用户名: 密码: 验证码:
基于光子混频的连续太赫兹辐射产生及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于光子混频的连续太赫兹辐射源具有线宽窄、可调谐范围宽、结构简单、室温工作及价格低等优点,在太赫兹光谱、成像及传感等方面具有广阔的应用前景,近年来成为国内外研究的热点之一。然而光子混频能量转化效率、光电导天线辐射效率等因素限制了该辐射源的实际应用。
     本文针对基于光子混频的连续太赫兹辐射产生及应用展开研究,主要包括低温GaAs光电导体辐射连续太赫兹波的系综蒙特卡罗模拟,光电导天线辐射电阻特性研究,太赫兹频段的双频偶极光电导天线的提出与优化以及连续太赫兹波图像增强算法研究等。本文的主要工作如下:
     1)介绍了太赫兹波产生与探测的相关方法以及太赫兹辐射的特性,列举了太赫兹辐射的典型应用。回顾了基于光子混频产生连续太赫兹辐射的国内外研究进展,并分析了该辐射源中存在的主要问题以及提高其辐射功率的主要途径。阐述了光电导天线产生连续太赫兹辐射的光子混频原理,并对光电导天线的基本特性以及光电导天线设计中所涉及的有限积分方法做了介绍。
     2)对低温GaAs光电导体的连续太赫兹辐射过程进行系综蒙特卡罗模拟,从微观角度研究了偏置电场和载流子寿命对连续太赫兹辐射强度的影响。首先阐述了GaAs材料性质及能带结构,而后对蒙特卡罗方法中的模拟要素作了简单介绍,然后根据光电导体的太赫兹辐射理论提出基于光子混频产生连续太赫兹辐射的系综蒙特卡罗模拟流程。模拟结果表明,由于空间电荷电场屏蔽效应以及散射等因素的影响,随着偏置电场的增强,太赫兹辐射强度先是随偏置电场的增强而上升,当达到峰值后逐渐趋于饱和。虽然降低温度使粒子发生散射的几率降低,但同时也减小了粒子的初始能量,故低偏置电场时低温下连续太赫兹辐射功率比常温下小,而当偏置电场超过某一阈值时,降低温度能够使连续太赫兹辐射功率增大。优化载流子寿命能够提高连续太赫兹辐射强度。
     3)研究了蝶形、螺旋和偶极这三种常用光电导天线的辐射电阻特性,计算结果表明,具有谐振特性的偶极光电导天线在其谐振频率附近的辐射电阻比其它两种宽带天线的辐射电阻大;虽然交叉电极光子混频器能够提高光电导天线能承受的激光功率,但对光电导天线在高频处的辐射电阻具有一定抑制作用。鉴于双频天线在材料识别以及太赫兹通信等领域的应用前景,提出了一种适用于太赫兹频段的双频偶极光电导天线结构。以辐射电阻和电学辐射特性为优化目标,对该光电导天线的主要结构参数进行优化,仿真结果表明设计的光电导天线具有在太赫兹频段的双频辐射特性。
     4)对制备的光电导天线进行了脉冲太赫兹辐射测试,并和国外公司制作的光电导天线进行了性能比较。以光电导天线作为太赫兹辐射源和探测器,搭建了基于光子混频的连续太赫兹波系统,对实验结果进行了分析。
     5)提出了一种结合小波去噪的多尺度图像增强算法。该算法先用拉普拉斯金字塔对连续太赫兹波图像进行多尺度分解,然后采用指数变换在空域对获得的细节图像进行对比度增强。为减小放大噪声的影响,在进行金字塔重构过程中对得到的近似图像用小波软阈值方法进行去噪,并对变换后的小波系数图像采用非线性变换以进一步增强图像细节。实验结果表明,结合小波去噪的多尺度图像增强算法有效地减小了噪声,且增强后的连续太赫兹波图像细节分明、边缘清晰,有利于后续的图像处理和识别。
Continuous-wave (CW) terahertz (THz) radiation source by photomixing has been an active area of research at home and abroad in recent years, because it has the advantages of narrow line-width, wide tunable range, simple structure, working at room temperature, and low price, and can be widely used in several applications, including terahertz spectroscopy, imaging and sensing, etc. However, the effects of energy conversion efficiency of photomixing, radiation efficiency of photoconductive antenna etc. limit its broad use in reality.
     Some researches on the generation and application of CW THz radiation by photomixing have been done in this dissertation, including ensemble Monte Carlo simulation of CW THz radiation from low-temperature grown GaAs (LT-GaAs) photoconductor, radiation impedance characteristics of photoconductive antennas, design and optimization of dual-band dipole antenna in the terahertz frequency range and CW THz images enhancement, etc. The main works of the dissertation are listed as follows:
     1) The methods of generating and detecting THz wave and its radiation properties are introduced, and the typical applications of THz radiation are listed. The recent advances in CW THz radiation by photomixing are reviewed, and the problems existed in this source and the ways to improve its radiation power are analyzed. The photomixing theory is then described, and the basic characteristics of photoconductive antenna and the finite integration technology (FIT) involved in antenna design are also introduced.
     2) Ensemble Monte Carlo method is used to simulate the procedure of radiating CW THz from LT-GaAs by photomixing, and the main factors affecting the intensity of CW THz radiation mostly, including bias electric field and carrier lifetime are studied from the microscopic view. The material properties and band structure of LT-GaAs are firstly presented, and then the elements involved in ensemble Monte Carlo simulation are briefly introduced. The simulation flowchart of radiating CW THz by photomixing is given. The simulation results show that, due to the effects of space charge screening and scattering, the intensity of CW THz radiation firstly increases as the bias electric field increases, and then saturates finally after reaching peak value; Although the possibilities of scattering drop as temperature reduces, the initial energy of photoexcited carrier decreases, so the power of CW THz radiation is lower at low temperature than at normal temperature when the bias electric field is weak, and becomes higher when the bias electric field is above a certain threshold. The simulation results also demonstrate that optimizing carrier lifetime can improve the intensity of CW THz radiation.
     3) The performance of the radiation impedance for three kinds of photoconductive antennas, including bow-tie antenna, spiral antenna and dipole antenna, are firstly studied. The computation results show that the radiation impedance of the dipole antenna at its resonant frequency is larger than those of the other two types of broadband antennas; although the interdigitated electrode photomixer can enhance the power of irradiated light that the photoconductive antenna can endure, it has inhibiting effect to the radiation impedance at high radiation frequency. A dual-band dipole antenna structure working within terahertz frequency range is then proposed considering its future use in material recognition and THz communication etc. The performance of radiation impedance and electrical characteristics are selected as objectives, and the main structure parameters of the photoconductive antenna are optimized. The simulation results show that the designed antenna has the property of dual-band radiation in the THz frequency range.
     4) The produced photoconductive antennas are tested by pulsed THz system and the performance is compared with that of the company abroad. The experimental platform of CW THz radiation by photomixing is built using photoconductive antennas as THz radiation source and detector. The experimental results are analyzed.
     5) A multi-scale image enhancement algorithm combining wavelet denoising is proposed. It performs multi-scale decomposition by building laplacian pyramids first, and then enhances detailed images by exponential transform in spatial domain. To remove the influence of enlarged image noises, the wavelet soft threshold method is used to denoise the approximation image when rebuilding the pyramids, and furthermore nonlinear transform is also adopted for image enhancement in wavelet domain. Several experimental results demonstrate that, the proposed algorithm can remove noise efficiently, and the enhanced THz images have clear details and sharped edges, which is useful for further image processing and recognition.
引文
[1]K. Kawase, Y. Ogawa, Y. Watanabe and H. Inoue. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints[J]. Optics Express,2003,11(20):2549-2554.
    [2]M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald and R. Tribe. Securtity applications of terahertz technology[C]//Proceedings of SPIE.2003,5070:44-52.
    [3]M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff and R. Buttner. Label-free probing of the bining state of DNA by time-domain terahertz sensing[J]. Applied Physics Letters,2000,77(24):4049-4051.
    [4]A. G. Markelz, A. Roitberg and E. J. Heilweil. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz[J]. Chemical Physics Letters, 2000,320(1-2):42-48.
    [5]P. Knobloch, C. Schildknecht, T. Kleine-Ostmann, M. Koch, S. Hoffmann, M. Hofmann, E. Rehberg, M. Sperling, K. Donhuijsen, G. Hein and K. Pierz. Medical THz imaging:an investigation of histo-pathological samples [J]. Physics in Medicine and Biology,2002, 47(21):3875-3884.
    [6]T. Kiwa, M. Tonouchi, M. Yamashita and K. Kawase. Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits[J]. Optics letters,2003,28(21): 2058-2060.
    [7]M. Yamashita, K. Kawase, C. Otani, T. Kiwa and M. Tonouchi. Imaging of large-scale integrated circuits using laser-terahertz emission microscopy[J]. Optics Express,2005, 13(1):115-120.
    [8]N. Karpowicz, H. Zhong, C. L. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu and X.-C. Zhang. Compact continuous-wave subterahertz system for inspection applications[J]. Applied Physics Letters,2005,86(5):054105-3.
    [9]Y. Morita, A. Dobroiu, K. Kawase and C. Otani. Terahertz technique for detection of microleaks in the seal of flexible plastic packages[J]. Optical Engineering,2005,44(1): 019001-5.
    [10]Y. S. Lee. Principles of terahertz science and technology[M]. New York:Springer Science+Business Media, LLC,2009.
    [11]J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson and A. Y. Cho. Quantum cascade laser [J]. Science,1994,264(5158):553-556.
    [12]B. Xu, Q.Hu and M. R. Melloch. Electrically pumped tunable terahertz emitter based on intersubband transition[J]. Applied Physics Letters,1997,71(4):440-442.
    [13]R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi. Terahertz semiconductor-heterostructure laser[J]. Nature, 2002,417:156-159.
    [14]Q. Hu, B. S. Williams, S. Kumar, H. Callebaut, S. Kohen and J. L. Reno. Resonant-phonon-assisted THz quantum-cascade lasers with metal-metal waveguides[J]. Semiconductor Science and Technology,2005,20(7):S228-S236.
    [15]T. Yajima and N. Takeuchi. Far-infrared difference-frequency generation by picosecond laser pulses[J]. Japanese Journal of Applied Physics,1970,9(11):1361-1371.
    [16]K. H. Yang, P. L. Richards and Y. R. Shen. Generation of far-infrared radiation by picosecond light pulses in LiNbO3[J]. Applied Physics Letters,1971,19:320-323.
    [17]D. H. Auston and M. C. Nuss. Electrooptical generation and detection of femtosecond electrical transients [J]. IEEE Journal of Quantum Electronics,1988,24(2):184-197.
    [18]S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta and A. F. J. Levi. Optical rectification at semiconductor surfaces[J]. Physical Review Letters,1992,68(1):102-105.
    [19]X.-C. Zhang, Y. Jin, K. Yang and L. J. Schowalter. Resonant nonlinear susceptibility near the GaAs band gap[J]. Physical Review Letters,1992,69(15):2303-2306.
    [20]P. Y Han and C. L. Zhang. Coherent, broadband midinfrared terahertz beam sensors[J]. Applied Physics Letters,1998,73(21):3049-3051.
    [21]M. B. Golant, Z. T. Alekseenko, Z. S. Korotkova, L. A. Lunkina, A. A. Negirev, O. P. Petrova, T. B. Rebrova and V. S. Savel'ev. Wide-range oscillators for the submillimeter wavelengths[J]. Pribory I Tekhnika Eksperimenta,1969,3:231-237.
    [22]G. Kozlov. A. Volkov. Millimeter and Submillimeter Wave Spectroscopy of Solids[M]. Berlin:Springer-Verlag,1998.
    [23]D. H. Auston, K. P. Cheung and P. R. Smith. Picosecond photoconducting Hertzian dipoles[J]. Applied Physics Letters,1984,45(3):284-286.
    [24]S. Matsuura and H. Ito. Generation of CW terahertz radiation with photomixing[J]. Terahertz Optoelectronics, Topics in Applied Physics,2005,97:157-202.
    [25]Q. Wu and X. C. Zhang. Free-space electrooptic sampling of terahertz beams[J]. Applied Physics Letters,1995,67(24):3523-3525.
    [26]A. Nahata, D. H. Auston, T. F. Heinz and C. J. Wu. Coherent detection of freely propagating terahertz radiation by electro-optic sampling[J]. Applied Physics Letters,1996,68(2): 150-152.
    [27]L. Thrane, R. H. Jacobsen, P. U. Jepsen and S. R. Keiding. THz reflection spectroscopy of liquid water[J]. Chemical Physics Letters,1995,240(4):330-333.
    [28]J. T. Kindt and C. A. Schmuttenmaer. Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy[J]. Journal of Physical Chemistry, 1996,100(24):10373-10379.
    [29]B. B. Hu and M. C. Nuss. Imaging with terahertz waves[J]. Optics Letters,1995,20(16): 1716-1718.
    [30]Q. Wu, T. D. Hewitt and X.-C. Zhang. Two-dimensional electro-optic imaging of THz beams[J]. Applied Physics Letters,1996,69(8):1026-1028.
    [31]J. O'Hara and D. Grischkowsky. Quasi-optic synthetic phased-array terahertz imaging[J]. Journal of the Optical Society of America B,2004,21(6):1178-1191.
    [32]S. Hunschea, M. Kochb, I. Brenerc and M. C. Nussa. THz near-field imaging[J]. Optics Communications,1998,150(1-6):22-26.
    [33]K. J. Siebert, H. Quast, R. Leonhardt, T. Loffler, M. Thomson, T. Bauer, H. G. Roskos and S. Czasch. Continuous-wave all-optoelectronic terahertz imaging[J]. Applied Physics Letters, 2002,80(16):3003-3005.
    [34]K. J. Siebert, T. Loffler, H. Quast, M. Thomson, T. Bauer, R. Leonhardt, S. Czasch and H. G Roskos. All-optoelectronic continuous wave THz imaging for biomedical applications[J]. Physics in Medicine and Biology,2002,47(21):3743-3748.
    [35]I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, M. J. Evans, L. Spencer, M. Pepper and M. Missous. Continuous-wave terahertz system with a 60 dB dynamic range[J]. Applied Physics Letters,2005,86(20):204104-3.
    [36]K. Shibuya, M. Tani, M. Hangyo, O. Morikawa and H. Kan. Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode[J]. Applied Physics Letters,2007,90(16):161127-3.
    [37]R. Wilk, F. Breitfeld, M. Mikulics and M. Koch. Continuous wave terahertz spectrometer as a noncontact thickness measuring device[J]. Applied Optics,2008,47(16):3023-3026.
    [38]S. Nakajima, H. Hoshina, M. Yamashita, C. Otani and N. Miyoshi. Terahertz imaging diagnostics of cancer tissues with a chemometrics technique[J]. Applied Physics Letters, 2007,90(4):041102-3.
    [39]T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling and K. Donhuijsen. Continuous-wave THz imaging[J]. Electronics Letters,2001,37(24):1461-1463.
    [40]S. Barbieri, J. Alton, C. Baker, T. Lo, H. E. Beere and D. Ritchie. Imaging with THz quantum cascade lasers using a Schottky diode mixer[J]. Optics Express,2005,13(17): 6497-6503.
    [41]P. Bakopoulos, I. Karanasiou, N. Pleros, P. Zakynthinos, N. Uzunoglu and H. Avramopoulos. A tunable continuous wave (CW) and short-pulse optical source for THz brain imaging applications[J]. Measurement Science & Technology,2009,20(10):104001.
    [42]M. Exter, C. Fattinger and D. Grischkowsky. Terahertz time-domain spectroscopy of water vapor[J]. Optics Letters,1989,14(20):1128-1130.
    [43]M. J. Fitch, D. Schauki, C. A. Kelly and R. Osiander. THz imaging and spectroscopy for landmine detection[J]. Terahertz and Gigahertz Electronics and Photonics Ⅲ,2004,5354: 45-54.
    [44]D. J. Funk, F. Calgaro, R. D. Averitt, M. L. T. Asaki and A. J. Taylor. THz transmission spectroscopy and imaging:Application to the energetic materials PBX 9501 and PBX 9502[J]. Applied Spectroscopy,2004,58(4):428-431.
    [45]J. Federici. THz imaging detects concealed explosives[J]. Trac-Trends in Analytical Chemistry,2005,24(11):V-V.
    [46]J. F. Federici, R. Barat, D. Gary and D. Zimdars. THz standoff detection and imaging of explosives and weapons[J]. Terahertz and Gigahertz Electronics and Photonics Ⅳ,2005, 5727:123-131.
    [47]J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira and D. Zimdars. THz imaging and sensing for security applications-explosives, weapons and drugs[J]. Semiconductor Science and Technology,2005,20(7):S266-S280.
    [48]A. Sengupta, A. Bandyopadhyay, R. B. Barat, D. E. Gary and J. F. Federici. THz reflection spectroscopy of C-4 explosive and its detection through interferometric imaging[J]. Terahertz and Gigahertz Electronics and Photonics Ⅴ,2006,6120:A1200.
    [49]R. H. Pantell, M. DiDomenico, O. Svelto and J. N. Weaver. Proc.3rd Int. Conference on Quantum Electronics.1964,2:1811.
    [50]E. R. Brown, K. A. McIntosh, F. W. Smith, M. J. Manfra and C. L. Dennis. Measurements of optical-heterodyne conversion in low-temperature-grown GaAs[J]. Applied Physics Letters,1993,62(11):1206-1208.
    [51]E. R. Brown, F. W. Smith and K. A. McIntosh. Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors[J]. Journal of Applied Physics,1993,73(3):1480-1484.
    [52]E. R. Brown, K. A. McIntosh, K. B. Nichols and C. L. Dennis. Photomixing up to 3.8-THz in low-temperature-grown GaAs[J]. Applied Physics Letters,1995,66(3):285-287.
    [53]陈金林.应用于THz源的光纤激光器及高性能光电探测器[博士学位论文].武汉,华中科技大学,2009.
    [54]R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner and H. L. Hartnagel. Tunable CW-THz system with a log-periodic photoconductive emitter[J]. Solid-State Electronics, 2004,48(10-11):2041-2045.
    [55]S. Matsuura, M. Tani and K. Sakai. Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas[J]. Applied Physics Letters,1997,70(5): 559-561.
    [56]K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale and T. M. Lyszczarz. Terahertz photomixing with diode lasers in low-temperature-grown GaAs[J]. Applied Physics Letters,1995,67(26):3844-3846.
    [57]I. S. Gregory, W. R. Tribe, B. E. Cole, M. J. Evans, E. H. Linfield, A. G. Davies and M. Missous. Resonant dipole antennas for continuous-wave terahertz photomixers[J]. Applied Physics Letters,2004,85(9):1622-1624.
    [58]C. Baker, I. S. Gregory, M. J. Evans, R. Tribe, E. H. Linfield and M. Missous. All-optoelectronic terahertz system using low-temperature-grown InGaAs photomixers[J]. Optics Express,2005,13(23):9639-9644.
    [59]J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary and J. F. Lampin. Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated Ino.53Gao.47As at 1.55 μm wavelengths[J]. Applied Physics Letters,2007,91 (24):241102-3.
    [60]N. Chimot, J. Mangeney, P. Crozat, J. M. Lourtioz, K. Blary, J. F. Lampin, G. Mouret, D. Bigourd and E. Fertein. Photomixing at 1.55 μm in ion-irradiated Ino.53Gao.47As on InP[J]. Optics Express,2006,14(5):1856-1861.
    [61]M. Tani, K. Sakai, H. Abe, S. Nakashima, H. Harima, M. Hangyo, Y. Tokuda, K. Kanamoto, Y. Abe and N. Tsukada. Spectroscopic characterization of low-temperature grown GaAs epitaxial films[J]. Japanese Journal of Applied Physics,1994,33 (Part 1, No.9A): 4807-4811.
    [62]S. Verghese, K. A. McIntosh and E. R. Brown. Optical and terahertz power limits in the low-temperature-grown GaAs photomixers[J]. Applied Physics Letters,1997,71(19): 2743-2745.
    [63]I. S. Gregory, C. Baker, W. R. Tribe, M. J. Evans, H. E. Beere, E. H. Linfield, A. G. Davies and M. Missous. High resistivity annealed low-temperature GaAs with 100 fs lifetimes[J]. Applied Physics Letters,2003,83(20):4199-4201.
    [64]J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard and R. E. Muller. ErAs:GaAs photomixer with two-decade tunability and 12 μW peak output power[J]. Applied Physics Letters,2004,85(18):3983-3985.
    [65]M. Sukhotin, E. R. Brown, D. Driscoll, M. Hanson and A. C. Gossard. Picosecond photocarrier-lifetime in ErAs:InGaAs at 1.55 μm[J]. Applied Physics Letters,2003,83(19): 3921-3923.
    [66]H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma and T. Ishibashi. High-speed and high output InP-InGaAs unitravelling-carrier photodiodes[J]. IEEE Journal of selected Topics in Quantum Electronics,2004,10(4):709-727.
    [67]J. Mangeney, L. Joulaud, P. Crozat, J.-M. Lourtioz and J. Decobert. Ultrafast response (-2.2 ps) of ion-irradiated InGaAs photoconductive switch at 1.55μm[J]. Applied Physics Letters, 2003,83(26):5551-5553.
    [68]S. Iio, M. Suehiro, T. Hirata and T. Hidaka. Two-longitudinal-mode laser diodes[J]. IEEE Photonics Technology Letters,1995,7(9):1041-1135.
    [69]T. Hidaka, S. Matsuura, M. Tani and K. Sakai. CW terahertz wave generation by photomixing using a two-longitudinal-mode laser diode[J]. Electronics Letters,1997,33(24): 2039-2040.
    [70]P. Gu, M. Tani, M. Hyodo, K. Sakai and T. Hidaka. Generation of cw-terahertz radiation using a two-longitudinal-mode laser diode[J]. Japanese Journal of Applied Physics,1998, 37(8B):L976-L978.
    [71]P. Gu, F. Chang, M. Tani, K. Sakai and C. L. Pan. Generation of coherent cw-terahertz radiation using a tunable dual-wavelength external cavity laser diode[J]. Japanese Journal of Applied Physics,1999,38(11A):L1246-L1248.
    [72]S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr and K. A. Molvar. Generation and detection of coherent terahertz waves using two photomixers[J]. Applied Physics Letters,1998,73(26):3824-3826.
    [73]R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner and H. L. Hartnagel. Spectral characterization of broadband THz antennas by photoconductive mixing:Toward optimal antenna design[J]. IEEE Antennas and Wireless Propagation Letters,2005,4(1):85-88.
    [74]R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner and H. L. Hartnagel. Coherent generation and detection of continuous terahertz waves using two photomixers driven by laser diodes[J]. International Journal of Infrared and Millimeter Waves,2005,26(2): 201-207.
    [75]M. G. Littman. Single-mode operation of grazing-incidence pulsed dye-laser[J]. Optics Letters,1978,3(4):138-140.
    [76]T. W. Hansch. Repetitively pulsed tunable dye laser for high-resolution spectroscopy[J]. Applied Optics,1972,11(4):895-898.
    [77]T. Hidaka and Y. Hatako. Simultaneous two wave oscillation LD using biperiodic binarygrating[J]. Electronics Letters,1991,27(12):1075-1076.
    [78]M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Kleine-Ostmann, P. Knobloch, M. Koch, J. P. Meyn, M. Matus, S. W. Koch and J. V. Moloney. Fourier-transform external cavity lasers[J]. Optics Communications,2002,207(1-6): 261-271.
    [79]C. L. Wang and C. L. Pan. Tunable dual-wavelength operation of a diode-array with an external grating-loaded cavity[J]. Applied Physics Letters,1994,64(23):3089-3091.
    [80]J. Struckmeier, A. Euteneuer, B. Smarsly, M. Breede, M. Born, M. Hofmann, L. Hildebrand and J. Sacher. Electronically tunable external-cavity laser diode[J]. Optics Letters,1999, 24(22):1573-1574.
    [81]C. L. Pan, S. H. Tsai, R. P. Pan, C. R. Sheu and S. C. Wang. Tunable semiconductor laser with liquid crystal pixel mirror in grating-loaded external cavity[J]. Electronics Letters, 1999,35(17):1472-1473.
    [82]S. Hoffmann and M. R. Hofmann. Two-color semiconductor lasers[C]//Conference on Physics and Simulation of Optoelectronic Devices Ⅻ. San Jose, CA:2004,218-227.
    [83]I. Park, I. Fischer and W. Elsasser. Highly nondegenerate four-wave mixing in a tunable dual-mode semiconductor laser[J]. Applied Physics Letters,2004,84(25):5189-5191.
    [84]S. Verghese, K. A. McIntosh and E. R. Brown. Highly tunable fiber-coupled photomixers with coherent terahertz output power[J]. Ieee Transactions on Microwave Theory and Techniques,1997,45(8):1301-1309.
    [85]I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies and M. Missous. Optimization of photomixers and antennas for continuous-wave terahertz emission[J]. IEEE Journal of Quantum Electronics,2005,41(5):717-728.
    [86]F. Nakajima, T. Furuta and H. Ito. High-power continuous-terahertz-wave generation using resonant-antenna-integrated uni-travelling-carrier photodiode[J]. Electronics Letters,2004, 40(20):1297-1299.
    [87]H. Ito, T. Furuta, F. Nakajima, K. Yoshino and T. Ishibashi. Photonic generation of continuous THz wave using uni-traveling-carrier photodiode[J]. Journal of Lightwave Technology,2005,23(12):4016-4021.
    [88]N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H. W. Hubers and M. Koch. Impact of the contact metallization on the performance of photoconductive THz antennas[J]. Optics Express,2008,16(24):19695-19705.
    [89]R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner and H. L. Hartnagel. Spectral Characterization of Broadband THz Antennas by Photoconductive Mixing Toward Optimal Antenna Design[J]. Antennas and Wireless Propagation Letters,2005,4(1):85-88.
    [90]S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard and S. Matsuura. Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power[J]. IEEE Transactions on Microwave Theory and Techniques,2001, 49(6):1032-1038.
    [91]A. Jackson. Low-temperature-grown GaAs photomixers designed for increased terahertz output power. Ph. D. thesis, Univ. California at Santa Barbara,1999.
    [92]S. Pilla. Enhancing the photomixing efficiency of optoelectronic devices in the terahertz regime[J]. Applied Physics Letters,2007,90(16):161119-3.
    [93]S. Matsuura, P. Chen, G. A. Blake, J. C. Pearson and H. M. Pickett. Simultaneous amplification of terahertz difference frequencies by an injection-seeded semiconductor laser amplifier at 850 nm[J]. International Journal of Infrared and Millimeter Waves,1998,19(6): 849-858.
    [94]S. Matsuura, P. Chen, G. A. Blake, J. C. Pearson and H. M. Pickett. A tunable cavity-locked diode laser source for terahertz photomixing[J]. IEEE Transactions on Microwave Theory and Techniques,2000,48(3):380-387.
    [95]S. Verghese, E. K. Duerr, K. A. McIntosh, S. M. Duffy, S. D. Calawa, C. Y. E. Tong, R. Kimberk and R. Blundell. A photomixer local oscillator for a 630-GHz heterodyne receiver[J]. IEEE Microwave and Guided Wave Letters,1999,9(6):245-247.
    [96]E. Duerr, K. McIntosh and S. Verghese. Design of a distributed photomixer for use as terahertz local oscillator[C]// Proceedings of the 10'International. Symposium on Space Terahertz Technology. Charlottesville, Virginia:1999.
    [97]S. Matsuura, G. A. Blake, R. A. Wyss, J. C. Pearson, C. Kadow, A. W. Jackson and A. C. Gossard. A traveling-wave THz photomixer based on angle-tuned phase matching[J]. Applied Physics Letters,1999,74(19):2872-2874.
    [98]许景周.张希成著.太赫兹科学技术和应用[M].北京:北京大学出版社,2007.
    [99]M. Tani, O. Morikawa, S. Matsuura and M. Hangyo. Generation of terahertz radiation by photomixing with dual-and multiple-mode lasers[J]. Semiconductor Science and Technology,2005,20(7):S151-S163.
    [100]W. Stutzman, L., Thiele, G. A著,朱守正,安同一译.天线理论与设计[M].北京:人民邮电出版社,2006.
    [101]C. Balanis. Antenna Theory, Analysis, and Design[M]. New York:John Wiley and Sons, 1997.
    [102]N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H. W. Hubers and M. Koch. Impact of the contact metallization on the performance of photoconductive THz antennas[J]. Optics Express,2008,16(24):19695-19705.
    [103]T. Weiland. A discretization method for the solution of Maxwell's equations for six-component fields[J]. Electronics and Communications AEU,1977,31(3):116-120.
    [104]叶良修.小尺寸半导体器件的Monte-Carlo模拟[M].北京:科学出版社,1997.
    [105]L. Varani, C. Palermo, J. F. Millithaler, J. C. Vaissiere, E. Starikov, P. Shiktorov, V. Gruzinskis, J. Mateos, S. Perez, D. Pardo and T. Gonzalez. Numerical modeling of Terahertz electronic devices[J]. Journal of Computational Electronics,2006,5(2):71-77.
    [106]H. Li, J. C. Cao, J. T. Lu and Y. J. Han. Monte Carlo simulation of extraction barrier width effects on terahertz quantum cascade lasers[J]. Applied Physics Letters,2008,92(22): 221105-3.
    [107]E. Starikov, P. Shiktorov, V. Gruzinskis, L. Reggiani, L. Varani, J. C. Vaissiere and J. H. Zhao. Monte Carlo calculations of THz generation in wide gap semiconductors [J]. Physica B-Condensed Matter,2002,314(1-4):171-175.
    [108]D. F. Liu and L. J. Xu. Monte Carlo study of terahertz radiation from InAs[J]. International Journal of Infrared and Millimeter Waves,2005,26(2):209-220.
    [109]D. F. Liu and Y. Z. Tan. Modeling of terahertz radiation from InSb and InAs[J]. International Journal of Infrared and Millimeter Waves,2005,26(9):1265-1275.
    [110]D. F. Liu and D. Xu. Comparative study of terahertz radiation from n-InAs and n-GaAs[J]. Applied Optics,2007,46(5):789-794.
    [111]D. F. Liu, Y. X. Lin and C. H. Ma. Influence of electron-electron scattering on carrier distributions in optically pumped terahertz laser structures under short pulse excitation[J]. Semiconductor Science and Technology,2009,24(4):045019.
    [112]O. Bonno, J. L. Thobel and F. Dessenne. Modeling of electron-electron scattering in Monte Carlo simulation of quantum cascade lasers[J]. Journal of Applied Physics,2005, 97(4):043702-7.
    [113]C. Jirauschek and P. Lugli. Limiting factors for high temperature operation of THz quantum cascade lasers[J]. Physica Status Solidi (C),2008,5(1):221-224.
    [114]C. Jirauschek. Monte Carlo study of carrier-light coupling in terahertz quantum cascade lasers[J]. Applied Physics Letters,2010,96(1):011103-3.
    [115]贾婉丽,施卫.半绝缘GaAs光电导天线辐射THz电磁波展宽特性分析[J].西安理工大学学报,2007,23(3):265-268.
    [116]贾婉丽,纪卫莉,施卫.半绝缘GaAs光电导开关产生太赫兹波电场屏蔽效应的二维Monte Carlo模拟[J].物理学报,2007,56(4):2042-2046.
    [117]贾婉丽,施卫,纪卫莉,马德明.光电导开关产生太赫兹电磁波双极特性分析[J].物理学报,2007,56(7):3845-3850.
    [118]贾婉丽,施卫,屈光辉,孙小芳.GaAs光电导天线辐射太赫兹波功率的计算[J].物理学报,2008,57(9):5425-5428.
    [119]M. A. Littlejohn, J. R. Hauser and T. H. Glisson. Velocity-field characteristics of GaAs with Γc6-Lc6-Xc6 conduction-band ordering[J]. Journal of Applied Physics, 1977,48(11):4587-4590.
    [120]J. T. Darrow, X. C. Zhang and J. D. Morse. Saturation properties of large-aperture photoconducting antennas[J]. IEEE Journal of Quantum Electronics,1992,28(6): 1607-1618.
    [121]E. R. Brown. THz generation by photomixing in ultrafast photoconductors [J]. International Journal of High Speed Electronics and Systems,2003,13(2):497-594.
    [122]G. R. Neila, G. L. Carrb, J. F. Gubeli Ⅲ, K. Jordana, M. C. Martinc, W. R. McKinneyc, M. Shinna, M. Tanid, G. P. Williamsa and X.-C. Zhang. Production of high power femtosecond terahertz radiation[J]. Nuclear Instruments and Methods in Physics Research A, 2003,507:537-540.
    [123]D. Saeedkia, R. R. Mansour and S. Safavi-Naeini. The interaction of laser and photoconductor in a continuous-wave terahertz photomixer[J]. IEEE Journal of Quantum Electronics,2005,41(9):1188-1196.
    [124]E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis and J. P. Mattia. Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer[J]. Applied Physics Letters,1994,64(24): 3311-3313.
    [125]E. A. Michael, B. Vowinkel, R. Schieder, M. Mikulics, M. Marso and P. Kordos. Large-area traveling-wave photonic mixers for increased continuous terahertz power[J]. Applied Physics Letters,2005,86(11):111120-3.
    [126]N. Zamdmer, Q. Hu, K. A. McIntosh and S. Verghese. Increase in response time of low-temperature-grown GaAs photoconductive switches at high voltage bias[J]. Applied Physics Letters,1999,75(15):2313-2315.
    [127]J. S. Blakemore. Semiconducting and other major properties of gallium-arsenide[J]. Journal of Applied Physics,1982,53(10):R123-R181.
    [128]朱艳玲,刘琳琳,张福顺,焦永昌.新型共口径双频双圆极化微带天线设计[J].微波学报,2007,23(6):40-43.
    [129]Q. Q. He, B. Z. Wang and J. He. Wideband and dual-band design of a printed dipole antenna[J]. IEEE Antennas and Wireless Propagation Letters,2008,7:1-4.
    [130]A. Sharma, V. K. Dwivedi and G. Singh. THz rectangular microstrip patch antenna on multilayered aubstrate for advance wireless communication systems[C]// Progress In Electromagnetics Research Symposium. Beijing, China:2009,627-631.
    [131]K. R. Jha and G. Singh. Dual-band rectangular microstrip patch antenna at terahertz frequency for surveillance system[J]. Journal of Computational Electronics,2010,9(1): 31-41.
    [132]http://www.batop.de/information/PCA_infos.html.
    [133]D. Saddekia. Modeling and design of photoconductive and superconductive terahertz photomixer sources. Ph. D. thesis, University of Waterloo,2005.
    [134]肖文华.太赫兹波图像处理研究[硕士学位论文].杭州,中国计量学院,2009.
    [135]李海涛.连续太赫兹波图像增强算法的研究[硕士学位论文].北京,首都师范大学,2008.
    [136]A. Dobroiu, M. Yamashita, Y. N. Ohshima, Y. Morita, C. Otani and K. K. Terahertz imaging system based on a backward-wave oscillator[J]. Applied Optics,2004,43(30): 5637-5646.
    [137]葛新浩,吕默,钟华.反射式太赫兹返波振荡器成像系统及其应用[J].红外与毫米波学报,2010,29(1):15-18.
    [138]A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu and J. L. Reno. Real-time imaging using a 4.3-THz quantum cascade laser and a 320x240 microbolometer[J]. IEEE Photonics Technology Letters,2006,18(13):1415-1417.
    [139]R. C. Gonzalez.阮秋琦等译.数字图像处理[M].北京:电子工业出版社,2003.
    [140]P. J. Burt and E. H. Adelson. The laplacian pyramid as a compact image code[J]. IEEE Transactions on Communications,1983,31(4):532-540.
    [141]孙延奎.小波分析及其应用[M].北京:机械工业出版社,2005.
    [142]P. Vuylsteke and E. P. Schoeters. Multiscale image contrast amplification (MUSICA)[C]//Proceeding of SPIE.1994,2167:551-560.
    [143]A. F. Laine, S. Schuler, J. Fan and W. Huda. Mammographic feature enhancement by multiscale analysis[J]. IEEE Transactions on Medical Imaging,1994,13(4):725-740.
    [144]D. L. Donoho. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory,1995,41(3):613-627.
    [145]S. Dippel, M. Stahl, R. Wiemker and T. Blaffert. Multiscale contrast enhancement for radiographies:Laplacian pyramid versus fast wavelet transform[J]. IEEE Transactions on Medical Imaging,2002,21(4):343-353.
    [146]邹园园,葛庆平,韩煜,沈兰溪,张存林.基于频域滤波的THz图像条纹噪声处理[J].计算机工程与应用,2009,45(17):241-243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700