contributed to the decline in quality of cooked rice.
     7. The comprehensive evaluation of soil fertility indicated that nutrient fertility index(NFI), was the highest under NTS, and was the lowest under CT. But integrated fertilityindex (IFI) was the highest under CTS, and was the lowest under NTH, as for IFI wasmainly affected by the bulk density. IFI could be used as the index of soil actualsustainable productivity, while NFI could be used to indicate soil potential sustainableproductivity. CTS could maintain the highest soil sustainable productivity, while NTShad the highest soil potential sustainable productivity.
     Wheat yield under NTS and NTH was relatively low, but rice yield increased to someextent. But the total yield of rice and wheat under NTS and NTH was higher than that ofCTS and CT, considering wheat yield in rice seedling field. Technically and economically,NTS and NTH could increase the total yearly productivity and increase the total incomeas long as NTS and NTH technology was extended to individual farmers. Highest yearlyproductivity and yearly economic productivity were observed under NTS. NTH took the2nd place. CTS was in the 3rd place, while CT was the lowest. Compared with CT, CTSachieved a higher yield and productivity. Considering the effects of CTS on soil fertilityand the decreased fertilizer usage, the efficiency was obsolutely obvious.
     The targets of modern agriculture are high yield, high quality and sustainabledevelopment. In this paper, comprehensive appraisal system was proposed to give a fairevaluation to the yearly productivity of rice and wheat under different rice and wheatdouble cropping systems. In the system, the yield and output were selected as the indicesto evaluate yielding ability, the total cost and the total pure income were selected as theindices to evaluate efficiency, NFI and IFI were selected as the indices to evaluate thecapability of sustainable development. Based on the importance of yield, efficiency andsustainable development, the weight of them was 35%, 35% and 30%, respectively. Inyielding ability, 20% was given to yield, and 15% was given to the total output. Inefficiency, 15% was given to the total cost, and 20% was given to the total income. Insustainable development, 10% was given to NFI, and 20% was given to IFI. According tothis evaluation system, 4 types of tillage and cultivation methods were evaluated. Theappraisal results indicated that NTS got the highest score, and the yearly productivity wasthe highest. NTH took the 2nd place. CTS took the 3rd place. CT was the last.
引文
1.刘巽浩.耕作学[M].北京:中国农业出版社,1994.210-247.
    2.赵强基,Carrity DP.菲律宾以稻为基础种植制度生态学评价.Ⅰ 各类种植方式的养分平衡[J].作物学报,1993,19(5):402-411
    3.金石桥.我国耕作制度改革对农业发展做出巨大贡献[J].中国农技推广 1999,5:6-7
    4.章秀福,于三丹英[J].中国稻米.2003,2:3-5
    5.江苏省农林厅编.江苏农业发展史略.江苏科学出版社 1992.147-148
    6.凌启鸿.中国农学通报[J].2003,19(4):1-6
    7.董百舒,王振忠,许学前,等.江苏稻麦两熟田稻季的合理耕作及轮耕制[J].耕作与栽培,1992,3:6-10.
    8.黄细喜,刘世平,陈后庆,等.江苏稻麦复种合理轮耕制的研究[J].土壤学报,1993,30(1):9-18.
    9.赵强基,郑建初.90年代江苏耕作制度面临的挑战与对策[J].耕作与栽培.1995,1:12-15,23
    10.谷茂,潘静娴.论我国耕作制度发展与农业资源高效利用[J].山西农业大学学报.1999,19(3):234-237
    11.段红平.中国南方耕作制度面临的主要问题与研究现状[J].耕作与栽培.2000,6:1-5
    12.陈阜.我国农作物栽培与耕作制度科技新进展[J].耕作与栽培.2001,6:1-2,37
    13.邹应斌.国外作物免耕栽培的研究与应用[J].作物研究,2004,3:127-132.
    14. Derpsch R, Moriya K. Implications of no-tillage versus soil preparation on sustainability of agricultural production[J].Advances in Geoecology, 1998, 31: 1179-1186.
    15. West L T. Cropping system and consolidation effects on rill erosion in the Georgia Piedmont[J]. Soil Sci Soc Am J, 1992, 56(4): 1238-1243.
    16. Bear M H. Water-stable aggregate and organic matter fraction in conventional and no-tillage soil. [J] Soil Sci Soc Am J, 1994, 58(3): 777-786.
    17. Bear M H. Aggregate protected and unprotected organic matter pools in conventional and no-tillage soil[J]. Soil Sci Soc Am J, 1994, 58(3): 787-795.
    18. Jones O R, Hanser V L.No-tillage effects on infiltration, runoff and water conservation on dry land[J].American Society of Agriculture engineers, 1994, 37(2): 473-479.
    19. Dick W A. Surface hydrologic response of soils to no-tillage[J]. Soil Sci Soc Am J, 1989, 53(5): 1520-1526.
    20. Edwards W M. Tillage studies with a corn-soybean rotation: hydrologic and sediment loss[J]. Soil Sci Soc Am J, 1993.57(4): 1051-1055.
    21. Hammel J E. Long term tillage and crop rotation effects on bulk density and soil impedance in northern Idaho[J]. Soil Sci Soc Am J, 1989, 53: 1551-1519.
    22. Bruce R R. Tillage and crop rotation effect on characteristics of sands surface soil[J]. Soil Sci Soc Am J, 1990, 54(6): 1744-1747.
    23. Steiner J L. Tillage and surface residue effects on evaporation from soils[J]. Soil Sci Soc Am J, 1989, 49: 728-733.
    24. Thrih H D. Tillage and winter wheat residue management effects on water infiltration and storage[J]. Soil Sci Soc Am J, 1993, 57: 1586-1595.
    25. Teasdale J R. Light transmittance, soil temperature and soil moisture under residue of hairy vetch and rye[J]. Agron J, 1993, 85(3): 673-680.
    
    
    26. Deen W. Kataki P K. Carbon sequestration in a long-term conventional versus conservation tillage experiment[J] . Soil & Tillage Res, 2003, 74: 143-150.
    
    27. Heenan D P, Chan K Y, Knight P G. Long-term impact of rotation, tillage and stubble management on the loss of soil organic carbon and nitrogen from a Chromic Luvisol[J]. Soil & Tillage Res, 2004, 76(1): 59-68.
    
    28. Sainju U M, Singh B P, Hitehead W. Long term effects of tillage, cover crops, and nitrogen fertilization on organic carbon and nitrogen concentration in sandy loam soils in Georgia[J]. Soil & Tillage Res, 2002, 63(3-4): 167-179.
    
    29. Sistic P J, Dos Santos H P, Kohhann R, et al. Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil [J]. Soil & Tillage Res, 2004, 76(1): 39-58.
    
    30. Tracy P W. Carbon, nitrogen, phosphorus and sulfur mineralization in plow and no-till arltiration[J]. Soil Sci Soc Am J, 1990, 54(2): 457-461.
    
    31. Dalai, R L. Long-term effects of no-tillage crop residue and nitrogen application on properties of avertisol[J]. Soil Sci Soc Am J, 1989, 53(3): 1511-1515.
    
    32. Blevins, R L. Tillage effects on sediment and soluble nutrient losses from a Maury silt loam soil[J].J Environ Qual.1990, 19(4): 683-686.
    
    33. Lupwayi N Z, Arshad M A, Rice W A, et al. Bacterial diversity in water-stable aggregates of soils under conventional and zero tillage[J].Applied Soil Ecology, 2001, 16: 251-261.
    
    34. Lupwayi N Z, Rice W A, Clayton G W, et al. Soil microbial biomass and carbon dioxide flux under wheat as influenced by tillage and crop rotation[J].Can J Soil Sci, 2004, 79(2): 273-280.
    
    35. Doran J W. Soil microbial and biochemical changes associated with reduced tillage[J]. Soil Sci Soc Am J, 1980, 44: 765-771.
    
    36. Doran J W. Microbial changes associated with reduced management with reduced tillage[J]. Soil Sci Soc Am J, 1980, 44: 518-524.
    
    37. Edwards W M. Role of lumbriens terrestrials burrows on quality of infiltration water[J]. Soil Biol Biochem, 1992, 24(2): 1555-1561.
    
    38. Hendrix P F. Abundance and distribution of earthworm in relation to landscape factors on The Georgia Piedmont, U.S.A[J], Soil Boil Biochem, 1992, 24(12): 1357-1361.
    
    39. Derksen D A, Blackshaw R E, Boyetchko S M. Sustainability, conservation tillage and weeds in Canada[J]. Can J Plant Sci, 1996, 76: 651-659.
    
    40. Teresa Mas, Antoni MC Verdu. Tillage system effects on weed communities in a 4-year crop rotation under Mediterranean dryland conditions[J]. Soil & Tillage Res, 2003, 74: 15-24.
    
    41. Lopez-bellido L. Long-term tillage, crop rotation, and nitrogen fertilizer effects on wheat yield under rainfed mediterranean conditions[J]. Agronomy Journal, 1996, 88(5): 783-791.
    
    42. Lindwall C W, et al. Rotation, tillage and seeder effects on winter wheat performance and soil moisture regime[J]. Can J Soil Sci,1995, 75: 109-116.
    
    43. 陈军胜,苑丽娟,呼格.吉乐图.免耕技术研究进展[J].中国农学通报,2005,21(5):184-190
    44.邵达三,黄细喜,陶嘉玉,等.南方水田少(免)耕法研究报告[J].土壤学报,1985,22(4):305-319.
    45.魏朝富.垄作免耕下稻田土壤团聚体和水热状况变化的研究[J].土壤学报,1990,27(2):171-177.
    46.刘世平,庄恒扬,陆建飞,等.免耕法对土壤结构影响的研究[J].土壤学报,1998,35(1):33-37.
    47.黄细喜.土壤自调性与少免耕法[J].土壤通报,1987,18(3):111-114.
    48.庄恒扬,刘世平,沈新平,等.长期少免耕对稻麦产量及土壤有机质、容重的影响[J].中国农业科学,1999,32(4):39-44.
    49.谢德体,曾觉廷.水田自然免耕土壤孔隙状况研究[J].西南农业大学学报,1990,12(4):394-397.
    50.朱文珊,高文超.北方一年两熟地区秸秆覆盖免耕技术原理及应用效果研究[G].//牟正国.中国少耕免耕与覆盖技术研究.北京:北京科学技术出版社,1991:11-21.
    51.张海林,陈阜,秦耀东,等.覆盖免耕夏玉米耗水特性的研究[J].农业工程学报,2002,18(2):36-40.
    52.李玲玲,黄高宝,张仁险,等.不同保护性耕作措施对旱作农田土壤水分的影响[J].生态学报,2005,25(9):2326-2332.
    53.袁家富.麦田秸秆覆盖效应及增产作用[J].生态农业研究,1996,4(3):61-65.
    54.周凌云.农田秸秆覆盖节水效应研究[J].生态农业研究,1996,4(3):49-52.
    55.高亚军,黄东迈,朱培立,等.水旱轮作地区免耕的肥力效应[J].耕作与栽培,2000,(5):2-3,7.
    56.高亚军,黄东迈,朱培立,等.稻麦轮作条件下长期不同土壤管理对氮素肥力的影响[J].土壤学报,2000,37(4):456-463.
    57.冯跃华,邹应斌,王淑红,等.免耕对土壤理化性状和直播稻生长及产量形成的影响[J].作物研究,2004,(3):137-140.
    58.高明,张磊,魏朝富,等.稻田长期垄作免耕对水稻产量及土壤肥力的影响研究[J].植物营养与肥料学报,2004,10(4):343-348.
    59.刘鹏程.稻草覆盖还田培肥地力的试验研究[J].土壤肥料,1993(1):35-36.
    60.余晓鹤.土壤表层管理对部分土壤化学性质的影响[J].土壤,1990,22(2):158-161.
    61.王昌全,魏成明,李廷强,等.不同免耕方式对作物产量和土壤理化性状的影响[J].四川农业大学学报,2001,19(2):152-154,187.
    62.徐阳春,沈其荣,雷宝坤,等.水旱轮作下长期免耕和施用有机肥对土壤某些肥力性状的影响[J].应用生态学报,2000,11(4):549-552.
    63.黄东迈.免耕少耕条件下土壤肥力与施肥[J].土壤通报,1988,19(2):93-97.
    64.高云超,朱文珊,陈文新.秸秆覆盖免耕对土壤细菌群落区系的影响[J].生态科学,2000,9:27-32.
    65.殷士学.免耕法对土壤微生物和生物活性的影响[J].土壤学报,1992,29(4):370-375.
    66.谢德体,陈绍兰,魏朝富,等.水田不同耕作方式下土壤酶活性及生化特性的研究[J].土壤通报,1994,25(5):196-198.
    67.高明,周保同,魏朝富,等.不同耕作方式对稻田土壤动物、微生物及酶活性的影响研究[J].应用生态学报,2004,15(7):1177-1181.
    68.徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报,2002,39(1):89-96.
    69.李华兴,卢维盛,刘远金,等.不同耕作方法对水稻生长和土壤生态的影响[J].应用生态学报,2001,12(4):553-556.
    70.高云超,朱文珊,陈文新.秸秆覆盖免耕对土壤细菌群落区系的影响[J].生态科学,2000,9:27-32.
    71.黄伦先,沈世华.免耕生态系统中土壤动物对土壤养分影响的研究[J].农村生态环境,1996,12(4):8-10,14.
    72.区伟明,陈润珍,黄庆.水稻免耕抛秧经济效益及生态效益分析[J].广东农业科学,2000,(6):5-6.
    73.陈素英,张喜英,刘孟雨.玉米秸秆覆盖麦田下的土壤温度和土壤温度动态规律[J].中国农业气象,2002,4:34-37.
    74.刘军,黄庆,付华,等.水稻免耕抛秧高产稳产的生理基抽研究[J].中国农业科学,2002,35(2):152-156.
    75.刘怀珍,黄庆,李康活,等.不同耕作方法对抛秧稻的群体结构和土壤理化性状的影响[J].耕作与栽培,2003,(3):7-9,14.
    76.韦柏林,杨为芳,黄业葵,等.浦北县水稻免耕抛秧技术示范[J].广西农业科学,2004,35(4):290-291.
    77.沈新平,黄丽芬,庄恒扬,等.免耕水稻早发及产量形成特性研究[J].扬州大学学报(自然科学版),1998,1(4):41-44.
    78.刘敬宗,李云康.杂交水稻免耕抛秧栽培技术研究初报[J].杂交水稻,1999,14(3):33-34.
    79.高明,车福才,魏朝富,等.垄作免耕稻田水稻根系生长状况的研究[J].土壤通报,1998,29(5):236-238.
    80.刘然金,杜金泉水稻少免耕技术研究:水稻少免耕增产机制的探讨[J].西南农业学报,1998,11(2):45-51.
    81.陶诗顺.麦后免耕直播杂交水稻的生育特性及产量研究[J].西南科技大学学报,2003,18(3):61-64.
    82.胡国强,陈正龙,周铭成.麦茬少免耕直播稻生育特性及栽培策略研究[J].江苏农业科学,2004,(1):19-21.
    83.朱自玺,赵国强,邓天宏,等.秸秆覆盖麦田水分动态及水分利用效率研究[J].生态农业研究,2000,8(1):34-37.
    84.温玉辉,陈景勇,杨悦林,等.晚稻免耕抛秧高产机理研究[J].佛山科学技术学院学报(自然科学版),2002,20(2):73-76.
    85.黄小洋,黄国勤,余冬晖,等.免耕栽培对晚稻群体质量及产量的影响[J].江西农业学报,2004,16(3):1-4.
    86.黄国勤,黄小洋,张兆飞,等.免耕对水稻根系活力利产量性状的影响[J].中国农学通报,2005,21(5):170-173.
    87.顾克礼,蒋植宝,叶新华.麦秸还田麦田套稻新技术研究[G].//刘巽浩.秸秆还田的机理与技术模式.北京:中国农业出版社,2001:158-168.
    88.杨光立,李林,孙玉桃,等.湖南省稻草还田利用现状及利用模式[G].//刘巽浩.秸秆还田的机理与技术模式.北京:中国农业出版社,2001:169-177.
    89.卢维盛,李华兴,刘远金,等.不同耕作方法对抛秧水稻生长和氮素利用的影响[J].华南农业大学学报,2001,22(4):8-10.
    90.朱炳耀,黄永耀,黄建华,等.福建山区中稻免耕直播高产栽培技术研究[J].福建农业科技,1999,(6):6-7.
    91.王振忠,董百舒,许学前.“久免需耕”——再谈轮耕的意义[J].江苏农业科学,1995,(5):43-45.
    92.刘世平,庄恒扬,沈新平,等.苏北轮作轮耕作轮培优化模式的研究[J].江苏农学院学报,1996,17(4):31-37.
    93.曹国良,张小曳,郑方成,等.中国大陆秸秆露天焚烧的量的估算[J].资源科学,2006,28(1):9-13.
    94.况陵生.麦秆还田对提高土壤肥力效应的研究[J].土壤肥料,1986,(2):26-30.
    95.赵兰坡.施用作物秸秆对土壤的培肥作用[J].土壤通报,1996,27(2):76-78.
    96.陈子明.几种秸秆作肥料对提高作物产量和改良土壤的效果[J].土壤肥料,1986,(4):25.
    97.黄玉俊,杨秀华.秸秆肥与化肥培肥对土壤肥力和水稻产量的影响[J].土壤肥料,1988,(2):11-15.
    98.全国农技推广服务中心.中国有机肥料养分志[M].北京:中国农业出版社,1999.
    99.刘巽浩,王爱玲,高旺盛.实行作物秸秆还田,促进农业持续发展[J].作物杂志,1998,(5):1-5.
    100.曾木祥,王蓉芳,彭世琪,等.我国主要农区秸秆还田试验总结[J].土壤通报,2002,33(5):336-339.
    101.曾木祥,张玉洁.麦秸翻压还田的适宜水分条件[J].土壤肥料,1993,(6):20-24.
    102.蒋新和,蒋云芳,周玲.小麦秸秆还田与化学氮肥配施技术探讨[J].作物杂志,1998,(4):11-12.
    103.陈永杰,郑立魁,杨小根.土壤旱地小麦秸秆覆盖量试验[J].山西农业科学,1992,(2):16-17.
    104.王树楼,丁玉川,王笳.旱地免耕不同秸秆覆盖量试验初报[J].山西农业科学,1992,(10):10-12.
    105.张翠珍,邵长泉,孙士宗,等.稻草还田改良滨海盐土的作用及增产效应[J].土壤肥料,1997,(1):25-27.
    106.曾江海,王智平,胡春胜,等.华北半湿润区土壤有机质分解与积累特征[J].土壤肥料,1996,(4):1-4.
    107.吴崇海,李振金,顾士领.高留麦茬的整体效应与配套技术研究[J].干旱地区农业研究,1996,14(1):43-48.
    108.周宪明,于福祥,王福平,等.麦收高留茬养地增产的研究[J].山东农业科学,1989,(2):27-29.
    109.钱宏兵,韩春贵,钱存进,等.稻麦秸秆直接还田技术的研究[J].土壤肥料,1998,(2):26-28.
    110.刘善江.秸秆配施不同氮量对土壤供氮能力的影响[J].北京农业科学,1992,10(2):28-32.
    111.刘臧珍,王淑敏,杨丽琳.秸秆还田添加氮素调节碳氮比的研究[J].河北农业大学学报,1995,18(3):31-35.
    112.杨志谦,王维敏.秸秆还田后碳、氮在土壤中的积累与释放[J].土壤肥料,1991,(5):43-46.
    113.杨贵,高巨.水稻秸秆还田技术[J].土壤肥料,2004,(2):22-23.
    114.须湘成,张继宏,佟国良,等.有机物料在不同土壤中腐解残留率的研究[J].土壤通报,1985,16(1):21-26.
    115.迟凤琴.不同农作物残体在土壤中分解规律的研究[J].黑龙江农业科学,1990,(6):35-36.
    116.张璐,沈善敏,廉鸿志,等.有机物料中有机C、N矿化进程及土壤供N力研究[J].土壤通报,1997,28(2):71-73.
    117.王文山,王维敏,张镜清,等.农作物残体在北京农田土壤中的分解[J].土壤通报,1989,20(3):113-115,112.
    118.史奕,张璐,鲁彩艳,等.不同有机物料在潮棕壤中有机碳分解进程[J].生态环境 2003,12(1):56-58.
    119.李新举,张志国,李贻学.土壤深度对还田秸秆腐解速度的影响[J].土壤学报,2001,38(1):135-138.
    120.沈佳音,张悟民.稻秆深施与面施对养分释放的影响及其增产效果[J].土壤肥料,1999(3):42-43.
    121.张洪源,刘明钟,等.有机物料在旱地土壤中分解规律的研究[J].土壤肥料,1986,(4):7-11.
    122.郑立臣,解宏图,张威等.秸秆不同还田方式对土壤中溶解性有机碳的影响[J].生态环境,2006,15(1):80-83
    123.吴敬民,许文元,董百舒.秸秆还田效果及其在土壤培肥中的地位[J].土壤通报,1991,22(5):211-215.
    124.孙海国,雷浣群.植物残体对土壤结构性状的影响[J].生态农业研究,1998,6(3):39-42.
    125.张振江.长期麦秆直接还田对作物产量与土壤肥力的影响[J].土壤通报,1998,29(4):154-155.
    126.许慰暌,陆炳章.应用免耕覆盖法改良新垦盐荒地的效果[J].土壤,1990,22(1):17-19.
    127.许国钧,崔钦.秸秆还田的作用与生产中几个运用问题的探讨[J].土壤肥料,1991,(4):30-32.
    128.吉建国,石佑华,熊伟,等.苗后行间铺草对小麦生长及土壤肥力的影响[J].土壤通报,1994,25(6):276-277.
    129.汪炎炳,徐建文.秸秆运田培肥改土试验研究[J].土壤通报,1991,22(4):171-173.
    130.魏廷举,耿全胜.秸秆还田是提高土壤肥力的有效途径[J].黑龙江农业科学,1992,(1):30-33.
    131.邓力群,陈铭达,刘兆普,等.地面覆盖对盐渍土水热盐运动及作物生长的影响[J].土壤通报,2003,34(2):93-97.
    132.巫东堂,周怀平.旱地麦田不同时期秸秆覆盖的效应[J].山西农业科学,1990,(6):7-10.
    133.孙海国,任图生.直立作物残茬和整株秸秆覆盖对麦田土壤湿度及温度的影响[J].干旱地区农业研究,1996,14(2):1-4.
    134.洪春来,魏幼璋,黄锦法,等.秸秆全量直接还田对土壤肥力及农田生态环境的影响研究[J].浙江大学学报(农业与生命科学版),2003,29(6):627-633.
    135.李存和,傅慧铭.机械粉碎秸秆直接还田技术效应[J].山西农业科学,1990,(9):19-20.
    136.陈述悦,李俊,陆佩玲,等.华北平原麦田土壤呼吸特征[J].应用生态学报,2004,15(9):1552-1560.
    137.张庆忠,吴文良,王明新等.秸秆还田和施氮对农田土壤呼吸的影响[J].生态学报,2005,25(11):2883-2887
    138. Jacinthe P A, Lai R, Kimble J M.Carbon budget and seasonal carbon dioxide emission from a central ohio luvisol as influenced by wheat residue amendment[J].Soil & Tillage Research, 2002, 67: 147-157.
    139. Schutz H, et al. A 3-years continuous record on the influence of daytime, season and fertilizer treatment on methane emission rates from an Italian rice paddy.CH_4 emission J.Geophys Res. 1989, 94: 16405-16416.
    140. Khalil M A K, et al. Emissions of trace gases from chinese rice fields and biogas generation: CH4, CO, CO2, chlorocarbons and hydrocarbons[J]. Chemosphere. 1990, 20: 207.
    141.徐雨昌,王增远,李震,等.施肥对两种水稻土甲炕生产力的影响.作物学报,1997,23(2):137-143.
    142.巫新民,薛军红,管恕才.农田覆盖的土壤水分状况及其增产作用的探讨[J].干旱地区农业研究,1990,(4):92-97.
    143.赵聚宝,梅旭荣,薛军红,等.秸秆覆盖对旱地作物水分利用效率的影响[J].中国农业科学,1996,29(2):59-66.
    144.周凌云,徐梦雄.秸秆覆盖对麦田耗水量与水分利用率影响的研究报[J].土壤通报,1997,28(5):205-206.
    145.王栓庄,徐树贞.麦田秸秆覆盖的作用及其节水效应的初步研究[J].干旱地区农业研究,1989,(2):8-15.
    146.严慧峻,魏由庆.盐渍土麦秸还田效应研究初探[J].土壤肥料,1993,(5):15-17.
    147.李新举,张志国,李永昌,等.秸秆覆盖对盐渍土水分状况的影响[J].干旱地区农业研究,1998,16(3):53-58.
    148.王珂.土壤耕作与农业非点源污染[J].耕作与栽培,1996,(2):15-17.
    149.孟凡乔,吴文良,辛德惠.高产农田土壤有机质、养分的变化规律与作物产量的关系[J].植物营养与肥料学报,2000,6(4):370-374
    150.文启孝.土壤有机质的组成、形成和分解[J].土壤,1984,16(4):121-129.
    151.彭祖厚,唐德琴.秸秆还田在培肥地力上的作用[J].土壤肥料,1988,(2):11-15.
    152.关连珠,张伯泉,颜丽,等.有机肥料配施化肥对土壤有机质组分及生物活性影响的研究[J].土壤通报,1990,21(4):180-184.
    153.金成龙,孙宏文.稻草还田定位试验总结[J].黑龙江农业科学,1987,(5):41-43,32.
    154.史吉平,张大道,林葆.长期施肥对土壤有机质及生物学特性的影响[J].土壤肥料,1998,(3):7-11.
    155.杨晶秋,刘金城,白成云.秸秆对北方耕地土壤有机碳的贡献[J].干旱地区农业研究,1991,(1):46-51.
    156.杨玉爱.我国有机肥料研究及展望[J].土壤学报,1996,33(4):414-420.
    157. Woods L E, Schuman G E.Influence of soil organic matter concentrations on carbon and nitrogen activity[J].Soil Sci Am J, 1986, 50: 1241-1245.
    158.沈其荣.有机物氮素的矿化特征及其与化学组成分的关系[J].南京农业大学学报,1992,15(1):59-64.
    159.沈善敏.中国土壤肥力[M].北京:中国农业出版社,1998
    160.鲁彩艳,陈欣.不同施肥处理土壤及不同C/N比有机物料中有机N的矿化进程[J].土壤通报,2003,32(4):267-270.
    161.张璐,沈善敏,廉鸿志,等.有机物料中有机碳、氮矿化进程及土壤供氮力研究[J].土壤通报,1997,28(2):71-73.
    162.艾应伟,刘学军,张福锁,等.不同覆盖方式对旱作水稻氮肥肥效的影响[J].植物营养与肥料学报,2003,9(4):416-419.
    163.柯福源,汪寅虎,张明芝,等.麦秆运田条件下水稻对氮肥的吸收研究[J].土壤通报,1990,21(4):176-179.
    164.张电学,韩志卿,刘微,等.不同促腐条件下秸秆直接还田对土壤养分时空动态变化的影响[J].土壤通报,2005,(36) 3:360-364.
    165.焦燕,黄耀,宗良纲,等.不同水稻土水稻生长季施用秸秆对后季麦田N2O排放的影响[J].南京农业大学学报,2004,27(1):36-40.
    166.潘志勇,吴文良,刘光栋,等.不同秸秆还田模式与氮肥施用量对N2O排放的影响[J].土壤肥料,2004,(5):6-8.
    167.劳秀荣,孙伟红,王真,等.秸秆还田与化肥配合施用对土壤肥力的影响[J].土壤学报,2003,40(4):618-623.
    168.王旭东,李祖荫,张一平.不同有机物料施入土壤后的磷素转化及其供磷能力的差异[J].土壤通报,1998,29(3):113-115.
    169.曹翠玉,张亚丽,沈其荣,等.有机肥料对黄潮土有效磷库的影响[J].土壤,1998,30(5):235-238.
    170.范丙全,刘巧玲.保护性耕作与秸秆还田对土壤微生物及其溶磷特性的影响[J].中国生态农业学报,2005,13(3):130-132.
    171.程宪国,王维敏.麦秸翻压对土壤磷组分的影响[J].土壤通报,1991,22(6):254-256.
    172.胡红青,王清洲,李淼泉,等.荆门市小麦地稻草覆盖增产作用及机理[J].土壤肥料,2004,(5):30-32.
    173.罗奇祥,涂枕梅,等.稻秆还田对水稻钾素营养的影响[J].土壤肥料,1986,(1):15-18.
    174.曹荣祥,王志明,童晓利,等.稻麦轮作制中秸秆钾与化肥钾利用的研究[J].土壤肥料,2000,(4):23-26.
    175.钟杭,张勇勇,林潮澜,等.麦稻秸秆全量整草免耕还田方法和效果[J].土壤肥料,2003,(3):34-37.
    176.尹道明,谢凤根,景金富,等.稻草艮期还田的培肥及供钾效果[J].土壤通报,1995,26(6):253-256.
    177.王振忠,李庆康,吴敬民,等.稻麦秸秆全量直接还田技术对土壤的培肥效应[J].江苏农业科学,2000,(4):47-49.
    178.沈裕琥,黄相国,王海庆.秸秆覆盖的农田效应[J].干旱地区农业研究,1998,16(1):45-50.
    179.陈怀满,郑春荣.植物物料对淹水土壤物理化学性质的影响[J].土壤,1989,21(5):234-238.
    180.杨长明,杨林章,颜廷梅.不同养分和水分管理模式对土壤生态环境的影响[J].农村生态环境,2002,18(3):11-15.
    181.郜翻身,崔志祥,樊润威,等.有机物料对盐碱化土壤的改良作用[J].土壤通报,1997,28(1):9-11.
    182.张锐,严慧峻,魏由庆,等.有机肥在改良盐渍土中的作用[J].土壤肥料,1997,(4):11-14.
    183.张春兰,张耀东,朱建春,等.施用稻草对防治保护地土壤盐渍化的作用[J].土壤,1994,26(3):146-148.
    184.高云超,朱文珊,陈文新.秸秆覆盖免耕土壤微生物生物量与养分转化的研究[J].中国农业科学,1994,27(6):41-49.
    185.王振忠,李庆康,吴敬民,等.稻麦秸秆全量直接还田技术对土壤的培肥效应[J].江苏农业科学 2000,4:47-49
    186.曾广骥,付尚志,等.秸秆直接还田对作物产量与土壤性质的影响[J].黑龙江农业科学,1985,(5):10-14.
    187.方正,徐海光,张立峰.秸秆直接还田的土壤生物学效应[J].河北农业大学学报,1991,14(1):19-22.
    188.李勇.试论土壤酶活性与土壤肥力[J].土壤通报,1989,20(4):190.
    189.赵哲权,王明九,刑建民.施用作物秸秆对土壤酶活性的影响[J].土壤肥料,1990,(3):28-29.
    190.王兆荣,王宏燕,种传立.有机物料的腐解及土壤有机质的调控[J].东北农学院学报,1991,22(4):307-313.
    191.强学彩,袁红莉,高旺盛.秸秆还田量对士壤CO2释放和土壤微生物量的影响[J].应用生态学报,2004,15(3):469-472.
    192.关松荫.土壤酶及其研究法[M].北京:农业出版社,1986,297-298.
    193.蒋剑敏.蚯蚓与土壤肥力[J].土壤,1985,17(4):169-176,181.
    194.王霞,胡锋,李辉信,等.秸秆还田情况下蚯蚓活动对稻麦轮作土壤磷素的影响[J].农业环境科学学报,2004,23(2):341-344.
    195.缪荣蓉,刁春友,张银贵.浅析覆盖稻草及秸秆还田对小麦纹枯病的控制作用[J].植保技术与推广,1998,18(4):10-12.
    196.马宗国,卢绪奎,万丽,等.小麦秸秆还田对水稻生长及土壤肥力的影响[J].作物杂志,2003,(5):37-38.
    197.徐新宇,张玉梅,等.秸秆盖田的微生物学效应及其应用的研究[J].中国农业科学,1985,18(5):42-49.
    198.王国忠,杨佩珍,陆峥嵘.秸秆还田对稻麦田间杂草发生的影响及化除效果[J].上海农业学报,2004,20(1):87-90.
    199.吴崇海,顾土领.小麦高留茬的经济效益与配套技术[J].土壤肥料,1996,(2):11-14.
    200. Donald A, Crutchfield, et al.Effect of winter wheat straw mulch level on weed control[J]. Weed Science, 1985, 34: 110-114.
    201.韩庆华,马永清.小麦秸秆中生化他感化合物研究概况[J].生态农业研究,19944,2(4):71-76.
    202.江永红,宇振荣,马永良.秸秆还田对农田生态系统及作物生长的影响[J].土壤通报,2001,32(5):209-213.
    203.薛坚,赵秉强.秸秆直接还田的定位研究[J].土壤肥料,1993,(2):27-29.
    204.谢凤根,龚景春,沈岳良,等.大麦田覆盖稻草的增产效果[J].土壤肥料,1995,(4):18-21.
    205.朱培立,李庆康,黄东迈,等.砂姜黑土不同耕作管理对稻后麦产量的影响[J].土壤肥料,1995,(4):21-25.
    206.陈世正,杨邦俊,宋光煜,等.稻草还田对土壤肥力与作物产量的影响[J].土壤肥料,1995,(4):13-17.
    207.杨思存,霍琳,王建成,等.秸秆还田的生化他感效应研究初报[J].西北农业学报,2005,14(1):52-56.
    208.王振忠,李庆康,吴敬民,等.稻麦两熟地区秸秆全量直接还田施肥技术的增产培肥效果[J].江苏农业学报,2003,19(3):151-156.
    209.樊庆笙.土壤微生物的保氮作用[J].土壤,1987,19(1):46-49.
    210.庄恒扬,曹卫星,沈新平,等.麦-稻两熟集约生产土壤养分平衡与调控研究[J].生态学报,2000,20(5):766-770.
    211.肖丽霞,解庆友,郑建渠,等.稻麦双套不同秸秆还田方式对作物产量及土壤肥力的影响[J].上海农业科技,2005,6:59-61.
    212.杨力,俞勇权,周正宽,等.超高茬麦套稻高效生产机理及其技术初探[J].江苏农业科学,2003,(2):7-9.
    213.张洪程,戴其根,钟明喜,等.稻田套播麦高产高效轻型栽培技术研究[J].江苏农学院学报,1994,15(4):19-23.
    214.张洪程,戴其根,钟明喜,等.稻田套播小麦机械化高产栽培研究初报[J].江苏农业科学,1996,(5):17-19.
    215.董百舒,夏源陵,胡兴安,等.套播麦的生育特点与创高产的对策[J].江苏农业科学,1994,(5):5-7.
    216.张善交.稻麦双撒套,亩产超吨粮[J].作物杂志,1994,(4):23-24.
    217.顾克礼.稻茬全免耕麦田氮肥运筹新技术研究[J].江苏农业科学,1998,(5):46-49.
    218.温怀楠,赵建平.套播小麦高产栽培主要农艺措施优化方案研究[J].安徽农业科学,2000,28(2):148-149.
    219.赵新华,段祥茂,于松溪.稻棵套播麦密肥技术探讨[J].作物研究,2002,16(1):19-21.
    220.顾克礼.超高茬麦套稻技术问答[M].北京:中国环境科学出版社,2002.
    221.陈后庆,沈新平,刘世平,等.麦田套播稻的产量形成特性的研究[J].江苏农学院学报,1994,15(4):30-33.
    222.樊宝洪,王宝银,曹家康,等.麦田套播稻的高产栽培技术探讨[J].江苏农业科学,1996,(1):10-13.
    223.茅国芳,褚金海.麦后免耕直播稻田的生态环境演变与对策[J].上海农业学报,1997,13(2):39-50.
    224.张华明,蔡惠荣,徐红艳.超高茬麦套稻的特点及其栽培技术研究[J].上海农业科技,2002,(5):35-36
    1.李新举,张志国,邓基先.免耕法对土壤生态环境的影响[J].山东农业大学学报,1998,29(4):520-526.
    2.杨学明,张晓平,方华军.北美保护性耕作及对中国的意义[J].应用生态学报,2004,15(2):335-340.
    3.高云超,朱文珊,陈文新.秸秆覆盖免耕土壤微生物生物量与养分转化的研究[J].中国农业科学,1994,27(6):41-49.
    4.刘世平,庄恒扬,陆建飞,等.免耕法对土壤结构影响的研究[J].土壤学报,1998,35(1):33-37.
    5.王小纯,王化岑,许新芳.不同耕种方式对沿黄稻茬麦田土壤因子及小麦生育的影响[J].应用生态学报,1996,7(增刊):27-32.
    6.徐阳春,沈其荣,雷宝坤,等.水旱轮作下长期免耕利施用有机肥对土壤某些肥力性状的影响[J].应用生态学报,2000,11(4):549-552.
    7.张志国,徐琪.长期秸秆覆盖免耕对土壤某些理化性质和玉米产量的影响[J].土壤学报,1998,35(3):384-391.
    8.巩杰,黄高宝,陈利顶,等.旱作麦田秸秆覆盖效应的研究[J].干旱地区农业研究,2003,21(3):69-73.
    9.江永红,宇振荣,马永良.秸秆还田对农田生态系统及作物生长的影响[J].土壤通报,2001,32(5):209-213.
    10.劳秀荣,吴子一,高燕春.长期秸秆还田改土培肥效应的研究[II].农业工程学报,2002,18(2):49-52.
    11.沈裕琥,黄相国,王海庆.秸秆覆盖的农田效应[J].干旱地区农业研究,1998,16(1):45-50.
    12.由懋正,张喜英.小麦留高茬覆盖的生态农业意义[J].生态农业研究,1999,7(2):53-54.
    13.曾木祥,张玉洁.秸秆还田对农田生态环境的影响[J].农业环境与发展,1997,14(1):1-7.
    14.李全胜,吴建军,土壤—植物下垫面对微生物环境的影响[J].应用生态学报,1999,10(2):241-244.
    15.李阜棣,喻子牛,何绍江.农业微生物实验技术[M].北京:.中国农业出版社,1996.117-119.
    16.鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    17.陈国潮,何振立,祝军,等.红壤微生物量氮的测定研究[J].土壤通报,1998,29(4):185-187.
    18. Drury C F, Tan C F, Welacky T W, et al. Red clover and tillage influence on soil temperature, water content, and corn emergence. Agron J, 1999, 91 (1): 101-108.
    19.赵聚宝,梅旭荣,薛军红,等.秸秆覆盖对旱地作物水分利用效率的影响[J].中国农业科学,1996,29(2):59-66.
    20.黄细喜.土壤紧实度和层次对小麦生长的影响[J].土壤学报,1988,25(1):59-65.
    21.亢青选,王解丑,需晓民,等.高麦茬覆盖复播效应及技术研究[J].华北农学报,1999,14(2):1-5.
    1.陈素英,马永清.五种作物之间的生化它感作用研究初报[J].耕作与栽培,1993,5:1-4,6.
    2.马永清,毛仁钊,刘孟雨,等.小麦秸秆的生化他感效应[J].生态学杂志,1993,12(5):36-38.
    3.孔垂华,胡飞.植物化感(相生相克)作用及其应用[M].北京:中国农业出版社,2001.
    4.方绮军,傅昀,程世清.植物之间生化他感作用的研究及其应用[J].云南农业大学学报,1999,14(2):206-210.
    5.宋君.植物间化感作用[J].生态学杂志,1990,9(6):43-47.
    6.王大力.水稻化感作用研究综述[J].生态学报,1998,18(3):326-334.
    7.杨志谦,王维敏.秸秆还田后碳、氮在土壤中的积累与释放[J].士壤肥料,1991,(5):43-46.
    8.曾木祥,张玉沾.秸秆还田对农田生态环境的影响[J].农业环境与发展,1997,14(1):1-7.
    9.须湘成,张继宏,佟国良,等.有机物料在不同土壤中腐解残留率的研究[J].土壤通报,1985,16(1):21-26.
    10.于文山,王维敏,张镜清,等.农作物残体在北京农田土壤中的分解[J].土壤通报,1989,20(3):113-115,112.
    11.张璐,沈善敏,廉鸿志,等.有机物料中有机C、N矿化进程及土壤供N力研究[J].土壤通报,1997,28(2):71-73.
    12.王维敏.麦秸、氮肥与土壤混合培养对氮素的固定、矿化与麦秸的分解[J].土壤学报,1986,23(2):97-104.
    13.陈欣,张璐,史奕,等.不同C/N有机物料中有机碳、氮的分解进程研究:Ⅰ.有机物料及有机碳分解进程[J].应用生态学报,2000,11(增刊):21-24.
    14.陈欣,张璐,史奕,等.不同C/N有机物料中有机碳、氮的分解进程研究:Ⅱ.有机N的分解进程及C/N比的变化[J].应用生态学报,2000,11(增刊):25-27.
    15.鲁彩艳,陈欣.不同施肥处理土壤及不同C/N比有机物料中有机N的矿化进程[J].土壤通报,2003,34(4):267-270.
    16.史奕,张璐,鲁彩艳,等.不同有机物料在潮棕壤中有机碳分解进程[J].生态环境,2003,12(1):56-58.
    17.李新举,张志国.秸秆覆盖与秸秆翻压还田效果比较[J].国土与自然资源研究,1999,(1):43-45.
    18.李新举,张志国,李贻学.土壤深度对还田秸秆腐解速度的影响[J].土壤学报,2001,38(1):135-138.
    19.沈佳音,张悟民.稻秆深施与面施对养分释放的影响及其增产效果[J].土壤肥料,1999(3):42-43.
    20.文启孝.土壤有机质研究法[M].北京:农业出版社,1984:285-286.
    1.黄细喜,刘世平,陈后庆,等.江苏省稻麦复种合理轮耕制的研究[J].土壤学报,1993,30(1):9-17.
    2.张洪程,戴其根,钟明喜,等.稻田套播麦高产高效轻型栽培技术研究[J].江苏农学院学报,1994,15(4):19-23.
    3.李成,何高,李斌,等.稻套麦大面积稳产500Ka群体形成指标及配套栽培技术研究[J].上海农业科技,2000,5:21-23.
    4.卞悦,汤章龙,潘国璋,等.稻套麦高产群体的培育及调控技术研究[J].上海农业科技,1999,16-18.
    5.徐建强,夏胜平,陶稚彪,等.晚稻茬套播小麦栽培技术探讨[J].江西农业科技,2001,4:13-15.
    6.汤永禄,黄钢,袁礼勋,等.稻茬麦免耕抑播稻草覆盖栽培技术研究[J].西南农业学报,2002,15(1):32-37.
    7.汤永禄,黄钢.免耕露播稻草覆盖栽培小麦的生物学效应分析[J].西南农业学报,2003,16(2):37-41.
    8.陈爱苹,赵玉山.影响小麦品质的因素及提高小麦品质对策[J].山西农业科学,2003,31(3):7-10.
    9.阎俊,何中虎.基因型、环境及其互作对黄淮麦区小麦淀粉品质性状的影响[J].麦类作物学报,2001,21(2):14-19.
    10.姚大年,刘广田,朱金宝,等.小麦品种粘度性状及其与面条品质的相关性研究[J].中国农业大学学报,1997,2(3):52-68.
    11.阎俊,张勇,何中虎.小麦品种糊化特性研究[J].中国农业科学,2001,34(1):1-4.
    1.李新举,张志国,邓基先.免耕法对土壤生态环境的影响[J].山东农业大学学报,1998,29(4):520-526.
    2.江永红,宇振荣,马永良.秸秆还田对农田生态系统及作物生长的影响[J].土壤通报,2001,32(5):209-213.
    3.曾小祥,王蓉芳,彭世琪,等.我国土要农区秸秆还田试验[J].土壤通报,2002,33(5):336-339.
    4.亢青选,王解丑,孟晓民,等.高麦茬覆盖复播效应及技术研究[J].华北农学报,1999,14(2):1-5.
    5.劳秀荣,吴子一,高燕春.长期秸秆还田改土培肥效应的研究[J].农业工程学报,2002,18(2):49-52.
    6.徐阳春,沈其荣,雷宝坤.水旱轮作下长期免耕和施用有机肥对土壤某些肥力性状的影响[J].应用生态学报,2000,11(4):849-552.
    7.庄恒扬,刘世平,沈新平,等.长期少免耕对稻麦产量及土壤有机质与容重的影响[J].中国农业科学,1999,32(4):39-44.
    8.章秀福,王丹英.我国稻麦两熟种植制度的创新与发展[J].中国稻米,2003,2:3-5.
    9.陈后庆,沈新平,刘世平,等.麦套稻生长发育及产量形成的研究[J].江苏农学院学报,1994,15(4):30-33.
    10.王宝银,曹家康.麦套稻生育特点与高产栽培技术初探[J].江苏农业科学,1996,(1):10-13.
    11.张永泰,谢云峰,李爱民,等.超高荐麦田套稻高产配套栽培技术探讨[J].安徽农业科学,2001,29(4):451-454.
    12.谢正荣,黄晓燕,沈小妹,等.超高荐麦套稻栽培技术模式研究初报[J].上海农业学报,2003,19(1):19-22.
    13.贾良良,陈新平,张福锁.作物氮营养诊断的无损测试技术[J].世界农业,2001(6):36-371.
    14.舒庆尧,吴殿星,夏英武,等.稻米品质RVA谱特征与食用品质的关系[J].中国农业科学,1998,31(3):25-29.
    15.张小明,石春海,富田桂.粳稻米淀粉特性与食昧间的相关性分析[J].中国水稻科学,2002,16(2):157-161.
    16.隋炯明,李欣,严松,等.稻米淀粉RVA谱特征与品质性状相关性研究[J].中国农业科学,2005,38(4):657-663.
    17.徐富贵,郑家奎,朱永川,等.灌浆期气温对籼型杂交中稻稻米整精米粒的影响[J].西南农业学报,2003,16(4):56-59.
    18.程方民,张嵩午,吴永常.灌浆结实期温度对稻米垩白形成的影响[J].西南农业学报,1996,5(4):31-34.
    19.夏建国,邓良基,谭宏,等.影响稻米品质的主要土壤生态因子研究[J].四川农业大学学报,2000,18(4):343-347.
    20.戴平安,周坤炉,黎用朝,等.土壤条件对优质食用稻品质及产量的影响[J].中国水稻科学,1998,12(增刊):51-57.
    21.刘世平,聂新涛,张洪程,等.稻麦两熟条件下不同土壤耕作方式与秸秆还田效用分析[J].农业工程学报,2006,7:49-52.
    22.李欣,顾铭洪,潘学彪.稻米品质研究Ⅱ.灌浆期间环境条件对稻米品质的影响[J].江苏农学院学报,1989,10(1):7-12.
    23.刘世平,陆建飞,单玉华,等.稻田轮耕土壤氮素矿化及土壤供氮量的研究[J].扬州大学学报(农业与生命科学版),2003,24(2):36-39.
    24.金正勋,秋太权,孙艳丽,等.氮肥对稻米垩白及蒸煮食味品质的影响[J].植物营养与肥料学报,2001,7(1):31-35.
    25.金军,徐大勇,蔡一霞,等.施氮量对水稻主要米质性状及RVA谱特征参数的影响[J].作物学报,2004,30(2):154-158.
    26.刘立军,徐伟,唐成,等.土壤背景氮供应对水稻产量和氮肥利用率的影响[J].中国水稻科学,2005,19(4):343-349.
    1.曹承绵.关于土壤肥力数值化综合评价的探讨[J].土壤通报,1983,(4):13-15.
    2.孙波,张桃林,赵其国.我国东南丘.陵山区土壤肥力的综合评价[J].土壤通报,1995,32(4): 362-369.
    3.骆伯胜,钟继洪,陈俊坚.土壤肥力数值化综合评价研究[J].土壤,2004,36(1):104-106.
    4.吕晓男,陆允甫,王人潮.浙江低丘红壤肥力数值化综合评价研究[J].土壤通报,2000,31(3):107-110.
    5.唐晓平.四川紫色土肥力的Fuzzy综合评判[J].土壤通报,1997,28(3):107-109.
    6.郑立臣,宇万太,马强,等.农田土壤肥力综合评价研究进展[J].生态学杂志,2004,23(5):156-161.
    7.陆建飞,霍中洋,许轲,等.稻田套播麦栽培方式的技术经济分析[J].江苏农学院学报,1998,19(1):11-16.
    8.谢正荣,黄晓燕,沈小妹,等.超高荐麦套稻栽培技术模式研究初报[J].上海农业学报,2003,19(1):19-22.
    9.张海泉,李育娟,钱海荣,等.太湖稻区超高茬麦(油)田套稻主要特性及配套栽培技术[J].耕作与栽培,2003,(3):10-11.
    10.陆允甫,吕晓男.中国测土施肥的进展利展望[J].土壤学报,1995,32(3):241-251.
    11.沈汉.土壤评价中参评冈素的选定与分级指标的划分[J].华北农学报,1990,5(3):63-69.
    12.刘巽浩.耕作学[M].北京:中国农业出版社.1994.
    1.孙耀邦.土壤耕作技术与应用[M].中国农业出版社,1995.
    2.张洪程,戴其根,钟明喜,等.稻田套播麦高产高效轻型栽培技术研究[J].江苏农学院学报,1994,15(4):19-23
    3.陈后庆,沈新平,刘世平,等.麦套稻生长发育及产量形成的研究[J].江苏农学院学报,1994,15(4):30-33
    4.黄细喜,刘世平,陈后庆,等.江苏稻麦复种合理轮耕制的研究[J].土壤学报,1993,30(1);9-17
    5.董百舒,王振忠,许学前,等.江苏稻麦两熟田稻季的合理耕作及轮培制[J].耕作与栽培,1992,3:6-10
    6.刘世平,庄恒扬,沈新平,等.苏北轮耕轮培优化模式研究[J].江苏农学院学报,1996,17(4):31-37
    7.赵诚斋.太湖地区水稻土的物理特性与少免耕的芙系[J].土壤学报,1989,26(2):101-107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700