用户名: 密码: 验证码:
花后高温和水分逆境对小麦籽粒品质形成的生理影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温度和水分是影响小麦籽粒品质形成的重要生态因子。明确花后高温和水分逆境对小麦籽粒品质形成的生理影响对于深化小麦品质生理生态和指导专用小麦抗逆栽培具有重要的理论和实践意义。本研究以蛋白质含量差异显著的小麦品种扬麦9、徐州26和豫麦34为材料,利用人工气候室设置不同温度水平和不同昼夜温差处理,以及在高温(32℃/24℃)和适温(24℃/16℃)条件下分别设置不同水分处理(对照、干旱、渍水),综合研究了不同温度和温差条件下以及温度与水分互作条件下,不同类型小麦籽粒品质形成、光合特性、物质运转和相关酶活性的变化规律,明确了花后高温与水分逆境对小麦籽粒品质形成的生理调控作用,为深化和拓展小麦品质生理生态,指导专用小麦调优栽培提供了理论基础和技术途径。
     获得的主要研究结果如下:
     1.高温显著提高了小麦籽粒蛋白质含量及清蛋白、球蛋白和醇溶蛋白含量,但降低了谷蛋白含量,导致麦谷蛋白/醇溶蛋白比值降低。高温显著降低了籽粒总淀粉和支链淀粉含量及支/直比。籽粒蛋白质和淀粉及其组分形成所需的适宜昼夜温差随小麦品质类型而异,但温度水平对籽粒蛋白质和淀粉的影响较温差大。在高温和水分逆境下,温度对籽粒蛋白质和淀粉含量的影响较水分逆境大,且存在显著的互作效应。小麦籽粒蛋白质含量均表现为干旱>对照>渍水,以高温干旱最高,适温渍水最低;淀粉含量为对照>干旱>渍水,以适温对照最高,而高温渍水最低。高温和水分逆境显著提高了籽粒醇溶蛋白含量而降低了谷蛋白含量及支链淀粉含量,使蛋白质谷/醇比和淀粉支/直比降低,以高温渍水对籽粒蛋白质和淀粉组分的影响最为显著。不同品种之间,高蛋白小麦籽粒蛋白质和组分的形成受高温和水分逆境的影响更大,而低蛋白品种籽粒淀粉形成显著受温度和水分逆境的调节。高温和水分逆境对面筋特性和沉降值的影响因品种的不同而有所差异。
     2.高温提高了营养器官游离氨基酸含量,但降低了可溶性总糖含量,从而降低了糖/氮比。高温降低了营养器官花前贮藏同化物和氮素的转运量和转运率,花后同化物和氮素输入籽粒量。氨基酸含量随温差的变化因品种和温度水平不同。高温下温差对各器官可溶性总糖含量及糖/氮比影响较小;适温下温差大的处理各器官可溶性总糖含量较高,从而糖/氮比提高。干旱提高了营养器官氨基酸含量,但明显降低了营养器官和籽粒中可溶性总糖含量和糖/氮比。渍水降低了各器官游离氨基酸含量和可溶性总糖含量,但对糖/氮比的影响因品种和器官而不同。小麦营养器官花前贮藏干物质和氮素运转量和运转率在适温下表现为干旱>对照>渍水,高温下则表现为对照>干旱>渍水。适温下花后同化物积累量表现为对照>渍水>干旱,高温下则表现为对照>干旱>渍水。花后氮素积累量在适温和高温下均表现为对照>渍水>干旱。花前贮藏氮素再运转量和花后氮素同化量与籽粒蛋白质产量呈正相关关系。而花前贮藏干物质再运转量和花后物质同化量与籽粒重和籽粒淀粉含量均达显著相关和极显著相关。
     3.水分适宜条件下,高温提高了灌浆初期扬麦9籽粒蔗糖合成酶(SS)和束缚态淀粉合成酶(GBSS)的活性,但明显降低了灌浆后期SS、GBSS和可溶性淀粉合成酶(SSS)活性。而豫麦34三种酶活性在高温下均呈下降趋势。灌浆初期高温处理显著降低了徐州26籽粒SSS活性,说明高温抑制不同类型小麦籽粒淀粉合成的酶学机制不同。此外,在不同昼夜温差处理(8℃和12℃)间,灌浆中后期,高温下SS活性随温差增大而升高,SSS和GBSS则以温差小的处理较高;适温下SS、GBSS和SSS 3种淀粉合成关键酶活性均以温差大的处理为高。干旱和渍水处理均明显降低了淀粉合成相关酶活性。高温、干旱和渍水均明显降低了旗叶谷胺酰氨合成酶(GS)和谷丙转氨酶(GPT)活性。与对照相比,高温提高了花后14天徐州26旗叶GS活性,但降低了两品种籽粒GPT活性和扬麦9旗叶GS活性。GS和GPT活性随温差的变化在不同品种间表现不同。不同温度条件下,干旱和渍水对蛋白质合成关键酶活性的影响因温度和品种的不同而异。相关分析结果表明,高温和水分逆境下SS、SSS和GBSS活性与籽粒淀粉合成关系密切,旗叶GS和籽粒GPT活性与蛋白质产量呈正相关,而与籽粒蛋白质含量呈负相关关系。
     4.高温、干旱和渍水明显降低了旗叶光合速率和SPAD值。高温下,干旱和渍水对光合作用的影响加重。高温、干旱和渍水条件下,旗叶MDA含量增加,而可溶性蛋白含量降低。水分适宜条件下,与适温处理相比,高温下旗叶SOD活性先上升后迅速下降。而高温干旱和高温渍水条件下,SOD活性呈一直下降的趋势。表明随高温处理时间的延长,叶片膜脂过氧化程度加剧,细胞质膜相对透性增大,叶片衰老加速,而干旱和渍水对叶片造成了不可逆的伤害。高温下,干旱和渍水对植株衰老的影响有加重的趋势。不同温差处理间比较,高温下温差升高旗叶所受伤害加重,衰老加速。适温时,温差加大有利于延缓植株衰老。
     综上所述,花后高温和水分逆境明显降低了小麦旗叶光合速率,减少了光合产物的积累,从而明显降低了花后同化物输入籽粒量;而高温和渍水处理则明显降低了花前贮藏氮素再运转量和花后氮素输入籽粒量,从而导致不同温度和水分处理下籽粒蛋白质、淀粉产量和含量的差异。调控籽粒中淀粉合成的旗叶中SPS及籽粒中SS、SSS和GBSS,调控蛋白质合成的旗叶中的GS及籽粒中的GPT等酶活性在不同温度和水分条件下的变化是影响籽粒中蛋白质和淀粉合成差异的生理基础。因此,高温和水分逆境通过对小麦物质积累和运转以及淀粉和蛋白质合成关键酶活性的互作影响而造成了籽粒品质性状在不同温度和水分条件下的差异。
Temperature and water are main ecological factors affecting formation of wheat quality. Elucidating the physiological mechanism for the effects of high temperature and water stress on grain quality formation in wheat is of great importance for understanding grain quality physiology and guiding cultural management in wheat. Two wheat cultivars differing in protein content including Yangrnai 9 and Xuzhou 26 were grown under varied temperature conditions during grain filling including 32~C/24~C, 28~C/20~C and 24~C/16 ~C in one experiment and 34~C/22~C, 32~C/24~C, 26~C/14~C and 24~C/16~C in the other experiment. Two wheat cultivars including Yangmai 9 with low protein content and Yumai 34 with high protein content were subject to temperature and water stress conditions in the third experiment. Two day/night temperature regimes of 32~C/24~C and 24~C/16~C with three soil water regimes were established as moderate water status (soil relative water content, SRWC=75%-80%), drought (SRWC=45%-50%) and waterlogging. The quality formation, photosynthetic characters, C/N assimilates translocation and regulatory enzyme activities in relation to formation of grain quality were investigated comprehensively, and the physiological regulatory mechanisms of high temperature and water stress on wheat quality formation was elucidated. The main results were as follows:
     Contents of crude protein, albumin, globulin and gliadin in grains were significantly enhanced, but glutenin content was reduced by high temperatures, which resulted in decrease of the ratio of glutenin to gliadin. Moreover, contents of total starch, amylose and amylopectin were reduced, but more seriously effect of high temperature on amylopectin than amylose resulted in reducing amylopectin/amylose ratio. In addition, optimum diurnal temperature difference favoring the formations of grain protein and starch differed in wheat genotypes, but the effects of temperature level on protein and starch content were much higher than temperature differences. The second experiment showed that the effect of high temperature on grain protein and starch content were more marked than that of water stress, and the interaction effect of temperature X water also existed. Under high temperature or optimum temperature, grain protein content exhibited the pattern of drought>CK>waterlogging, the highest under drought with high temperature and the lowest under waterlogging with optimum temperature. Grain starch content showed the order CK>drought> waterlogging, the highest under CK with optimum temperature and the lowest under waterlogging with high temperature Furthermore, the content of grain gliadin was enhanced under high temperature and water stresses, while the contents of glutenin and amylopectin were reduced, which resulted in decreased tha ratios of glutenin to gliadin and amylopectin to amylose. Especially, the effect of high temperature with waterlogging was the most significant on protein and starch components. In addition, the response of Yumai 34 in grain protein formation to high temperature and water stresses were more serious than in starch, but for Yangrnai 9, starch formation was more sensitive to high temperature and water stresses. Correlation analysis revealed that protein content was positively correlated to albumin and gliadin contents, but slightly negatively to glutenin content. Starch content was positively to the contents of glutenin and amylopectin and amylopectin/amylose ratio under high temperature and water stresses. High temperature and water stress had different effects on grain gluten characters and sedimentation value in different varieties.
     High temperature enhanced free amino acid content in vegetative organs, but significantly reduced soluble sugar content in vegetative organs and kernels during whole grain filling so that ratio of sugar/amino decreased. High temperature reduced remobilization amount and rate of pre-anthesis assimilates and nitrogen stored in vegetative organs and transferring into grain. Effect of diurnal temperature difference on amino acid content differed between cultivars. Under high temperature, temperature difference affected soluble sugar content slightly. Uunder optimum temperature, soluble sugar content under greater diurnal temperature difference was higher than that under lower temperature difference. Under high temperature, day/night temperature difference affected ratio of C/N slightly. Under optimum temperature ratio of C/N was higher under the day/night temperature difference of 12~C. Drought enhanced free amino acid content in vegetative organs, but reduced soluble sugar content in vegetative organs and kernels. As a result, ratio of C/N decreased under high temperature and drought. Under high and optimum temperature, waterlogging reduced contents of amino acid and soluble sugar vegetative organs and kernels. Effect of waterlogging on ratio of C/N differed among different cultivars and organs in wheat. Amount and ratio of assimilates and nitrogen translocation declined as drought>control>waterlogging under optimum temperature, while declined as control>drought>waterlogging under high temperature. The amounts of post-anthesis assimilate transferring into grain were declined as CK>waterlogging>drought under optimum temperature,while the order was CK>drought>waterlogging under high temperature.The amounts of post-anthesis accumulated nitrogen declined as CK>waterlogging>drought under both high and optimum temperature.The amounts of pre-anthesis stored and post-anthesis accumulated nitrogen transferring into grain were significantly related to protein yield.The amounts of pre-anthesis stored and post-anthesis accumulated assimilates transferring into grain were significantly related to grain weight and starch content.
     Under optimum water status,high temperature enhanced the activities of sucrose synthase (SS) and granule-bound starch synthase (GBSS) at early stage of grain filling, while reduced activities of SS,GBSS and soluble starch synthase (SSS) at late grain filling stage.Activities of three enzymes were reduced by high temperature in Yumai 34.High temperature significantly reduced activity of SSS in Xuzhou 26 at early stage of grain filling.Those results indicated that the enzymatic mechanism of starch formation differed among wheat varieties.In addition,under high temperatures,SS activity was higher at 34℃/22℃during the middle and late stage of grain filling,whereas the activities of SSS and GBSS were higher under 32℃/24℃.Under optimum temperature,activities of three enzymes were higher at bigger day/night temperature difference.At different day-night temperature differences, GPT (glutamate pyruvic aminotransferase) and glutamine synthase (GS) activities changed between cultivars.Effects of drought and waterlogging on activities of three enzymes differed between different cultivars.Drought and waterlogging reduced activities of three enzymes under both high and optimum temperature.Compared with optimum temperature,high temperature reduced GPT activity in kernels for two wheat cultivars.But reduced GS activity in flag leaves of Yangmai 9 and enhanced GS activity of Xuzhou 26 on 14 DAA.At different day-night temperature differences,GPT and GS activities changed between cultivars.High temperature,drought and waterlogging reduced GS activity and GPT activities in flag leaves.The effects of drought and waterlogging on activities of enzymes involved in protein formation were different among different cultivars and temperatures.Results of correlation analyses indicated that the SPS,SSS and GBSS activities were closely correlated to the yield of starch. GS activity in grains was correlated to a lower degree to the yield and content of protein than GS in flag leaves and GPT ingrains.Under high temperature,the effects of high temperature and water stresses on grain quality and protein and starch accumulation aggravated.
     High temperature,drought and watedogging reduced photosynthetic rate and chlorophyll content in flag leaves,and the consequences of drought and waterlogging were more severe under high temperature than under optimum temperature.High temperature, drought and waterlogging enhanced the content of malondiadehyde (MDA),while reduced soluble protein content in flag leaves.Under optimum water treatment,compared with optimal temperature treatment,during the early stage of high temperature treatment,activity of SOD was enhanced but dropped rapidly during late grain filling.Under optimum and high temperature, drought and waterlogging reduced SOD activity on both 15DAA and 20DAA.These results indicated that the membrane lipid peroxidation was accelerated and the permeability of plasma membrane increased as the high temperature treatment prolonged and accelerated leaf senescence.The effects of drought and waterlogging on flag leave were not reversed.The consequences of drought and waterlogging were more severe under high temperature than under optimum temperature.Higher temperature difference under high temperature condition increased senescence of flag leaf,while under optimal temperature condition,higher temperature difference delayed the plant senescence.
     In summary,high temperature and water stress reduced the photosynthesis rate in flag leaves of wheat.The amount of post-anthesis assimilates transferred into grains decreased distinctly under high temperature and water stress.High temperature and waterlogging significantly reduced the pre-anthesis stored nitrogen and the translocation of post-anthesis accumulated nitrogen into grains.Thus,the differential substrates caused the differences in protein and starch contents of wheat grains under different water and temperature conditions.The further studies indicated that the activities of key enzymes for grain starch and protein formation,including SPS and GS in leaf,SSS,GBSS and GPT in grains,are the vital enzymatic reasons for affecting the yields and contents of grain starch and protein by high temperature and water stress.The differences between grain qualities under different treatment conditions were caused by the interaction of high temperature and water stress on C/N translocation and activities of key enzymes involved in starch and protein accumulation in wheat
引文
[1] 徐兆飞,张惠叶,张定一.小麦品质及其改良.北京:气象出版社,1999
    [2] 金善宝.中国小麦学[M].北京:中国农业出版社,1996
    [3] 北方小麦干热风科研协作组.小麦干热风.1998,北京气象出版社
    [4] 蔡士宾,曹旸,方先文等.小麦灌浆期水渍和高温对植株早衰和籽粒增重的影响.作物学报,1994,20(4):457-464
    [5] 李登明,秦海英.略述影响小麦品质的因素.内蒙古科技与经济,1999,4:51-52
    [6] 陈如梅,马俊虎,杜永芹.小麦灌浆成熟过程中蛋白质及其组成变化初报.上海农业学报,1992,8(1):78~80
    [7] 张林生,蒋纪云.小麦籽粒发育过程中氨基酸的变化.作物学报,1997,23(3):301-306
    [8] 杜金哲,李文雄,白祥和.春小麦籽粒蛋白质积累和产量形成规律及施氮的调节作用.第八次全国小麦高产栽培研讨会论文(山东),1998
    [9] 张庆江,张立言,毕恒武.普通小麦碳氮物质积累分配特征及与籽粒蛋白质的关系。华北农学报,1996,11(3):57-62
    [10] 张庆江,张立言,毕恒武.春小麦品种氮的吸收积累的运转特征及籽粒蛋白质含量关系。作物学报,1997,23(60):712-718
    [11] Bebyakin V M and Zlobina L N. Importance of genotype and environmental factors for determination of quality of summer wheat grain. Sel's KoKhozyaistrennaya Biologiya. 1997, 10(3): 94-100
    [12] 方先文,姜东,戴廷波等.小麦淀粉组分的积累规律.江苏农业学报,2002,18(3):139-142
    [13] 刘晓冰,李文雄,张志学.春小麦籽粒灌浆过程中淀粉和蛋白质积累规律的研究.东北农业大学学报,1995,26(3):220-225
    [14] 刘仲奇,吴兆苏,俞世蓉.吲哚乙酸和脱落酸对小麦籽粒淀粉积累的影响.南京农业大学学报,1992,15(1):7-12
    [15] Chevalier P, Lingle S E. Sugar metabolism in developing kernels of wheat and barley. Crop Sci. 1983, 23:272-277
    [16] 张秋英,刘娜,金剑等.春小麦籽粒淀粉和蛋白质积累与底物供应的关系.麦类作物学报,2000,20(1):55-58
    [17] 张春庆,李晴祺.影响普通小麦加工馒头质量的主要品质性状的研究.中国农业科学,1993,26(2):39-46
    [18] Crosbic G B, Ross A S, Motor T, et al. Starch and protein quality requirement of Japanese alkaline noodles (ramen).Cereal Chem. 1999, 76:328-334
    [19] Hou G.Oriental noodles. Adv. Food Nutr. Res. 2001, 43:141-193
    [20] Balk B K, Czuchajowska Z, Pomeranz Y. Role and contribution of starch and protein contents and quality to texture profile analysis of oriental noodles. Cereal Chemistry, 1994, 71:315-320
    [21] Yuns H, Quail K J, Moss R. Physicochemical properties of Australian wheat flours for white salted noodles. Journal of Cereal Science, 1996, 23:181-189
    [22] 赵京岚,李斯深,范玉顶等.小麦品种蛋白质性状与中国干面条品质关系的研究.西北植物学报,2005,25(1):144-149
    [23] Finney K R, Meyer J W, Smith F W et al. Effect of foliar spraying of pawnee wheat with urea solution on yield, protein content and protein quality. Agron. J, 1978, 49:341-347
    [24] 王珏,杜金哲,胡尚连等.春小麦不同品质类型籽粒蛋白质及组分与沉淀值的关系.莱阳农学院学报,2004,21(3):227-230
    [25] 李志西,魏益民,张建国.小麦蛋白质组分与面团特性和烘焙品质关系的研究.中国粮油学报,1998,13(3):1-5
    [26] 王月福,于振文,李尚霞等.施氮量对小麦籽粒蛋白质组分含量及加工品质的影响.中国农业科学,1990,23(6):35-41
    [27] 宋建民,吴祥云,刘建军等,小麦籽粒特性与品质关系研究进展.山东农业科学,2002,2:47-51
    [28] Payne P Ⅰ, et al. Correlation between the heritance of certain HMW-GS and bread making quality in progenies of six crosses of bread wheat. J. Sci. Food and Agriculture, 1981, 32:51-601
    [29] Huang DY, et al. Quantitative determination of high molecula weight glutenin subunits of hard red spring wheat by SDS-PAGE Ⅱ: Quantitative effects of individual subunits on breadmaking quality characteristics. Cereal Chemistry, 1997, 74(6): 786-790
    [30] Huang D Y, et al. Quantitative determination of HMW-GS of hard red spring wheat by SDS-PAGE2: Quantitative effects of total amounts on bread-making quality characteristics. Cereal Chemistry, 1997, 76:781-785
    [31] 尹静,胡尚连,肖佳雷.小麦淀粉与品质的关系.东北农业大学学报,2005,36(3):369-372
    [32] Toyoka H. Japanese noodle qualifies. Ⅱ: Starch components. Cereal Chemistry, 1989, 66:387-391
    [33] 姚大年.小麦品种主要淀粉性状及面条品质预测指标的研究.中国农业科学,1999,32(6):84-88
    [34] 姚大年,刘广田.淀粉理化特性、遗传规律及小麦淀粉与品质的关系.粮食与饲料工业,1997,(2):36-38
    [35] Kulkarini R G, Ponte J G and Kulp K. Significance of gluten content as an index of flour quality. Cereal Chemistry, 1987, 64(2): 1-2
    [36] Sofield Ⅰ, Evans L T, Cook M G, et al. Factors influencing the rate and duration of grain filling in wheat. Australian Journal of Plant Physiology. 1977, 4:785-797
    [37] Stone P J, Nicolas M E. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Australian Journal of Plant Physiology, 1994, 21:887-900
    [38] Stone P J. Nicolas M E. The effect of duration of heat stress during grain filling on two wheat varieties differing in heat tolerance: grain growth and fractional protein accumulation. Australian Journal of Plant Physiology, 1998, 25:13-20
    [39] 芦静,吴新元,张新忠.生态环境和栽培条件对新疆小麦品质的影响及其改良途径.新疆农业科学,2003,40(3):163-165
    [40] 金善宝主编.中国小麦学.北京:中国农业出版社,1996:925-926
    [41] Smika D E, Greb B C. Protein content of winter wheat grain as related to soil and climatic factors in the semiarid Central Great Plains. Agron. J., 1973, 65:433-436
    [42] 曹广才,王绍中.小麦品质生态.中国科学技术出版社,1994:37-39
    [43] Graybosch R A, Peterson C J, Baenziger P S, et al. Environmental modification of hard red winter wheat flour protein composition. Australian Journal of Plant Physiology, 1995, 22:45-51
    [44] Blumenthal C S, Barlow E W R, Wrigley C W. Growth environment and wheat quality: the effects of heat stress on dough properties and gluten proteins. Journal of Cereal Science, 1993, 18:2-21
    [45] Blumenthal C S, Bekes F, Batey I L, et al. Interpretation of grain quality results from wheat variety trials with reference to higher temperature stress. Australian Journal of Agricultural Research, 1991, 42:325-334
    [46] Blumenthal C S, et al. Seasonal changes in wheat-grain quality associated with high temperatures during grain filling. Aust Journal of Agricultural Research, 1991,42:21-30
    [47] Randall P J, Moss H J. Some effects of temperature regime during grain filling on wheat quality. Aust Journal of Agricultural Research, 1990, 41:603-617
    [48] Stone P J, Nicolas M E. Wheat cultivars vary wide in their response of grain yield and quality of short period of post anthesis heat stress. Australian Journal of Plant Physiology, 1994, 21:887-900
    [49] 李永庚,于振文,张秀杰等.小麦产量与品质对灌浆不同阶段高温胁迫的响应.植物生态学报,2005,29(3):461-46
    [50] 黄严帅,郭万胜,沈序桃等.生态环境和栽培措施对江苏优质专用小麦品质的影响.耕作与栽培,2004,1:4-6
    [51] 王绍中,章练红.环境生态条件对小麦品质的影响研究进展.华北农学报,1994,9(增刊):141-144
    [52] 姜东,谢祝捷,曹卫星等.花后干旱和渍水对冬小麦光合特性和物质运转的影响.作物学报,2004,30(2):175-182
    [53] 兰涛,姜东,谢祝捷等.花后土壤干旱和渍水对不同专用小麦籽粒品质的影响.水土保持学报,2004,18(1):193-196
    [54] 李金才.魏凤珍,余松烈等.孕穗期渍水对冬小麦根系衰老的影响.应用生态学报,2000,11(5):723-726
    [55] 周苏玫,王晨阳,张重义等.土壤渍水对小麦根系生长及营养代谢的影响.作物学报,2001,27(5):674-679
    [56] 章练红,王绍中,李运景等小麦品质研究概述与展望.(国外农学)麦类作物,1994(6):42-44
    [57] Dubetz S, Bole T B. Effects of moisture stress at early heading and of nitrogen fertilizer on three spring wheat cultivars. Canadian Journal of Plant Science, 1973, 53:1-5
    [58] Ozturk A, Aydin F. Effects of water stress at various growth stages on some quality characteristics of winter wheat. Journal of Agronomy & Crop Science, 2004, 190:93-99
    [59] 蒋礼玲,张怀刚.自然环境因素对小麦品质的影响.安徽农业科学,2005,33(3):488-490
    [60] 范雪梅,姜东,戴廷波等.花后干旱和渍水对不同品质类型小麦籽粒品质形成的影响.植物生态学报,2004,28(5):680-685
    [61] 许振柱,于振文,张永丽.土壤水分对小麦籽粒淀粉合成和积累特性的影响.作物学报,2003,29(4):595-600
    [62] 田良才,张明仪,李晋川.高温胁迫—小麦超高产的主要障碍.山西农业科学,1995,23(2):14-18
    [63] Shah N H, Paulsen G M. Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant and soil, 2003, 257:219-226
    [64] 蔡士宾,曹旸,严建民等.小麦品种对灌浆期水渍和高温的不同反应.上海农学院学报,1994,12(2):131-136
    [65] Plauta Z., Butow B.J., Blumenthalb C.S., et al. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Research, 2004, 86:185-198
    [66] 洪剑明,柴小清,曾小光等.小麦硝酸还原酶活性与营养诊断和品种选育研究.作物学报,1996,22(5):634-637
    [67] Dalling M J, Boland G and Willson J H. Relation between acid proteinase activity and redistribution of nitrogen during grain development in wheat. Australian Journal of Plant Physiology, 1976, 3:721-730
    [68] Elrili I R, Holmes J J, Weger H G. RUBP Limitation of photosynthetic carbon fixation during NH_3 assimilation. Tnteractions between photosynthesis, respiration and ammonium assimilation in N limited green algae. Plant Physiology, 1988, 87:395-401
    [69] Lea D J, Robinson S A, Stewart G R. The enzymology and metabolism of glutamine, glutamate, and asporagine. Miflin B J, Lea P J, eds. The Biochemistry of Plants. New York: Academic Press, 1990, 16:121-159
    [70] 朱德群,朱遐龄,王雁等.与小麦籽粒蛋白质有关的儿项生理参数.作物学报,1991,17(2):135-144
    [71] 王宪泽,张树芹.不同蛋白质含量小麦品种叶片硝酸还原酶活性与氮素积累关系的研究.西北植物学报,1999,19(2):315-320
    [72] 廖建雄,王根轩.CO_2和温度升高及干旱对小麦叶片化学成分的影响.植物生态学报,2000,24(6):744-747
    [73] Corbellinil M, Mazza L, Ciaffi M, et al, Effect of heat shock during grain filling on protein composition and technological quality of wheats. Euphytica, 1998, 100:147-154
    [74] Dupont F M., Altenbach S B. Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. Journal of Cereal Science, 2003, 38:133-146
    [75] Alan M, Myers. Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiology, 2000, 122:989-997
    [76] Olugbemi L B, Bush M G. The influence of temperature on the contribution of awns to yield in wheat. Australian Journal of Plant Physiology, 1987, 14:299-310
    [77] 郑飞,何钟佩.高温胁迫对冬小麦灌浆期物质运输与分配的影响.中国农业大学学报,1999,4(1):73-76
    [78] Plant Z, Butow B J, Blumenthal C S, et al. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post anthesis water deficit and elevated temperature. Field Crop Research, 2004, 86(2): 185-198
    [79] He Z H, Rajaram S D. ifferential responses of bread wheat characters to high temperature. Euphytica, 1994, 72:197-203
    [80] 封超年,郭文善,施劲松等.小麦花后高温对籽粒胚乳细胞发育及粒重的影响.作物学报,2000,26(4):399-405
    [81] Bhullar S S, Jenner C F. Effects of temperature on the conversion of sucrose to starch in the develop ing wheat endosperm. Australian Journal of Plant Physiology, 1986, 13:605-615
    [82] Keeling P L, Bacon P J, Holt D C. Elevated temperature reduced starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta, 1993, 191:342-348
    [83] Rijven A H G C. Heat inactivation of starch synthase in wheat endosperm tissue. Plant Physiology. 1986, 81:448-453
    [84] Hurkman W J, McMue K F, Ahenbach S B, et al. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science, 2003, 1-9
    [85] Guedira M, Paulsen G M. Accumulation of starch in wheat grain under different shoot-root temperatures during maturation. Plant Biology, 2002, 29:495-503
    [86] Altenbach S B, Dupont F M, Kothari K M, et al. Temperature, water and fertilizer influence the timing of key events during grain development in US spring wheat. Journal of Cereal Science, 2003, 37:9-20
    [87] Wallwork M A B, Logue S J, Macleod L C. Effect of high temperature during grain filling on starch synthesis in the developing barley grain. Australian Journal of Plant Physiology, 1998, 25:173-181
    [88] Jenner C F. Effects of exposure of wheat ears to high temperature on dry matter accumulation and carbohydrate metabolism in the grain of two cultivars. Ⅱ. Carry-over effects. Australian Journal of Plant Physiology, 1991, 18(2): 179-190
    [89] Jenner C F. Starch synthesis in the kernel of wheat under high temperature conditions. Australian Journal of Plant Physiology, 1994, 21(6): 791-806
    [90] Jenner C F, Siwek K, Hawker J S. The synthesis of (14)~C starch from (14)~C sucro6e in isolated wheat grains is dependent upon the activity of soluble starch synthase. Australian Journal of Plant Physiology, 1993, 20:329-335
    [91] 梁建生,曹显祖,徐生等.水稻籽粒库强与其淀粉积累之间关系的研究.作物学报,1994,20(6):685-691
    [92] Becker T W, Fock H P. Effect of water stress on the gas exchange, the activities of some enzymes of carbon and nitrogen metabolism and on the pool sizes of some organic acids in maize leaves. Photosynthetic Research, 1986, 175-182
    [93] 刘晓冰,Chopra P K,Maheshwari M.水分胁迫对小麦不同种籽粒代谢的影响.干旱地区农业研究,1994,12(1):92-96
    [94] 张福锁主编,环境胁迫与植物营养.北京:北京农业大学出版社,1993
    [95] 张世英,程炳嵩.硝酸还原酶及其活力调节因子.山东农业大学学报,1987,18(3):81-88
    [96] 刘祖祺,张石城.植物抗性生理学.北京:中国农业出版社,1994
    [97] 蔡永萍,陶汉之,张玉琼.土壤渍水对小麦开花后叶片几种生理特性的影响.植物生理学通讯,2000,36(2):110-113
    [98] 曹翠玲,李生秀.水分胁迫和氮素有限亏缺对小麦拔节期某些生理特性的影响.土壤通报,2003,34(6):505-509
    [99] 王月福,于振文,李尚霞等.氮素营养水平对小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响.作物学报,2002,28(6):743-74
    [100] 甘志波,汪沛洪.土壤干旱时氮肥对小麦叶片碳氮化合物的影响.湖北农业科学,1994,6: 29-33
    [101] 兰涛,姜东,谢祝捷等.花后土壤干旱和渍水对不同专用小麦籽粒品质的影响.水土保持学报,2004,18(1):193-196
    [102] 马新明,李琳,赵鹏等.土壤水分对强筋小麦‘豫麦34’氮素同化酶活性和籽粒品质的影响.植物生态学报,2005,29(1):48-53
    [103] 范雪梅,姜东,戴廷波等.花后干旱和渍水下氮素供应对小麦籽粒蛋白质利淀粉积聚关键调控酶活性的影响.中国农业科学,2005,38(6):1132-1141
    [104] 彭羽,郭天财,王晨阳.冬小麦开花后水分调控对光合特性及产量性状的影响.麦类作物学报,2001,21(4):83-86
    [105] 姜东,谢祝捷,曹卫星等.花后干旱和渍水对冬小麦光合特性和物质运转的影响.作物学报,2004,30(2):175-182
    [106] 邵孝侯,俞双恩,姜翠玲等.土壤水势对冬小麦干物质累积、矿质营养和产量的影响.河海大学学报,1996,24(4):44-48
    [107] 胡芬,赵聚宝,姜雁北等.土壤水分对冬小麦干物质积累和水分利用效率的影响.中国农业气象,1994,15(2):11-14
    [108] 朱旭彤,胡业正.小麦抗湿性研究.湖北农业科学,1993,9:3-7
    [109] 曹旸,蔡士宾.麦类作物耐湿性研究进展.江苏农业科学,1987,3:6-10
    [110] 常江,李金才.渍水对小麦氮磷钾营养效应的研究.土壤学报,1999,36:423-427
    [111] 熊瑛,李友军,郭天财.小麦淀粉合成相关酶的研究现状.河南科技大学学报(农学版),2004,24(2):6-9
    [112] Denyer K. Identification of multiple isoforms of soluble and granule bound starch synthase in developing wheat endosperm. Planta. 1995, 196:256-265
    [113] Evans L T. Some physiological aspects of evolution of wheat. Australian Jurnal of Biology Science, 1970, 23:725-741
    [114] Evans L T. The phloem of the wheat stem in relation to requirements for assimilates by the ear. Australian Jurnal of Biology Science, 1970, 23:743-752
    [115] Evers A D. Development of the endosperm of wheat. Ann Bot, 1970, 34:547-555
    [116] 房全孝,陈雨海,李全起等.灌溉对冬小麦灌浆期光合产物供应和转化及有关酶活性的影响.作物学报,2004,30(11):1113-1118
    [117] Flexas J, Escalona J M, Medrano H. Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines. Plant, Cell and Environment, 1999, 22:39-48
    [118] 许振柱,于振文,亓新华等.土壤干旱对冬小麦旗叶乙烯释放、多胺积累和细胞质膜的影响.植物生理学报,1995,21(3):295-301
    [1] 张平平,何中虎,夏先春等.高温胁迫对小麦蛋白质利淀粉品质影响的研究进展.麦类作物学报,2005,25(5):129-131
    [2] Altenbach S B, Dupont F M, Kothari K M, et al. Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. Journal of Cereal Science, 2003, 37:9-20
    [3] IPCC. 1992. Climate change: the supple mentary report to the IPCC scientific assessment. Cambridge: Cambridge University Press: 35-170.
    [4] 上海植物生理学会.现代植物生理学试验手册.北京:科学技术出版社,1999
    [5] Stone P J, Gras P W, Nicolas M E. The influence of recovery temperature on the effects of a brief heat shock on wheat. Ⅲ. Grain protein composition and dough properties. Journal of Cereal Science, 1997, 25:129-141
    [6] Wesley A S, Lukow O M, McKenzie R I H, et al. Effect of multiple substitutions of glutenin and gliadin proteins on flour quality of Canada Prairie Spring wheat. Cereal Chemistry, 2001, 78:69-73
    [7] 徐兆飞,张惠叶,张定一.小麦品质及其改良.北京:气象出版社,2000
    [8] 赵广才.冬小麦籽粒发育中蛋白质和氨基酸含量的变化及喷氮效应的研究.中国农业科学,1989,22(5):25-35
    [9] 孙振元,韩碧文,刘淑兰.小麦籽粒充实期氮素的吸收和再分配及6-苄氨基嘌呤的调节作用.植物生理学报,1996,22(3):258-264
    [10] 刘仲齐,吴兆苏,俞世容.吲哚乙酸和脱落酸对小麦籽粒淀粉积累的影响.南京农业大学学报,1992,15(1):7-12
    [1] 张庆江,张立言,毕桓武.普通小麦碳氮物质积累分配特征及与籽粒蛋白质的关系.华北农学报,1996,11(3):57-62
    [2] 张庆江,张立言,毕桓武.春小麦品种氮的吸收积累和转运特征及籽粒蛋白质含量关系.作物学报,1997,23(6):712-718
    [3] 许为纲,胡琳,吕金印等.冬小麦抽穗始期标记C同化物分配与运转的研究.核农学报,1998,12(1):7-111
    [4] 朱新开,严六零,郭文善等.淮北稻茬超高产小麦碳氮代谢特征研究.麦类作物学报,2002,22(1):51-55
    [5] 荆奇,戴廷波,姜东等.不同生态条件下不同基因型小麦干物质和氮素积累与分配特征.南京农业大学学报,2004,27(1):1-5
    [6] 蔡士宾,曹旸,严建民等.小麦品种对灌浆期水渍和高温的不同反应.上海农学院学报, 1994.12(2):131-136
    [7] 何照范.粮油籽粒品质及其分析技术.北京:中国农业出版社,1985
    [8] 上海植物生理学会.现代植物生理学试验手册.北京:科学技术出版社,1999
    [9] 张林生,蒋纪云,张保军.小麦籽粒发育过程中游离氨基酸的变化.作物学报,1998,24(4):459-463
    [10] 高玲,江力,张荣铣.小麦旗叶Rubisco周转与籽粒含氮量的关系.植物生理学报,2001,27(2):119-122
    [11] 王月福,于振文,李尚霞.土壤肥力对小麦开花后各器官游离氨基酸和籽粒蛋白质含量变化的影响.麦类作物学报,2003,23(1):41-43
    [12] 张林生,张保军,汪沛洪等.施氮水平对小麦籽粒发育过程中氮基酸含量的影响.西北植物学报,2002,22(3):646-650
    [13] 周琴,姜东,戴廷波等.不同基因型小麦籽粒蛋白质和淀粉积累与碳氮转运的关系.南京农业大学学报,2002,25(3):1-4
    [14] 张庆江,张立言,毕桓武.普通小麦碳氮物质积累分配特征及与籽粒蛋白质的关系.华北农学报),1996,11(3):57-62
    [15] 刘晓冰,李文雄,张志学.春小麦籽粒灌浆过程中淀粉和蛋白质积累规律的研究.东北农业大学学报,1995,26(3):220-225
    [16] 米国华,张福锁,王震宇.小麦超高产生理基础探讨—小麦后期碳氮代谢互作与粒重形成.中国农业大学学报,1997,2(5):73-78
    [17] Desai R M, Bhatia C R. Nitrogen uptake and nitrogen harvest index in durum wheat cultivars varying in their grain protein concentration. Ephytica, 1978, 27:561-566
    [18] 杨文钰,韩惠芳,任万君等.烯效唑干拌种对小麦分蘖期间内源激素及糖氮比的影响.作物学报,2005,31(6):760-765
    [19] 谢祝捷,姜东,曹卫星等.花后干旱和渍水条件下生长调节物质对冬小麦光合特性和物质运转的影响.作物学报,2004,30(10):1047-1052
    [20] 范雪梅,戴廷波,姜东等.花后干旱和渍水下氮素供应对小麦碳氮运转的影响.水土保持学报,2004,18(6):63-67
    [21] Heitholt J J, Croy L I, Maness N O, et al. Nitrogen paititioning in genotypes of winter wheat differing in grain N concentration. Field Crop Res, 1990, 23:133-144
    [1] 王宪泽,李菡,张玲等.山东省推广小麦品种蛋白质和淀粉及其组分的聚类分析.麦类作物学报,2000,21(1):19-23
    [2] 张平平,何中虎,夏先春等.高温胁迫对小麦蛋白质和淀粉品质影响的研究进展.麦类作物学报,2005,25(5):129-132
    [3] Hawker J S, Jenner C F. High temperature affects the activity of enzymes in the committed pathway of starch synthesis in developing wheat endosperm. Australian Journal of Plant Physiology, 1993, 20:197-209
    [4] Lea D J, Robinson S A, Stewart G R. The enzymology and metabolism of glutamine, glutamate, and asporagine. Miflin B J, Lea P J, eds. The Biochemistry of Plants. New York: Academic Press,1990, 16:121-159
    [5] Keeling P L Bacon P J, Holt D C. Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta, 1993, 191:342-348
    [6] Wallwork M A B, Logue S J, Macleod L C. Effect of high temperature during grain filling on starch synthesis in the developing barley grain. Australian Journal of Plant Physiology, 1998, 25: 173-181
    [7] Jenner C F. Effects of exposure of wheat ears to high temperature on dry matter accumulation and carbohydrate metabolism in the grain of two cultivars:Ⅱ. Carry-over effects. Australian Journal of Plant Physiology, 1991, 18(2): 179-190
    [8] Jenner C F. Starch synthesis in the kernel of wheat under high temperature conditions. Australian Journal of Plant Physiology, 1994, 21(6): 791-806
    [9] Dupont F.M., Altenbach S.B. Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. Journal of Cereal Science, 2003, 38:133-146
    [10] Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism during the development of rice endosperm. Plant Science, 1992, 82:15-20
    [11] Preiss J. Starch biosynthesis and its regulation. Biochemical Society Transactions, 1991, 19(3): 539-547
    [12] 现代植物生理学实验指南,中国科学院上海植物生理研究所.科学出版社,1999
    [13] Bhullar, S.S. and Jenner C.F. Effect of a brief episode of elevated temperature on grain filling in wheat ears cultured on solution of sucrose. Australian Journal of Plant Physiology, 1986, 13: 617-626
    [14] HurkmanW J, McMue K F, Altenbach S B, et al. Effect of temperature on expression of genes encoding enzymes for starch biosyntheses in developing wheat endosperm. Plant Science, 2003, 1-9
    [15] Sofield I, Evans L T, Cook M G, et al. Factors influencing the rate and duration of grain falling in wheat. Australian Journal of Plant Physiology, 1977, 4:785-797
    [16] 王东,于振文,王旭东等.硫营养对小麦籽粒淀粉合成及相关酶活性的影响.植物生理与分 子生物学学报,2003,29(5):437-442
    [17] 潘庆民,于振文,王月福.小麦开花后旗叶中蔗糖合成与籽粒中蔗糖降解.植物生理与分子生物学学报,2002,28(3):235-240
    [18] Jenner C F. Starch synthesis in the kernel of wheat under high temperature conditions. Australian Journal of Plant Physiology, 1994, 21(6): 791-806
    [19] Wallwork M A B, Logue S J, Macleod L C. Effect of high temperature during grain filling on starch synthesis in the developing barley grain. Australian Journal of Plant Physiology, 1998, 25:173-181
    [20] Kumar R., Srivastava G G. Effect of water stress on ammonia assimilating enzymes in the leaves of sunflower. Indian. Journal of Plant Physiology, 1992, 12:140-144
    [1] 曹广才.小麦品质生态.北京:中国科学技术出版社,1994
    [2] 李永庚,蒋高明,杨景成.温度对小麦碳氮代谢、产量和品质影响.植物生态学报,2003,27(2):164-169
    [3] 田良才,张明仪,李晋川.高温胁迫—小麦超高产的主要障碍.山西农业科学,1995,23(2):14-18
    [4] 蔡士宾,曹旸,方先文等.小麦灌浆期水渍和高温对植株早衰和籽粒增重的影响.作物学报,1994,20(4):457464
    [5] 现代植物生理学实验指南,中国科学院上海植物生理研究所.科学出版社,1999
    [6] Stone P J, Nicolas M E. Comparison of sudden heat stress with gradual exposure to high temperature during grain filling in two wheat varieties differing in heat tolerance. Ⅱ: Fractional protein accumulation. Australian Journal of Plant Physiology, 1998, 25: 1-11
    [7] Randall P J, Moss H J. Some effects of temperature regime during grain filling on wheat quality. Australian Journal of Agricultural Research, 1990, 41:602-617
    [8] 范雪梅,姜东,戴廷波等.花后干旱和渍水对不同品质类型小麦籽粒品质形成的影响.植物生态学报,2004,28(5):680-685
    [9] 姜东,谢祝捷,曹卫星等.花后干旱和渍水对冬小麦光合特性和物质运转的影响.作物学报,2004,30(2):175-182
    [10] 兰涛,姜东,谢祝捷等.花后土壤干旱和渍水对不同专用小麦籽粒品质的影响.水土保持学报,2004,18(1):193-196
    [11] 张宝军,蒋纪云.小麦籽粒品质及其影响因素分析.国外农学-麦类作物,1995,4:29-32
    [12] 兰静.不同沉降值测定方法与小麦品质特性间相关性的研究.麦类作物,1998,18(1):27-30
    [13] Keeling PI, Banisadr R, Singletary GW. Effect of temperature on enzymes in the pathway of starch biosynthesis in developing wheat and maize grain. Australian Journal of Plant Physiology, 1994, 21(6):807-827
    [14] Hawker JS, Jenenr CF. High temperature affects the activity of enzymes in the committed pathway of starch synthesis in developing wheat endosperm. Australian Journal of Plant Physiology, 1993, 20(2):197-209
    [15] 赵辉,戴廷波,荆奇,等.灌浆期高温对两种品质类型小麦品种籽粒淀粉合成关键酶活性的影响.作物学报,2006,32(3)423-429
    [16] 谢祝捷,姜东,曹卫星,戴廷波,荆奇.花后土壤水分状况对小麦籽粒淀粉和蛋白质积累关键调控酶活性的影响.植物生理与分子生物学报,2003,29(4):309-316
    [17] 孙振元,韩碧文,刘淑兰.小麦籽粒充实期氮素的吸收和再分配及6-苄氨基嘌呤的调节作用.植物生理学报,1996,22(3):258-264
    [1] 北方小麦干热风科研协作组.小麦干热风.1998,北京气象出版社
    [2] 郭文善,施劲松,彭永欣等.灌浆期高温对小麦光合产物运转的影响.核农学报,1998,12(1):21-27
    [3] 郭天财,王晨阳,朱云集等.后期高温对冬小麦根系及地上部衰老的影响.作物学报,1998,24(6):957-962
    [4] 李德全,郭清福,张以勤等.冬小麦抗旱光合特性研究.作物学报,1993,19(2):125-134
    [5] Musgrave M E. Waterlogging effects on yield and photosynthesis in eight wheat cultivars. Crop Science, 1994, 34:1314-1320
    [6] 王爱国,罗广华,邵从本.大豆种子超氧物歧化酶的研究.植物生理学报,1983,9(1):77-84
    [7] 赵世杰,许长成,邹琦等.植物组织中丙二醛测定方法的改进.植物生理学通讯,1994,30(3):207-210
    [8] 白宝璋,汤学军.植物生理学测试技术.北京:中国科技出版社,1993,99-100:156-157
    [9] Culter RG.Free radicals and aging. In Roy A K, the molecular basis of aging[M].Academic Press:Orlando, 1984, 263-354
    [10] 陆定志.植物生理生化进展.1983,(2):20-52
    [11] 姜东,陶勤南,张国平.渍水对小麦扬麦5号旗叶和根系衰老的影响.应用生态学报,2002,13(11):1519-1521
    [12] 白宝璋.植物生理学.北京:中国科学出版社,1994,89-90
    [13] 刘道宏.植物叶片衰老.植物生理学通讯,1983(1):14-19
    [14] Sawhney Veena, Singh D P. Effect of chemical desiccation at the post-anthesis stage on some physiological and biochemical changes in the flag leaf of contrasting wheat genotypes. Field Crops Research, 2002, 77:1-6
    [15] 蔡永萍,陶汉之,张玉琼.土壤渍水对小麦开花后叶片几种生理特性的影响.植物生理学通讯,2000,36(2):110-113
    [16] 林琪,侯立白,韩伟等.干旱胁迫对小麦旗叶活性氧代谢及灌浆速率的影响.西北植物学报,2003,23(12):2152-2156
    [17] 范雪梅,姜东,戴廷波等.花后干旱和渍水下氮素供应对小麦旗叶衰老和粒重的影响.土壤学报,2005,42(5):875-879
    [18] 王荣富,张云华.超级杂交稻两优培九及其亲本生育后期的光抑制和早衰特性.作物学报,2004,30(4):393-397
    [19] 段俊,梁承邺.开花及籽粒形成期杂交水稻叶片衰老的研究.植物生理学报,1997,23(2):139-144
    [20] 张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444-4448
    [21] 张永强,毛学森,孙宏勇等.干旱胁迫对冬小麦叶绿素荧光的影响.中国生态农业学报,2002,10(4):13-15
    [22] Hardy F W, Havelk and, Quebedeau X B. Increasing crop productivity: the problem, stragtegies approach and selected rate-limitations to photosynthesis. Proceeding of 4~(th) International Congress of Photosynthesis, London: Biochemical Society, 1978, 695-719
    [23] Devosnm. Cultivar difference in plant crop photosynthesis. Crop physiology and Breeding, Edited by Spiertz J and Kramer T H. Pudoe Wangeningen, 1979, 71-74
    [24] 于振文,田其卓,潘庆民.黄淮麦区冬小麦超高产栽培的理论与实践.作物学报,2002,28(5):577-585
    [25] 张锡金,陈金桂,周燮.PP_(333)对小麦苗期矮化与抗衰效应的内源激素解析.南京农业大学学报,1994,17(3):53-59
    [1] 田良才,张明仪,李晋川.高温胁迫-小麦超高产的主要障碍.山西农业科学,1995,23(2):14-18
    [2] 蔡士宾,曹旸,严建民等.小麦品种对灌浆期水渍和高温的不同反应.上海农学院学报,1994.12(2):131-136
    [3] 张庆江,张立言,毕桓武.普通小麦碳氮物质积累分配特征及与籽粒蛋白质的关系.华北农学报,1996,11(3):57-62
    [4] 荆奇,戴廷波,姜东等.不同生态条件下不同基因型小麦干物质和氮素积累与分配特征.南京农业大学学报,2004,27(1):1-6
    [5] Plauta Z., Butow B.J., Blumenthalb C.S., et al. 2004.Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Res, 86:185-198
    [6] 姜东,谢祝捷,曹卫星等.花后干旱和渍水对冬小麦光合特性和物质运转的影响.作物学报,2004,30(2):175-182
    [7] 郭文善,施劲松,彭永欣等.灌浆期高温对小麦光合产物运转的影响.核农学报,1998,12(1):21-27
    [8] 王晨阳,马元喜,周苏玫等.土壤渍水对冬小麦根系活性氧代谢及生理活性的影响.作物学报,1996,22(6):712-719
    [9] 何照范.粮油籽粒品质及其分析技术.北京:中国农业出版社,1985.
    [10] Shanghai Society of Plant Physiology.1999.(现代植物生理学试验手册).Beijing:Science and technology press.131-132;133-134
    [11] 张林生,蒋纪云,张保军.小麦籽粒发育过程中游离氨基酸的变化.作物学报,1998,24(4):459-463
    [12] 刘晓冰,李文雄,张志学.春小麦籽粒灌浆过程中淀粉和蛋白质积累规律的研究.东北农业大学学报,1995,26(3):220-225
    [13] Randall, P J, Moss H J. 1990. Some effect of temperature regime during grain filling on wheat quality. Australian Journal of Agricultural Research, 41:602-617
    [14] Jenner C F.The physiology of starch and protein deposition in the endosperm of wheat. Australian Journal of Plant Physiology, 1991, 18:211-226
    [15] 许振柱,王崇爱,李晖.土壤干旱对小麦叶片光合和氮素水平及其转运效率的影响.干旱地区农业研究,2004,22(4):75-79
    [16] Desai RM, Bhatia CR. 1978. Nitrogen uptake and nitrogen harvest index in durum wheat cultivars varying in their grain protein concentration. Euphytica, 27:561-566
    [17] 杜金哲,李文雄,胡尚连,et al.春小麦不同品质类型氮的吸收、转化利用及与籽粒产量和蛋白质含量的关系.作物学报,2001,27(2):253-260
    [18] Barbotin A, Lecomte C, Bouchard C, Jeuffroy M. 2005. Nitrogen remobilization during grain filling in wheat: genotypic and environmental effects. Crop Sci, 45:1141-1150
    [19] 常江.小麦湿害营养及其营养调控效应研究.应用生态学报,2000,11(3):373-376.
    [20] 李金才,董琦,余松烈.不同生育期根际土壤淹水对小麦品种光合作用和产量的影响.作物学报,2001.27(4):434-441
    [21] 谢祝捷,姜东,曹卫星等.花后干旱和渍水条件下生长调节物质对冬小麦光合特性和物质运转的影响.作物学报,2004,30(10):1047-1052
    [22] Herwaarden van, Richards A.F.,Farquhar R.A., et al. 'Haying-off', the negative grain yield response of dryland wheat to nitrogen fertiliser. Ⅲ. The influence of water deficit and heat shock. Aust. J. Agric. Res. 1998, 49, 1095-1110
    [23] Shah N.H, Paulsen G.M. 2003. Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant and soil, 257:219-226
    [24] 范雪梅,戴廷波,姜东等.花后干旱或渍水下氮素供应对小麦光合和籽粒淀粉积累的影响.应用生态学报,2004,16(10):1883-1888
    [25] 张雷明,上官周平,毛明策等.长期施氮对旱地小麦灌浆期叶绿素荧光参数的影响.应用生态学报.2003,14(5):695-698
    [1] 曹广才,王绍中.小麦品质生态.北京:中国科学技术出版社,1997,89-92
    [2] 金善宝主编.中国小麦品种及其系谱,1983,北京:农业出版社
    [3] Solfield I, et al. Factors influencing the rate and duration of grain filling in wheat. Aust J Plant Physiol, 1977, 4:785-797
    [4] 姜东,谢祝捷,曹卫星等.花后干旱和渍水对冬小麦光合特性和物质运转的影响.作物学报,2004,30(2):175-182
    [5] 兰涛,姜东,谢祝捷等.花后土壤干旱和渍水对不同专用小麦籽粒品质的影响.水土保持学报,2004,18(1):193-196
    [6] 范雪梅,姜东,戴廷波等.花后干旱和渍水对不同品质类型小麦籽粒品质形成的影响.植物生态学报,2004,28(5):680-685
    [7] 王旭东,于振文,樊广华等.钾素对冬小麦品质和产量的影响.山东农业科学,2000.5:16-18
    [8] Hawker J S, Jenner C F.High temperature affects the activity of enzymes in the committed pathway of starch synthesis in developing wheat endosperm. Aust J Plant Physiol, 1993, 20: 197-209
    [9] Xie Z-J, Jiang D, Cao W-X, et al. Effects of Post Anthesis Soil Water Status on the Activities of Key Regulatory Enzymes of Starch and Protein Accumulation in Wheat Grains. Journal of Plant Physiology and Molecular Biology, 2003, 29(4): 309-316
    [10] 范雪梅,姜东,戴廷波等.花后干旱和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响.中国农业科学,2005,38(6):1132-1141
    [11] Rijven A H G C. Heat inactivation of starch synthase in wheat endosperm tissue. Plant Physiol. 1986, 81:448-453
    [12] Wallwork M A B, Logue S J, Macleod L C. Effect of high temperature during grain filling on starch synthesis in the developing barley grain. Australian Journal of Plant Physiology, 1998, 25:173-181
    [13] Jenner C F. Effects of exposure of wheat ears to high temperature on dry matter accumulation and carbohydrate metabolism in the grain of two cultivars.Ⅱ. Carry-over effects. Australian Journal of Plant Physiology, 1991, 18(2): 179-190
    [14] Jenner C F. Starch synthesis in the kernel of wheat under high temperature conditions. Australian Journal of Plant Physiology, 1994, 21(6): 791-806
    [15] 现代植物生理学实验指南.中国科学院上海植物生理研究所,科学出版社,1999
    [16] Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism during the development of rice endosperm. Plant Science, 1992, 82:15-20
    [17] 毛凤梧,赵会杰,徐立新等.水氮运筹对小麦品质形成的调控效应.河南农业大学学报,2001,35(1):13-15
    [18] Zhang C F, Peng S B, Bennett J. Glutamine synthetase and its isoforms in rice spikelets and rachis during grain development. Journal of Plant Physiology, 2000, 156:230-233
    [19] Caley C, Dufus C M, Jefcoat B. Effects of elevated temperature and reduced water uptake on enzymes of starch synthesis in developing wheat grains. Australian Journal of Plant Physiology, 1990, 17:431-439
    [20] 王维,张建华,杨建昌等.水分胁迫对贪青迟熟水稻茎贮藏碳水化合物代谢及产量的影响.作物学报,2004,30(3):196-204
    [21] 许振柱,于振文,张永丽.土壤水分对小麦籽粒淀粉合成和积累特性的影响.作物学报,2003,29(4):595-600
    [22] 范雪梅,戴廷波,姜东等.花后干旱与渍水下氮素供应对小麦碳氮运转的影响.水土保持学报,2004,18(6):63-67
    [23] 谢祝捷,姜东,曹卫星等.花后干旱和渍水条件下生长调节物质对冬小麦光合特性和物质运转的影响.作物学报,2004,30(10):1047-1052
    [1] 金善宝.中国小麦学.北京:中国农业出版社,1996
    [2] 蔡士宾,曹旸,方先文等.小麦灌浆期水渍和高温对植株早衰和籽粒增重的影响.作物学报,1994,20(4):457-464
    [3] Stone P J, Nicolas M E. Comparison of sudden heat stress with gradual exposure to high temperature during grain filling in two wheat varieties differing in heat tolerance. Ⅱ: Fractional protein accumulation. Australian Journal of Plant Physiology, 1998, 25:1-11
    [4] 范雪梅,姜东,戴廷波等.花后干旱和渍水对不同品质类型小麦籽粒品质形成的影响.植物生态学报2004,28(5):680-685
    [5] Stone, P.J. and Nicolas M.E. Wheat cultivars vary wide in their response of grain yield and quality of short period of post anthesis heat stress. Australian Journal of Plant Physiology, 1994, 21:887-900
    [6] 章练红,王绍中,李运景,等.小麦品质研究概述与展望.(国外农学)麦类作物,1994,(6):42-44
    [7] Lea D J, Robinson S A, Stewart G R. The enzymology and metabolism of glutamine, glutamate, and asporagine. Miflin B J, Lea P J, eds. The Biochemistry of Plants. New York: Academic Press, 1990, 16:121-159
    [8] Paula M.M.,Ligia M.L., Isabel M.S.,Helena G.C., Julie V.C.2003. Expression of the plastid— located glutamine synthetase of medicago truncatula. Accumulation of the precursor in root nodules reveals an in vivo control at the level of protein import into plastids. Plant Physiol, 132(1): 390-399
    [9] Xie Z-J, Jiang D, Cao W-X, et al. Effects of Post Anthesis Soil Water Status on the Activities of Key Regulatory Enzymes of Starch and Protein Accumulation in Wheat Grains. Journal of Plant Physiology and Molecular Biology, 2003, 29(4):309-316
    [10] 范雪梅 花后干旱和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响,中国农业科学2005,38(6):1132-114
    [11] 马新明,李琳,赵鹏等.土壤水分对强筋小麦‘豫麦34’氮素同化酶活性和籽粒品质的影响.植物生态学报,2005,29(1):48-53
    [12] Hawker J S, Jenner C F.High temperature affects the activity of enzymes in the committed pathway of starch synthesis in developing wheat endosperm. Aust J Plant Physiol, 1993, 20:197-209
    [13] Caley C, Dufus C M, Jefcoat B. Elects of elevated temperature and reduced water uptake on enzymes of starch synthesis in developing wheat grains. Australian Journal of Plant Physiology, 1990, 17:431-439
    [14] Rijven A H G C. Heat inactivation of starch synthase in wheat endosperm tissue. Plant Physiol. 1986, 81:448-453
    [15] Wallwork M A B, Logue S J, Macleod L C. Effect of high temperature during grain filling on starch synthesis in the developing barley grain. Australian Journal of Plant Physiology, 1998, 25:173-181
    [16] Jenner C F. Effects of exposure of wheat ears to high temperature on dry matter accumulation and carbohydrate metabolism in the grain of two cultivars.Ⅱ. Carry-over effects. Australian Journal of Plant Physiology, 1991, 18(2): 179-190
    [17] 李德全,郭清福,张以勤等.冬小麦抗旱光合特性研究.作物学报,1993,19(2):125-134
    [18] 吕军.渍水对冬小麦生长的危害及其影响.植物生理学报,1994,20(3):221-226
    [19] 郭天财,王晨阳,朱云集等.后期高温对冬小麦根系及地上部衰老的影响.作物学报,1998,24(6):957-962
    [20] 姜东,谢祝捷,曹卫星等.花后干旱和渍水对冬小麦光合特性和物质运转的影响.作物学报,2004,30(2):175-182
    [21] 郭文善,施劲松,彭永欣等.灌浆期高温对小麦光合产物运转的影响.核农学报,1998,12(1):21-27
    [22] 张庆江,张立言,毕桓武.普通小麦碳氮物质积累分配特征及与籽粒蛋白质的关系.华北农学报,1996,11(3):57-62
    [23] 张庆江,张立言,毕桓武.春小麦品种氮的吸收积累和转运特征及籽粒蛋白质含量关系.作物 学报,1997,23(6):712-718
    [24] 许为纲,胡琳,吕金印等.冬小麦抽穗始期标记C同化物分配与运转的研究.核农学报,1998,12(1):7-111
    [25] Plauta Z., Butow B.J., Blumenthal C.S. Wrigley C.W Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature
    [26] 李金才,董琦,余松烈.不同生育期根际土壤淹水对小麦品种光合作用和产量的影响.作物学报,2001.27(4):434-441

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700