用户名: 密码: 验证码:
重组腺相关病毒神经肽Y基因转染对海人酸致痫大鼠海马突触重建的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癫痫是由各种原因导致的脑细胞群异常放电所致的突然性、反复性和短暂性的神经功能失常为特征的综合征。中国目前至少有700多万癫痫患者,在美国也大约有80多万人在忍受药物难治性癫痫的疾病折磨。在过去的30年里,全世界有近30000中药物被用来进行癫痫治疗的动物实验,以此来提高人类临床治疗癫痫的发展,多年的研究已经取得了良好的效果,使一部分癫痫患者通过药物治疗能够得到缓解,但仍有部分癫痫患者对药物治疗无效,或者不能阻止这些药物难治性癫痫的发作和进展。目前药物难治性癫痫的外科手术治疗,也不能完全改变脑内神经细胞的高兴奋状态和相关离子通道的异常,同时,外科手术的局限性仍然只能使少部分癫痫患者从中受益,大部分患者仍然依赖长期的规范的药物治疗。随着对该癫痫发病机制研究的进一步深入,以及分子生物学技术的发展,基因治疗作为一种新的治疗手段为有效控制和彻底治愈癫痫带来了新的希望。
     在对癫痫发病机制的研究中,海马突触重建被认为与颞叶癫痫发作关系密切,而在海马异位突触的重建过程中,苔藓纤维出芽(mossy fibersprouting, MFS)是突触重建的重要标志,同时伴随突触素(synaptophysinP38)以及突触生长相关蛋白的异常表达,而这种异位突触的形成又反过来加重了癫痫的发作。
     在对突出重建后新生突触的超微结构研究中发现,新生突触在癫痫持续状态下,新生突触的形态、数量、结构、以及功能均区别于正常脑组织的神经突触,这些新生的突触形成的是兴奋性神经环路还是抑制性环路,也受到了广泛关注。显微结构显示这些新生的异位突触大部分是非对称性突触,而这是典型的兴奋性突触的特征。因此苔藓纤维出芽与颗粒细胞形成的异位突触被认为是诱发癫痫发作的重要结构基础。
     在对癫痫药物治疗多年的研究中发现,神经肽Y(neuropeptide Y, NPY)作为神经递质和神经调质广泛存在于中枢神经系统和周围神经系统,中枢神经系统中海马内浓度最高。NPY及其受体与癫痫的发生以及苔藓纤维出芽关系密切,且外源性NPY具有抗癫痫作用。但NPY在癫痫模型中对神经功能的作用非常复杂,常因动物模型不同或给药途径的不同出现不一致甚至相互矛盾的实验结果。
     本研究以重组腺相关病毒作为载体,将NPY基因转染到脑组织特定靶区,观察其对海人酸(Kainic acid, KA)致痫大鼠癫痫发作的影响,并进一步运用Timm染色、PCR、免疫印迹等方法,观察分析重组腺相关病毒基因转染的NPY(rAAV2/1-NPY-EGFP)对海马CA3区苔藓纤维出芽、突触素表达、突触生长相关蛋白(GAP-43)的影响,以及利用透射电镜观察rAAV2/1-NPY-EGFP治疗对致痫大鼠海马突触超微结构的影响。
     第一部分重组腺相关病毒神经肽Y基因转染对海人酸致痫大鼠癫痫发作及海马苔藓纤维出芽的影响
     目的:探讨重组腺相关病毒神经肽Y(rAAV2/1-NPY-EGFP)基因转染对癫痫发作程度和海马苔藓纤维出芽的影响。
     方法:清洁级健康Wistar大鼠30只,体重250~270g,随机分成NPY实验组(n=12),海人酸致痫组(KA)(n=12)和对照组(n=6)。NPY实验组:脑室注射10μl的rAAV2/1-NPY-EGFP,滴度为5×1011μg/ml;KA组在脑室内注射等量的生理盐水。以上两组10min后分别在海马CA3区注射海人酸(KA);空白对照组依次分别在脑室和CA3区注射等量的生理盐水。并分别于注射后2、4周观察大鼠的癫痫发作情况,视频脑电(EEG)癫痫波的频率和波幅,Timm染色观察海马CA3区苔藓纤维出芽。
     结果:
     1NPY实验组大鼠随观察时间的延长,发作程度逐渐减轻,与KA组大鼠相比,于4W时,脑电图癫痫波放电频率减少(P <0.05),波幅降低(P<0.05)。
     2NPY实验组苔藓纤维出芽分级明显低于对照组。3.空白对照组没有癫痫发作,CA3区苔藓纤维出芽没有明显变化。
     结论:rAAV2/1-NPY–EGFP基因转染可以降低海马CA3区苔藓纤维出芽程度,有效抑制癫痫发作,为NPY基因治疗临床难治性癫痫提供了有力试验支持。
     第二部分重组腺相关病毒神经Y基因转染对海人酸致痫大鼠海马突触素表达的影响
     目的:观察rAAV2/1-NPY-EGFP基因转染对突触素表达的影响,探讨癫痫治疗的新方法
     方法:清洁级健康Wistar大鼠,体重250~270g,随机分成NPY实验组(n=24),海人酸致痫组(KA组)(n=24)和对照组(n=24)。NPY实验组:脑室注射10μl的rAAV2/1-NPY-EGFP,滴度为5×1011μg/ml;海人酸致痫组和对照组分别在脑室内注射等量的生理盐水。10min后分别在NPY试验组及海人酸致痫组大鼠的海马CA3区注射海人酸(Kainic acid,KA);对照组在CA3区注射等量的生理盐水。注射后2、4周三组大鼠分别取12只,断头取海马组织,分别应用荧光定量PCR和western-blot方法观察突触素(P38)表达的变化。
     结果:
     1NPY实验组大鼠与海人酸致痫组(KA组)大鼠相比,4W后前者发作程度明显减轻,差异有显著性,对照组无癫痫发作。
     24W后突触素(P38)表达的PCR结果和Western-blot结果显示,在NPY实验组和海人酸致痫组大鼠之间存在明显差异(P <0.05),而2W时差异性不明显。
     结论:rAAV2/1-NPY–EGFP基因转染可以降低海马突触素(P38)的表达,从而抑制突触重建的发生,有效抑制癫痫的发作。第三部分重组腺相关病毒神经Y基因转染对海人酸致痫大鼠海马突触生长相关蛋白GAP-43表达的影响
     目的:观察rAAV2/1-NPY-EGFP基因转染对突触生长相关蛋白GAP-43表达的影响,探讨癫痫治疗的新方法
     方法:清洁级健康Wistar大鼠,体重250~270g,随机分成NPY实验组(n=48),海人酸致痫组(KA组)(n=48)和对照组(n=48)。NPY实验组:脑室注射10μl的rAAV2/1-NPY-EGFP,滴度为5×1011μg/ml;海人酸致痫组和对照组分别在脑室内注射等量的生理盐水。10min后分别在NPY试验组及海人酸致痫组大鼠的海马CA3区注射海人酸(Kainic acid, KA);对照组在CA3区注射等量的生理盐水。注射后2、4周三组大鼠分别取12只,断头取海马组织,分别应用免疫组化学方法和westen-blot方法观察GAP-43表达的变化。
     结果:NPY实验组大鼠与海人酸致痫组(KA组)大鼠相比,4W后突触生长相关蛋白GAP-43表达的PCR结果和Western-blot结果显示,在NPY实验组和海人酸致痫组大鼠之间存在明显差异(P <0.05),而2W时差异性不明显。
     结论:rAAV2/1-NPY–EGFP基因转染4W后降低了海马突触生长相关蛋白GAP-43的表达,从而抑制了突触重建的发生。
     第四部分重组腺相关病毒神经Y基因转染对海人酸致痫大鼠海马苔藓纤维出芽突触超微结构的影响
     目的:探讨重组腺相关病毒基因转染NPY对苔藓纤维出芽形成的突触超微结构的影响。
     方法:清洁级健康Wistar大鼠,体重250~270g,随机分成NPY实验组(n=24),海人酸致痫组(KA组)(n=24)和对照组(n=24)。NPY实验组:脑室注射10μl的rAAV2/1-NPY-EGFP,滴度为5×1011μg/ml;海人酸致痫组和对照组分别在脑室内注射等量的生理盐水。10min后分别在NPY试验组及海人酸致痫组大鼠的海马CA3区注射海人酸(Kainic acid,KA);对照组在CA3区注射等量的生理盐水。分别于注射后2、4周取海马组织;采用Timm染色标记出芽苔藓纤维末端,在电镜下观察新生的突触数量、突触囊泡密度、以及突触间隙变化。
     结果:
     1海人酸致痫后苔藓纤维出芽形成的新生突触主要以非对称性突触为主,非对称性突触数量增加,重组腺相关病毒NPY基因转染后4W,非对称性突触数量减少,与致痫组对比,差异有显著性;
     2海人酸致痫组突触间隙模糊增宽,重组腺相关病毒NPY基因转染后4W,突触间隙接近正常,两组相对比差异有显著性;
     3海人酸致痫组突触囊泡突触囊泡减少,形态不规则,密度不均匀,重组腺相关病毒NPY基因转染后4W,突触囊泡数密度(synaptic vesiclesdensity, SVD)接近正常,与致痫组对比差异有显著性;
     4海人酸致痫组以及NPY基因转染后2W神经元在电镜下显示为:细胞核肿胀、核仁消失;线粒体空泡变性、线粒体嵴和膜溶解、分界不清;粗面内质网脱颗粒现象,以上数据和对照组以及NPY基因转染4W组相比,差异有显著性(P<0.05),海人酸致痫组和NPY基因转染组2W之间对比,无显著性差异。
     结论:非对称性突触是海人酸致痫大鼠海马苔藓纤维出芽新生突触的主要类型,这种新生的突触类型兴奋性增加,NPY能够抑制新生的非对称突触的形成,从而抑制癫痫的发生。KA致痫大鼠海马神经元细胞凋亡明显增加,基因转染NPY对神经细胞的凋亡有抑制作用。
Epilepsy is a brain dysfunctional syndrome which characteristics issudden, recurrent and transient neurological disorder caused by abnormaldischarge of neurons with various reasons. There are about700Chinese withepilepsy currently, and this condition afflicts at least800000Americans also.Over the past30years, there are about30000drugs were used to carry outepilepsy treatment in animal experiments all over the world, it has achievedgood effect, many epilepsy patients can get relief through the drug therapy,unfortunation, pharmacoyherapy usually fails to achieve long-term remission,it can not inhibit the seizure or recurrent. Currently, the surgery is mainlytaken to treat the refractory epilepsy to resect the epileptic zone, it can notchange the neuronal hyperexcitability and abnormal function of ion channelcompletely, most patients still rely on long-term standard pharmacoyherapy.with the pathogenesis and molecular biology technology developing, the genetherapy as a new method to control and treat epilepsy effectively will bringinnovative and promising alternative.
     In the pathogenesis research of epilepsy, it is considered that thehippocampal synaptic reorganization associated with temporal lobe epilepsyclosely, and in hippocampal synaptic reorganization process, moss fibersprouting (MFS) is an important symbol of synaptic reconstruction, and at thesame time with synaptophysin (P38) and synaptic growth-associated protein43(GAP-43) abnormal expressing, this kind of synapse formation reverse toaggratate epilepsy seizures.
     The synaptic ultrastructural study found that the morphology, quantity,structure, and function of new synapses in status epilepticus, are different from normal brain neural, these new synapse formation is excitatory circuitry orinexcitatory circuitry, also have aroused wide public attention. The study ofsynaptic ultrastructural shows that most of these recurrent synaptic isasymmetry synapses, and this is a typical characteristics of excitabilitysynaptic. So moss fiber sprouting and granular cell formation of ectopicsynapse is considered to be the important basic structure induced to seizures.
     The study of pharmacoyherapy in epilepsy over many years,neuropeptide Y (NPY) as a neurotransmitter and neuromodulator wide spreadover the central nervous system and peripheral nervous system, and it has thehighest concentration in the hippocampus of central nervous system. NPY andits receptors have the relationship with the epileptogenesis and moss fibersprouting, and exogenous NPY has antiepileptic effect. But the neural functionof NPY is very complex in epilepsy model, it appear inconsistent and evenconflicting experimental results with different animal model or differentmethod of administration.
     In this study, NPY gene carried by the recombinant adeno-associatedvirus as a vector, is transfered to specific target area of brain, the influence ofNPY gene to epileptic seizure rats which induced by Kainic acid (KA) wasobserved about the MFS, synaptic element expression, synaptic growth-associated protein (GAP-43) in hippocampal CA3using Timm dyeing, PCR,western blot method, and the influence of rAAV2/1-NPY-EGFP onhippocampal synaptic ultrastructural using transmission electron microscope.
     Part1The effects of neuropeptide Y gene transfection using recombinantadeno-associated virus vector on seizure and mossy fiber sprouting inhippocampus in rat model induced by kainic acid
     Objective: To study the effects of neuropeptide Y gene transfection usingrecombinant adeno-associated virus vector on seizure and mossy fibersprouting in hippocampus in rat.
     Methods:30clean level Wistar rats which weight are250~270g, wererandomly divided into NPY group (n=12), KA group (n=12) and controlgroup(n=6). NPY group in which10μl of rAAV2/1-NPY-EGFP (titer5× 1011v.g./ml) were injected to ventricle, KA group, in which amount saline wasinjected to ventricle. Ten minutes later, KA were injected respectively tohippocampal CA3area of two groups, The control group respectively wereinjected in ventricle and CA3area of same amount of saline for two times.Theseizure situation, EEG wave frequency and amplitude were observed afterinjection of2and4week. Mossy fiber sprouting(MFS) in the hippocampuswere detected by Timm’s staining after injection of4w.
     Result:
     1The seizure degree in rats of NPY group gradually reduced withobservation time. At4W post-injection, in rats of NPY group, the onset ofsymptoms and EEG epileptic discharge frequency and amplitude decreased(P<0.05), compared to rats of positive control group.
     2The scores of mossy fiber sprouting in the hippocampal CA3area werehigher in KA group compareed to NPY group.3The control group had noseizure and no significant difference of mossy fiber sprouting.
     Conclusion: rAAV2/1-NPY-EGFP gene transfection can inhibit seizuresand reduce the hippocampal MFS, which provide strong support to the NPYgene therapy for clinical refractory epilepsy.
     Part2The effects of neuropeptide Y gene transfection using recombinantadeno-associated virus vector on expression of synaptophysin inhippocampus in rat model induced by kainic acid
     Objective: To study the effects of neuropeptide Y gene transfection usingrecombinant adeno-associated virus vector on expression of synaptophysin inhippocampus in rat.
     Methods: Clean level Wistar rats which weight are250~270g, wererandomly divided into NPY group (n=24), KA group (n=24) and controlgroup(n=24). NPY group in which10μl of rAAV2/1-NPY-EGFP(titer5×1011v.g./ml) were injected to ventricle, KA group, in which amountsaline was injected to ventricle. Ten minutes later, KA were injectedrespectively to hippocampal CA3area of two groups, The control grouprespectively were injected in ventricle and CA3area of same amount of saline for two times. Three groups were taken the hippocampal tissue, to observedthe changes of expression of synaptophysin after injection of2and4weekwhich experimentation was performed by fluorescent quantitative PCR andwesten-blot.
     Result:
     1The seizure degree in rats of NPY groups decreased significantly after4W injection compared with KA groups (P<0.05).
     2The results of PCR and Westen-blot on synaptophysin (P38)expression showed that there are obvious difference between NPY groups andKA groups after4W(P <0.05), and there are no difference after2W.
     Conclusion: rAAV2/1-NPY-EGFP gene transfection can inhibit seizuresand reduce the synaptophysin (P38) expression, thus to inhibit epilepsy.
     Part3The effects of neuropeptide Y gene transfection using recombinantadeno-associated virus vector on expression of synaptic growth-associatedprotein43(GAP-43) in hippocampus in rat model induced by kainic acid
     Objective: To study the effects of neuropeptide Y gene transfection usingrecombinant adeno-associated virus vector on expression of synapticgrowth-associated protein43(GAP-43) in hippocampus in rat.
     Methods: Clean level Wistar rats which weight are250~270g, wererandomly divided into NPY group (n=48), KA group (n=48) and controlgroup(n=48). NPY group in which10μl of rAAV2/1-NPY-EGFP(titer5×1011v.g./ml) were injected to ventricle, KA group, in which amountsaline was injected to ventricle. Ten minutes later, KA were injectedrespectively to hippocampal CA3area of two groups, The control grouprespectively were injected in ventricle and CA3area of same amount of salinefor two times. Three groups were taken the hippocampal tissue, to observedthe changes of expression of GAP-43after injection of2and4week whichexperimentation was performed by immunohistochemical and fluorescentquantitative PCR.
     Result: The results of immunohistochemical and fluorescent quantitativePCR on GAP-43expression showed that there are obvious difference between NPY groups and KA groups after4W(P<0.05), and there are no differenceafter2W.
     Conclusion: rAAV2/1-NPY-EGFP gene transfection can inhibit seizuresand reduce the GAP-43expression, thus to inhibit the synaptic reorganization.
     Part4The effects of neuropeptide Y gene transfection using recombinantadeno-associated virus vector on ultrastructure features of MFS inhippocampus in rat model induced by kainic acid
     Objective: To study the effects of neuropeptide Y gene transfection usingrecombinant adeno-associated virus vector on ultrastructure features of MFSin hippocampus in rat.
     Methods: Clean level Wistar rats which weight are250~270g, wererandomly divided into NPY group (n=24), KA group (n=24) and controlgroup(n=24). NPY group in which10μl of rAAV2/1-NPY-EGFP(titer5×1011v.g./ml) were injected to ventricle, KA group, in which amountsaline was injected to ventricle. Ten minutes later, KA were injectedrespectively to hippocampal CA3area of two groups, The control grouprespectively were injected in ventricle and CA3area of same amount of salinefor two times. Three groups were taken the hippocampal tissue, mossy fibersprouting(MFS) in the hippocampus were detected by Timmhistochemistry,to observed the changes of the synaptic quantity, synapticvesicles density, and the synaptic cleft under the electron microscope.
     Result:
     1Most of the mossy fiber sprouting synaptic terminals were asym-metric synapses, the quantity of asymmetric synapses increased in KA groupand NPY group after2W, the quantity of asymmetric synapses decreased inNPY group after4W, there are obvious difference between NPY groups andKA groups after4W(P <0.05).
     2The synaptic cleft increased in KA group and NPY group after2W, anddecreased in NPY group after4W, there are obvious difference between twogroups after4W(P <0.05).
     3It is showed that the quantity of synaptic vesicles reducing, shape of synaptic vesicles being irregular, and the density of synaptic vesicles beingreorganization in KA group and NPY group after2W. The synaptic vesiclesdensity(SVD) is normal after4W, there are obvious difference between NPYgroups and KA groups after4W(P <0.05).
     4It is showed that the nucleus swelling, entoblast disappearing, mitoch-ondrial vacuolar degeneration, mitochondrial ridge and membrane dissolved,and the rough endoplasmic reticulum degranulation under the electronmicroscope in KA group and NPY group after2W, comparing to NPY groupafter4W, there are significant difference(P <0.05).
     Conclusion: Most of the mossy fiber sprouting synaptics terminals areasymmetric synapses, this kind of new synaptic is irritability, and can beinhibited by NPY. The apoptosis of neuron in hippocampal increased in rat ofepilepsy, and this apoptosis of neuron can be inhibited by NPY.
引文
1Proper EA, Jansen GH, van Veelen CW, et al. A grading system forhippocampal sclerosis based on the degree of hippocampal mossy fibersprouting. Acta Neuropathol (Berl),2001,101(4):405-409
    2Nadler JV, The recurrent mossy fiber pathway of the epileptic brain.Neurochem Res,2003,28(11):1649-1658
    3朱遂强,杨佳君,杜鹃,等.戊四氮点燃过程中大鼠海马纤维发芽变化的研究.中国康复,2004,19(1):6-8
    4DePrato PS, Holmes P, Martin R,et al. Experimen-taly inducedattenuation of neuropeptide-Y gent expression in transgenic miceincrease mortality rate following seizures. Neurosci Lett,2000,287:61-64
    5Reibel S, Larmet Y, Carnahan J, et al. Endogenous control ofhippocampal epileptogenesis a molecular cascade involving brain-derived neurotrophic factor and neuropeptide Y. Epilepsia,2000,41:s127-133
    6Sun YM, Hao HQ, Kong WN, et al. Effect of intracerebroventricularinjection of rAAV-HIF-1α on hippocampal neuronal apoptosis in a ratmodel of Alzheimer disease. J South Med Univ,2010,30(12)2711-2714
    7Beamer E, Otahal J, Sills GJ, et al. N (w)-Propyl-l-arginine (L-NPA)reduces status epilepticus and early epileptogenic events in a mousemodel of epilepsy: behavioural, EEG and immunohistochemical analyses.Eur J Neurosci.2012,36(9):3194-3203
    8Wolfo T, Dyakin V, Patel A, et al. Volumetric structural magneticresonance imaging(MRI)of the rat hippocampus following kainicacid(KA) treatment. Brain Res,2002,934(2):87-96
    9Vorobyov V, Schibaev N, Kovalev G, et al. Effects of neurotransmitteragonists on electrocortical activity in the rat kainate model of temporallobe epilepsy and the modulatory action of basic fibroblast growth factor.Brain Res,2005,1051(1-2_:123-136
    10Katzir H, Mendoza D,Mathem GW, et al. Effect of theophylline andtrime thobenzamide when given during kainate induced status epilepticus:an improved histopathologic rat model of human hippocampal sclerosis.Epilepsia,2000,41(11):1390-1399
    11Kogure S, Kitayama M, Matsuda Y. Simultaneous kindling of thebilateral hippocampal:an advanced model for epilepsy researec. Epilepsia,2000,41(8):929-932
    12Suzuki J, Investigations of epilepsy with a mutant animal (EL mouse)model. Epilepsia,2004,45(12):1478-1487
    13Baraban SC, Hollopeter G, Erickson JC, et al. Knock-out mice reveal acritical antiepileptic role for neuropeptide Y. J Neurosci,1997,17(23):8927
    14Reibel S, Larmet Y, Carnahan J, et al. Endogenous control ofhippocampal epileptogenesis a molecular cascade involving brain-derived neurotrophic factor and neuropeptid Y. Epilepsin,2000,41:s127-133
    15Patrylo PR, van den Pol A, Spencer DD, et al. NPY inhibits glutamat-erigic exicitation in the epileptic human dentate gyrus. J Neurophysiol.1999,82(1):478-483
    16Woldbye DP. Antiepilepsytic effects of NPY on pentylenetetrazoleseizures. Regul Pept,1998V75-76N:279-282
    17Heilbronn R, Weger S. Viral vectors for gene transfer: current status ofgene therapeutics.Handb Exp Pharmacol.2010,(197):143-170
    18Cucchiarini M, Ren XL, Perides G, et al. Selective gene expression inbrain microglia mediated via adeno-associated virus type2and type5vectors.Gene Ther,2003,10(8):657-667
    19Richichi C, Lin EJ, Stefanin D,et al. Anticonvulsant and Antiepilep-togenic Effects Mediated by Adeno-Associated Virus Vector Neur-opeptide Y Expression in the Rat Hippocampus. J Neurosci.2004,4(12):3051-3059
    20Ueta Y, Fujihara H, Serino R, et al. Transgenic expression of enhancedgreen fluorescent protein enables direct visualization for physiologicalstudies of vasopressin neurons and isolated nerve terminals of the rat.Endocrinology,2005,146(1):406-413
    21Wang S J.Activation of neuropeptide Y Y1receptors inhibits glutamaterelease through reduction of voltage-dependent Ca2+entry in theratcerebral cortex nerve terminals: suppression of this inhibitory effect bythe protein kinase C-dependent facilitatory pathway. Neuroscience,2005,
    134(3):987-1000
    22Smialowska M, Domin H, Zieba B, et al. Neuroprotective effectsofneuropeptide Y-Y2and Y5receptor agonists in vitro and in vivo.Neuropeptides,2009,43(3):235-249
    23Nakamura N H, Akama K T, Yuen G S, et al. Thinking outside thePyramidal cell: unexplored contributions of interneurons and neurope-ptide Y to estrogen-induced synapse formation in the hippocampus. RevNeurosci,2007,18(1):1-13
    1Tarsa L,Goda Y. Synaptophysin regulates activity-dependent synapseformation in cultured hippocampal neuron. Proc Natl Acad Sci USA,2002,99(2):1012-1016
    2Scharfman HE, Sollas AL, Berqer RE, et al. Electrophysiological evidenceof monosynaptic excitatory transmission between granule cells afterseizure-induced mossy fiber sprouting. J Neurophysiol,2003,90(4):2536-2547
    3Hanaya R, Boehm N, Nehlig A. Dissociation of the immunoreactivity ofsynaptophysin and GAP-43during the acute and latent phases of thelithium-pilocarpine model in the immature and adult rat. Exp Neurol,2007,204(2):720-732
    4Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs. NatRev Neurosic,2004,5(7):553-564
    5Foldvary N, Bingaman,WE, Wyllie E. Surgical treatment of epilepsy.Neurol Clin,2001,19(2):491-515
    6Duncan JS, Sander JW,Sisodiya SM, et al. Adult epilepsy. Lancet,2006,367(9516):1087-1100
    7Vezzani A, Sperk G, Colmers WF. Neuropeptide Y:emerging evidence for afunctional role in seizure modulation. Trends Neurosci,1999,22(1):25-30
    8Deprato Primeaux S, Holmes PV,Martin RJ, et al. Experimentally inducedattenuation of neuropeptide-Y gene expression in transgenic miceincreases mortality rate following seizure. Neurosci Lett,2000,287(1):61-64
    9Vezzani A, Civenni G, Rizzi M,et al. Enhanced neuropeptide Y release inthe hippocampus is associated with chronic seizure susceptibility in kainicacid treated rats. Brain Res,1994,660(1):138-142
    10Noe F, Nissinen J, Pitkanen A, et al. Gene therapy in epilepsy:the focus onNPY. Peptides,2007,28():377-383
    11Perucca E. What clinical trial designs have been used to test antiepilepticdrugs and do we need to change them? Epileptic Disord.2012Jun;14(2):124-31
    12Lentz TB, Gray SJ, Samulski RJ. Viral vectors for gene delivery to thecentral nervous system. Neurobiol Dis,2012,48(2):179-188
    13Li GQ, Zhou Z, Liu SY, et al. Establishing rat model of chronic temporallobe epilepsy with the injection of kainic acid into lateral ventricle.Zhangguo Linchuang Kangfu,2005,9(25):117-119
    14Sun YM, Hao HQ, Kong WN, et al. Effect of intracerebroventricularinjection of rAAV-HIF-1α on hippocampal neuronal apoptosis in a ratmodel of Alzheimer disease. J South Med Univ,2010,30(12)2711-2714
    15Takaki M, Ujike H, Kodama M, et al. Increased expression of synaptoph-ysin and stathmin mRNAs after methamphetamine administration in ratbrain. Neuroreport,2001,12(5):1055-1060
    16Li S, Reinprecht I, Fahnestock M, et al. Activity-dependent changes insynaptophysin immunoreactivity in hippocampus, piriform cortex, andentorhinal cortex of the rat. Neurscience,2002,115(4):1221-1229
    17Elmer E, Kokaia M, Kokaia Z, et al. Delayed kinding development afterrapidly recurring seizures: relation to mossy fiber sprouting andneurotrophin, GAP-43and dynorphin gene expression. Brain Res,1996,712(1):19-34
    18Karson MA, Tang AH, Milner TA, et al. Synaptic crosstalk betweenperisomatic targeting interneuron classes expressing cholecystokinin andparvalbumin in hippocampus. J Neurosci,2009,29(13):4140-4154
    19Mathern GW, Babb TL, Pretorius JK, et al. Reactive synaptogenesis andneuron densities for neuropeptide Y, somatostatin, and glutamate decarb-oxylase immunoreactivity in the epileptogenic human fascia dentate. JNeurosci,1995,15(5pt2):3990-4004
    20Tu B, Timofeeva O, Jiao Y,et al. Spontaneous release of neuropeptide Ytonically inhibits recurrent mossy fiber synaptic transmission in epilepticbrain. J Neurosci,2005,25(7):1718-1729
    2125. Vezzani A, Schwarzer C, Lothman EW, et al. Functional changes insomatostatin and neuropeptide containing neurons in the rat hippocampusin chronic models of limbic seizures. Epilepsy Res,1996,26():267-279
    22Heilbronn R, Weger S. Viral vectors for gene transfer: current status ofgene therapeutics.Handb Exp Pharmacol.2010,(197):143-170
    23Nadler JV, Tu B, Timofeeva O, et al. Neuropeptide Y in the recurrentmossy fiber pathway. Peptides,2007,28(2):357-364
    24Suzuki J, Investigations of epilepsy with a mutant animal (EL mouse)model. Epilepsia,2004,45(12):1478-1487
    25Baraban SC, Hollopeter G, Erickson JC, et al. Knock-out mice reveal acritical antiepileptic role for neuropeptide Y. J Neurosci,1997,17(23):8927
    26Reibel S, Larmet Y, Carnahan J, et al. Endogenous control of hippocampalepileptogenesis a molecular cascade involving brain-derived neurotrophicfactor and neuropeptide Y. Epilepsia,2000,41(suppl6):s127-133
    27Cucchiarini M, Ren XL, Perides G, et al. Selective gene expression inbrain microglia mediated via adeno-associated virus type2and type5vectors. Gene Ther,2003,10(8):657-667
    28Noe F, Frasca A, Balducci C, Carli M,et al. Neuropeptide Yoverexpression using recombinant adeno-associated viral vectors.Neurotherapeutics,2009,6(2):300-306
    29Olesen MV, Christiansen SH, Gotzsche CR, et al. Neuropeptide Y Y1receptor hippocampal overexpression via viral vectors is associated withmodest anxiolytic-like and proconvulsant effects in mice. J Neurosci Res,2012,90(2):498-507
    30Sorensen AT, Kanter-schlifke I, Carli M, et al. NPY gene transfer in thehippocampus attenuates synaptic plasticity and learning. Hippocampus,2008,18(6):564-574
    31Richichi C, Lin EJ, Stefanin D, et al. Anticonvulsant and antiepilep-togenic effects mediated by adeno-associated virus vector neuropeptide Yexpression in the rat hippocampus. J Neurosci.2004,24(12):3051-3059
    32Yi F, Abuhamed MM, Long LL, et al. Neuronal synaptic reconstruction inhippocampus in chronic phase of pilocarpine-treated rats. Zhonghua YiXue Za Zhi,2011,91(19):1335-1339
    33Ueta Y, Fujihara H, Serino R, et al. Transgenic expression of enhancedgreen fluorescent protein enables direct visualization for physiologicalstudies of vasopressin neurons and isolated nerve terminals of the rat.Endocrinology,2005,146(1):406-413
    34Silva AP, Carvalho AP, Carvalho CM, et al. Functional interaction betweenneuropeptide Y receptors and modulation of calcium channels in the rathippocampus. Neuropharmacology.2003Feb;44(2):282-292
    1Li GL, Zhang N. Mossy fiber sprouting and synapse formation in thedentate gyrus of temporal lobe epilepsy rats induced by pilocarpine. ZhongNan Da Xue Xue Bao Yi Xue Ban.2004,29(4):424-428
    2Proposal for revised clinical and electroencephalographic classification ofepileptic seizures. From the Commission on Classification andTerminology of the Internation League Against Epilepsy. Epilepsia,1981,22:489-501
    3Meiri KF, Saffell JL, Walsh FS, et al. Neurite outgrowth stimulated byneural cell adhesion molecules requires growth-associated protein-43(GAP-43) function and is associated with GAP-43phosphorylation ingrowth cones. J Neurosci,1998,18,10429-10437
    4Gorter JA, van Vliet EA, Aronica E, et al. Longlasting increasedexcitability differs in dentate gyrus vs. CA1in freely moving chronicepileptic rats after electrically induced status epilepticus. Hippocampus,2002,12,311-324
    5Cantallops I, Routtenberg A. Rapid induction by kainic acid of both axonalgrowth and F1/GAP-43protein in the adult rat hippocampal granule cells.JComp Neurol,1996,366,303-319
    6Takeda S, Sato N, Ikimura K, et al. Novel microdialysis method to assessneuropeptides and large molecules in free-moving mouse.Neuroscience.2011,20(4):253-259
    7Zetterling M, Hillered L, Samuelsson L,et al.Temporal patterns ofInterstitial pyruvate and amino acids after subarachnoid haemorrhage arerelated to the level of consciousne-a clinical microdialysis study. ActaNeurochir,2009,151(7):771-780
    8Meiri KF, Saffell JL, Walsh FS, et al. Neurite outgrowth stimulated byneural cell adhesion molecules requires growth-associated protein-43(GAP-43) function and is associated with GAP-43phosporylation ingrowth cones. J Neurosci,1998,18:10429-10437
    9Benowitz LI, Routtenberg A. GAP-43: an intrinsic determinant ofneuronal development and plasticity. Trends Neurosci,1997,20:84-91
    10Cantallops I, Routtenberg A. Kainic acid induction of mossy fibersprouting: dependence on mouse strain. Hippocampus,2000,10:269-273
    11Gorter JA, van Vliet EA, Aronica E, et al. Longlasting increasedexcitability differs in dentate gyrus vs CA1in freely moving chronicepileptic rats after electrically induced status epilepticus. Hippocampus,2002,12:311-324
    12Vezzani A, Ravizza T, Moneta D, et al. Brain-derived neurotrophic factorimmunoreactivity in the limbic system of rats after acute seizures andduring spontaneous convulsions: temporal evolution of changes ascompared to neuropeptide Y. Neuroscience,1999,90:1445-1461
    13Proper EA, Oestreicher AB, Jansen GH, et al. Immunohistochemicalcharacterization of mossy fiber sprouting in the hippocampus of patientswith pharmacoresistant temporal lobe epilepsy. Brain,2000,123:19-30
    14Naffah-Mazzacoratti MG, Funke MG, Sanabria ER, et al. Growth-associated phosphoprotein expression is increased in the supragranularregions of the dentate gyrus following pilocarpine induced seizures in rats.Neuroscience,1999,91:485-492
    15Mathern GW, Babb TL, Pretorius JK, et al. Reactive synaptogenesis andneuron densities for neuropeptide Y, somatostatin, and glutamatedecarboxylase immunoreactivity in the epileptogenic human fascia dentate.J Neurosci,1995,15(5pt2):3990-4004
    16Tu B, Timofeeva O, Jiao Y,et al. Spontaneous release of neuropeptide Ytonically inhibits recurrent mossy fiber synaptic transmission in epilepticbrain. J Neurosci,2005,25(7):1718-1729
    1725. Vezzani A, Schwarzer C, Lothman EW, et al. Functional changes insomatostatin and neuropeptide containing neurons in the rat hippocampusin chronic models of limbic seizures. Epilepsy Res,1996,26():267-279
    18Heilbronn R, Weger S. Viral vectors for gene transfer: current status ofgene therapeutics.Handb Exp Pharmacol.2010,(197):143-170
    19Nadler JV, Tu B, Timofeeva O, et al. Neuropeptide Y in the recurrentmossy fiber pathway. Peptides,2007,28(2):357-364
    20Suzuki J, Investigations of epilepsy with a mutant animal (EL mouse)model. Epilepsia,2004,45(12):1478-1487
    21覃华丽,周雪,章为.生长相关蛋白GAP-43的研究现状。四川解剖学杂志,2002,10(2):78-83
    22Gerendasy D. Homeostatic tuning of Ca2+signal transduction by memberof the calpacitin protein family. J Neurosci Res,1999,58(1):107
    1胡人义.突触的超微结构及其研究进展.细胞生物学杂志,1980,2(4):1-5,22
    2Okazaki MM, Evenson DA, Nadler JV. Hippocampal mossy fibersprouting and synapse formation after status epilepticus in rats:visualization after retrograde of biocytin.J Comp Neurol,1995,352(4):515-534
    3Cavazos JE, Zhang P, Qazi R, et al. Ultrastructural features of sproutingmossy fiber synapses in kindled and kainic acid-treated rats. J CompNeurol,2003,458(3):272-292
    4Jones DG, Calverley RKS. Frequency of occurrence of perforated synapsesin developing rat neocortex. Neurosci Lett,1991,129(3):189-192
    5王艳玲,孙若鹏,雷革非.癫痫发作对幼年大鼠齿状回神经发生影响的研究.中华儿科杂志,2004,42(8):621-614
    6龚云,冯慎远.锌对大鼠学习记忆的影响及其与海马CA3区和大脑皮质感觉运动区突触界面机构的相关性研究.解剖学杂志,2000,23(1):44-45
    7郑富盛.细胞形态立体计量学.北京医科大学中国协和医科大学联合出版社,1990,48,265
    8Paul S, Buckmaster, Guo Feng Zhang, et al. Axon sprouting a model oftemporal lobe epilepsy creates a predominantly excitatory feedback circuit.J Neuroscience,2002,22(15):6650-6658
    9Wenzel HJ, Woolley CS, Robbms CA, et al. Kainic acid-induced mossyfiber sprouting and synapse formation in the dentate gyrus of rats.Hippocampus,2000,10:244-260
    10林华,黄远桂,陈云春,等.癫痫大鼠海马出芽苔藓纤维突触的超微结构特征.脑与神经疾病杂志,2005,13(1):22-25
    11Buckmaster PS, Zhang GF, Yamawaki R. Axon sprouting in a model oftemporal lobe epilepsy creates a predominantly excitatory feedback circuit.J Neurosci22:6650-6658
    12罗兰,陆汉新,吴馥梅,等.胱甘氨酰胺精氨酸加压素引起小鼠脑内突触结构可塑性变化的定量观察.解剖学报,1991,22(1):93-97
    13Leite JP, Neder L, Arisi GM, et al. Plasticity,synaptic strength, andepilepsy:what can we learn from ultrastructural data? Epilepsia,2005,46(Suppl5):134-141
    14宋超,张丽萍.近年来实验性癫痫动物模型的电镜研究概况.四川中医,2005,23(12):37-39
    15陈云,谭启富,周晓军.颞叶癫痫海马、杏仁核及皮层病灶的超微结构观察.功能性和立体定向神经外科杂志,1997,10(2):4-6
    16隋鸿锦,宫瑾,李冬冬,等.癫痫大鼠海马内凋亡神经元超微结构的研究,解剖学报,1999,10(4):322-324
    17McQuiston AR, Colmers WF. Neuropeptide Y does not alter NMDAconductances in CA3pyramidal neurons: a slice-patchstudy. Neurosci Lett,1992,138(2):261-264
    18Toth PT, Bindokas VP, Bleakman D, Colmers WF, Miller RJ. Mechanismof presynaptic inhibition by neuropeptide Y at sympathetic nerve terminals.Nature,1993,364:635-639
    19James AM, Murphy MP. How mitochondrial damage affects cell function.J Biomed Sci.2002,9(6Pt1):475-487
    1Cavazos JE, Golarai G, Sutula TP. Mossy fiber synaptic reorganizationinduced by kindling: time course of development, progression, andpermanence. J Neurosci,1991,11:2795-2803
    2Cavazos JE, Das I, Sutula T. Kindling induces a pattern of neuronal loss inthe hippocampus that resembles human hippocampal sclerosis. J Neurosci,1994,14:3106-3121
    3Vanlandingham KE, Heinz ER, Cavazos JE, et al. Magnetic resonanceimaging evidence of hippocampal injury after prolonged focal febrileconvulsions. Ann Neurol,1998,43:413-426
    4Engel Jr J. Update on surgical treatment of the epilepsies. Clin Exp Neurol,1992,29:32-48
    5Lieb JP, Engel Jr J, Babb TL. Interhemispheric propagation time of humanhippocampal seizures.I. Relationship to surgical outcome. Epilepsia,1986,27:286-293
    6Foldvary N, Nashold B, Mascha E, et al. Seizure outcome after temporallobectomy for temporal lobe epilepsy:a Kaplan-meier survival analysis.Neurology,2000,54:630-634
    7Thon M, Martinian L, Catarino C, et al. Bilateral reorganization of thedentate gyrus in hippocampal sclerosis: a postmortem study. Nuerology,2009,73(13):1033-1040
    8Franck JE, Pokorny J, Kunkel DD, et al. Physiologic and morphologiccharacteristics of granule cell circuitry in human epileptic hippocampus.Epilepsia,1995,36:543-558
    9Babb TL, Lieb JP, Brown WJ, et al. Distribution of pyramidal cell densityand hyperexcitability in the epileptic human hippocampal formation.Epilepsia,1984,25:721-728
    10Houser C, Miyashiro J, Swartz B, et al. Altered patterns of dynorphinimmunoreactivity suggest mossy fiber reorganization in humanhippocampal epilepsy. J Neurosci,1990,10:267-282
    11Represa A, Le Gal La Salle G, Ben-Ari Y, Hippocampal plasticity in thekindling model of epilepsy in rats. Neurosci Lett,1989,99:345-350
    12Sutula T, Cascino G, Cavazos J, et al. Mossy fiber synaptic reorganizationin the epileptic human temporal lobe. Ann Neurol,1989,26,321-330
    13Sutula T, Cavazos J, Golarai G. Alteration of long-lasting structural andfunctional effects of kainic acid in the hippocampus by brief treatment withphenobarbital. J Neurosci,1992,12:4173-4187
    14Cavazos JE, Golarai G, SutulaTP. Septotemporal variation of thesupragranular projection of mossy fiber pathway in the dentate gyrus ofnormal and kindled rats. Hippocampus.1992,2:363-372
    15Cavazos JE, Zhang P, Qazi R, et al. Ultrastructural features of sproutedmossy fiber synapses in kindled and kainic acid treated rats. J CompNeurol,2003,458:272-292
    16Golarai G, Cavazos JE, Sutula TP. Activation of the dentate gyrus bypentylenetetrazol evoked seizures induces mossy fiber synapticreorganization. Brain Res,1992,593:257-264
    17Sutula T, He XX, Cavazos J,et al. Synaptic reorganization in thehippocampus induced by abnormal functional activity. Science,1988,239:1147-1150
    18Sutula T. Seizure-induced axonal sprouting: assessing connections betweeninjury, local circuits, and epileptogenesis. Epilepsy Curr,2002,2:86-91
    19Cavazos JE, Jones SM, Cross DJ. Sprouting and Synaptic reorganization inthe subiculum and CA1region of the hippocampus in acute and chronicmodels of partial-onset epilepsy. Neuroscience,2004,126:677-688
    20Bragin A, Wilson CL, Engel Jr J. Chronic epileptogenesis requiresdevelopment of a network of pathologically interconnected neuron clusters:a hypothesis. Epilepsia,2000,41(suppl.6):s144-152
    21Wuarin JP, Dudek FE. Excitatory synaptic input to granule cells increasewith time after kainite treatment. J Neurophys,2001,85:1067-1077
    22Bender RA, Dube C, Gonzalez-vega R, et al. Mossy fiber plasticity andenhanced hippocampal excitability, without hippocampal cell loss oraltered neurogenesis, in an animal model of prolonged febrile seixzures.Hippocampus,2003,13;399-412
    23Holmes GL, Sarkisian M, Ben-Ari Y, et al. Mossy fiber sprouting afterrecurrent seizures during early development in rats. J Comp Neurol,1999,404:537-553
    24Buckmaster PS, Zhang GF, Yamawaki R. Axon sprouting in a model oftemporal lobe epilepsy creates a predominantly excitatory feedback circuit.J, Neurosci,2002,22:6650-6658
    25Boyett JM, Buckmaster PS. Somatostatin-immunoreactive interneuronscontribute to lateral inhibitory circuits in the dentate gyrus of control andepileptic rats. Hippocampus,2001,11;418-422
    26Buckmaster PS, Dudek FE. In vivo intracellular analysis of granule cellaxon reganization in epileptic rats. J Neurophys,1999,81:712-721
    27Ribak CE, Tran PH, Spigelman I, et al. Status epilepticus-induced hilarbasal dendrites on rodent granule cells contribute to recurrent excitatorycircuitry. J Comp Neurol,2000,428:240-253
    28Buckmaster PS, Jongen-Relo AL, Davari SB, et al. Testing the disinhibitionhypothesis of epileptogenesis in vivo and during spontaneous seizures. JNeurosci,2000,20:6232-6240
    29Sloviter RS, Zappone CA, Harvey BD, et al.“Dormant basket cell”hypothesis revisited: relative vulnerabilities of dentate gyrus mossy cellsand inhibitory interneurons after hippocampal status epilepticus in the rats.J Comp Neurol,2003,459:44-76
    30Sayin U, Osting S, Hagen J, et al. Spontaneous seizures and loss ofaxo-axonic and axo-somatic inhibition induced by repeated brief seizuresin kindled rats. J Neurosci,2003,23:2759-2768
    31Sloviter RS,Zappone CA, Harvey BD, et al. Kainic acidinduced recurrentmossy fiber innervation of dentate gyrus inhibitory interneurons: possibleanatomical substrate of granule cell hyperinhibition in chronically epilepticrats. J Comp Neurol,2006,494:944-960
    32Santhakumar V, Aradi I, Soltesz I. Role of mossy fiber sprouting andmossy cell loss in hyperexcitability: a network model of the dentate gyrusincorporating cell types and axonal topography. J Neurophys,2005,93:437-453
    33Takaki M, Ujike H, Kodama M, et al. Increased expression ofsynaptophysin and stathmin mRNAs after methamphetamineadministration in rat brain. Neuroreport,2001,12(5):1055-1060
    34Yamamoto T, Nguyen TT, Stevens RT, et al. Increase of GAP-43expression following kainic acid injection into whisker barrel cortex.Neuro Report,2000,11,1603-1605
    35Gonzalez-Perez O, Gonzalez-Castaneda RE, Huerta M, et al. Beneficialeffects of alpha-lipoic acid plus vitamin E on neurological deficit, reactivegliosis and neuronal remodeling in the penumbra of the ischemic rat brain.Neurosci Lett,2002,321,100-104
    36Li S, Reinprecht I, Fahnestock M, et al. Activity-dependent changes insynaptophysin immunoreactivity in hippocampus, piriform cortex, andentorhinal cortex of the rat. Neuroscience,2002,115:1221-1229
    37Roch C, Leroy C, Nehlig A, et al. Magnetic resonance imaging in the studyof the lithium-pilocarpine model of temporal lobe epilepsy in adult rats.Epilepsia,2002a,43,325-335
    38Dube C, Boyet S, Marescaux C, et al. Relationship between neuronal lossand interictal glucose metabolism during the chronic phase of thelithium-pilocarpine model of epilepsy in the immature and adult rat. ExpNeurol,2001,167,227-241
    39Looney MR, Dohan Jr FC, Davies KG, et al. Synaptophysin immunorea-ctivity in temporal lobe epilepsy-associated hippocampal sclerosis. ActaNeuropathol,1999,98,175-185
    40Proper EA, Oestreicher AB, Jansen GH, et al. Immunohistochemicalcharacterization of mossy fiber sprouting in the hippocampus of patientswith pharmaco-resistant temporal lobe epilepsy. Brain2000,123,19-30
    41Elmer E, Kokaia M, Kokaia Z, et al. Delayed kindling development afterrapidly recurring seizures: relation to mossy fiber sprouting andneurotrophin, GAP-43and dynorphin gene expression. Brain Res,1996,712(1):19-34
    42Meiri KF, Saffell JL, Walsh FS, et al. Neurite outgrowth stimulated byneural cell adhesion molecules requires growth-associated protein-43(GAP-43) function and is associated with GAP-43phosporylation ingrowth cones. J Neurosci,1998,18:10429-10437
    43Benowitz LI, Routtenberg A. GAP-43: an intrinsic determinant of neuronaldevelopment and plasticity. Trends Neurosci,1997,20:84-91
    44Cantallops I, Routtenberg A. Kainic acid induction of mossy fibersprouting: dependence on mouse strain. Hippocampus,2000,10:269-273
    45Gorter JA, van Vliet EA, Aronica E, et al. Longlasting increasedexcitability differs in dentate gyrus vs CA1in freely moving chronicepileptic rats after electrically induced status epilepticus. Hippocampus,2002,12:311-324
    46Vezzani A, Ravizza T, Moneta D, et al. Brain-derived neurotrophic factorimmunoreactivity in the limbic system of rats after acute seizures andduring spontaneous convulsions: temporal evolution of changes ascompared to neuropeptide Y. Neuroscience,1999,90:1445-1461
    47Proper EA, Oestreicher AB, Jansen GH, et al. Immunohistochemicalcharacterization of mossy fiber sprouting in the hippocampus of patientswith pharmacoresistant temporal lobe epilepsy. Brain,2000,123:19-30
    48Naffah-Mazzacoratti MG, Funke MG, Sanabria ER, et al. Growth-associated phosphoprotein expression is increased in the supragranularregions of the dentate gyrus following pilocarpine induced seizures in rats.Neuroscience,1999,91:485-492
    49Hanava R, Boehm N, Nehliq A, et al. Dissociation of the immunoreactivityof synaptophysin and GAP-43during the acute and latent phases of thelithium-pilocarpine model in the immature and adult rat. Exp Neurol,2007,204(2):729-732
    50Longo BM, Vezzani A, Mello LE. Growth-associated protein43expressionin hippocampal molecular layer of chronic epileptic rats treated withcycloheximide. Epilepsia,2005,46(suppl5):125-128
    51覃华丽,周雪,章为.生长相关蛋白GAP-43的研究现状。四川解剖学杂志,2002,10(2):78-83
    52Gerendasy D. Homeostatic tuning of Ca2+signal transduction by memberof the calpacitin protein family. J Neurosci Res,1999,58(1):107
    1Pedrazzini T, Pralong F, Grouzmann E. Neuropeptide Y: The universalsoldier. Cell Mol Life Sci,2003,60:350-377
    2Tschenett A, Singewald N, Carli M, et al. Reduced anxiety and improvedstress copong ability in mice lacking NPY-Y2receptors. Eur J Neurosci,2003,18:143-148
    3Greco B, Carli M. Reduced attention and increased impulsivity in micelacking NPY Y2receptors: Relation to anxiolytic-like phenotype. BehavBrain Res,2006,169:325-334
    4Bacci A,Huguenard JR, Prince DA. Differential modulation of synaptictransmission by neuropeptide Y in rat neocortical neurons. Proc Natl AcadSci USA,2002,99:17125-17130
    5Mody I. Aspects of the homeostatic plasticity of GABAA receptor-mediated inhibition. J Physiol,2005,562:37-46
    6Turrigiano GG. Homeostatic plasticity in neuronal networks:The morethings change, the more they stay the same. Trends Neurosci,1999,22:221-227
    7Qian J, Colmers WF, Saggau P. Inhibition of synaptic transmission byneuropeptide Y in rat hippocampal area CA1:Modulation of presynapticCa entry. J Neurosci,1997,17:8169-8177
    8Vezzani A, Michalkiewicz M, Michalkiewicz T, et al. Seizuresusceptibility and epileptogenesis are decreased in transgenic ratsoverexpressing neuropeptide Y. Neuroscience,2002,110:237-243
    9Woldbye DP, Madsen TM, Larsen PJ, et al. Neuropeptide Y inhibitshippocampal seizures and wet dog shakes. Brain Res,1996,737:162-168
    10Smialowska M, Bijak M, Sopala M, et al. Inhibitory effect of NPY on thepicrotoxin-induced activity in the hippocampus: A behavioural andelectrophysiological study. Neuropeptides,1996,30:7-12
    11Caberlotto L, Fuxe K, Sedvall G, et al. Localization of neuropeptide YY1mRNA in the human brain: abundant expression in cerebral cortex andstriatum. Eur J Neurosci,1997,9:1212-1225
    12Paredes MF, Greenwood J, Baraban SC. Neuropeptide Y modulates a Gprotein-coupled inwardly rectifying potassium current in the mousehippocampus. Neurosci Lett,2003,340:9-12
    13Furtinger S, Pirker S, Czech T, et al. Plasticity of Y1and Y2receptors andneuropeptide Y fibers in patients with temporal lobe epilepsy. J Neurosci,2001,21:5804-5812
    14Kofler N, Kirchmair E, Schwarzer C, et al. Altered expression of NPY-Y1receptions in kainic acid induced epilepsy in rats. Neurosci Lett,1997,230:129-132
    15Gariboldi M, Conti M, Cavaleri D, et al. Anticonvulsant properties ofBIBP3226, a non-peptide selective antagonist at neuropeptide Y Y1receptors. Neurosci,1998,10:757-759
    16Vezzani A, Moneta D, Mule F, et al. Plastic changes in neuropeptide Yreceptor subtypes in experimental models of limbic seizures. Epilepsia,2000,41:s115-s121
    17Husum H, Gruber SH, Bolwig TG, et al. Extracellular levels of NPY in thedorsal hippocampus of freely moving rats are markedly elevated followinga single electroconvulsive stimulation, irrespective of anticonvulsive Y1receptor blockade. Neuropeptide,2002,36:363-369
    18Guo H, Castro PA, Palmiter RD, et al. Y5receptors mediate neuropeptideY actions at excitatory synapses in area CA3of the mouse hippocampus. JNeurophysiol,2002,87:558-566
    19Jacques D, Dumont Y, Fournier A, et al. Characterization of neuropeptideY receptor subtypes in the normal human brain, including thehypothalamus. Neuroscience,1997,79:129-148
    20Klapstein GJ, Colmers WF. Neuropeptide Y suppresses epileptiformactivity in rat hippocampus in vitro. J Neurophysiol,1997,78:1651-1661
    21E1Bahh B, Cao JQ, Beck-Sickinger AG, et al. Blockade of neuropeptideY(2) receptors and suppression of NPY’s anti-epileptic actions in the rathippocampal slice by BIIE0246. Brit J Pharmacol,2002,136:502-509
    22E1Bahh B, Balosso S, Hamilton T, et al. The anti-epileptic actions ofneuropeptide Y in the hippocampal are mediated by Y and not Y receptors.Eur J Neurosci,2005,22(6):1417-1430
    23Dumont Y, Fournier A, Quirion R. Expression and characterization of theneuropeptide Y Y5receptor subtype in the rat brain. J Neurosci,1998,18:5565-5574
    24Marsh DJ, Baraban SC, Hollopeter G, et al. Role of the Y5neuropeptide Yreceptor in limbic seizures. Proc Natl Acad Sci USA,1999,96:13518-13525
    25Baraban SC. Antiepileptic actions of neuropeptide Y in the mousehippocampus require Y5receptors. Epilepsia,2002,43:9-13
    26Woldbye DP, Larsen PJ, Mikkelsen JD, et al. Powerful inhibition of kainicacid seizures by neuropeptide Y via Y5-like receptors. Nat Med,1997,3:761-764
    27Franck JE, Pokorny J, Kunkel DD, et al. Physiologic and morphologiccharacteristics of granule cell circuitry in human epileptic hippocampus.Epilepsia,1995,36:543-558
    28Feng L, Molnar P, Nadler JV. Short-term frequency dependent plasticity atrecurrent mossy fiber synapses of the epileptic brain. J Neurosci,2003,23:5381-5390
    29Molnar P, Nadler JV. Mossy fiber-granule cell synapses in the normal andepileptic rat dentate gyrus studied with minimal laser photostimulation. JNeurophysiol,1999,82:1883-1894
    30Scharfman HE, Goodman JH, Sollas AL. Granule-like neurons at thehilar/CA3border after status epilepticus and their synchrony with areaCA3pyramidal cells: functional implications of seizure-inducedneurogenesis. J Neurosci,2000;20:6144-58
    31Hardison JL, Okazaki MM, Nadler JV. Modest increase in extracellularpotassium unmasks effect of recurrent mossy fiber growth. J Neurophysiol,2000;84:2380-9
    32Okazaki MM, Nadler JV. Glutamate receptor involvement in dentategranule cell epileptiform activity evoked by mossy fiber stimulation. BrainRes,2001;915:58-69
    33Ribak CE, Tran PH, Spigelman I, et al. Status epilepticus-induced hilarbasal dendrites on rodent granule cells contribute to recurrent excitatorycircuitry. J Comp Neurol,2000;428:240-53
    34Bijak M. Neuropeptide Y reduces epileptiform discharges and excitatorysynaptic transmission in rat frontal cortex in vitro. Neuroscience,2000;96:487-94
    35Colmers WF, El Bahh B. Neuropeptide Y and epilepsy. EpilepsyCurr,2003;3:53-8
    36Vezzani A, Sperk G. Overexpression of NPY and Y2receptors in epilepticbrain tissue: an endogenous neuroprotective mechanism in temporal lobeepilepsy? Neuropeptides,2004;38:245-52
    37Vezzani A, Michalkiewicz M, Michalkiewicz T, et al. Seizuresusceptibility and epileptogenesis are decreased in transgenic ratsoverexpressing neuropeptide Y. Neuroscience,2002;110:237-43
    38Buckmaster PS, Jongen-Re lo AL. Highly specific neuron loss preserveslateral inhibitory circuits in the dentate gyrus of kainate-induced epilepticrats. J Neurosci,1999;19:9519-29
    39Okazaki MM, Molna′r P, Nadler JV. Recurrent mossy fiber pathway in ratdentate gyrus: synaptic currents evoked in presence and absence ofseizure-induced growth. J Neurophysiol,1999;81:1645-60
    40McQuiston AR, Petrozzino JJ, Connor JA, et al. Neuropeptide Y1receptors inhibit N-type calcium currents and reduce transient calciumincreases in rat dentate granule cells. J Neurosci,1996;16:1422-9
    41Nadler JV, Tu B, Timofeeva O, et al. Neuropeptide Y in the recurrentmossy fiber pathway. Peptides,2007,28(2):357-364
    42Sun QQ, Akk G, Huguenard JR, et al. Differential regulation of GABArelease and neuronal excitability mediated by neuropeptide Y1and Y2receptors in rats thalamic neurons. J Physiol(Lond),2001,531:81-94
    43Tu B, Timofeeva O, Jiao Y, et al. Spontaneous release of neuropeptide Ytonically inhibits recurrent mossy fiber synaptic transmission in epilepticbrain. J Neurosci,2005,25(7):1718-1729
    44Heilbronn R, Weger S. Viral vectors for gene transfer: current status ofgene therapeutics.Handb Exp Pharmacol.2010,(197):143-170
    45Cucchiarini M, Ren XL, Perides G, et al. Selective gene expression inbrain microglia mediated via adeno-associated virus type2and type5vectors.Gene Ther,2003,10(8):657-667
    46Mazarati AM. Galanin and galanin receptors in epilepsy. Neuropeptides,2004,38(6):331-343
    47Vezzani A, Sperk G. Overexpression of NPY and Y2receptors in epilepticbrain tissue: an endogenous neuroprotective mechanism in temporal lobeepilepsy? Neuropeptides,2004,38(4):245-252
    48Foti S, Haberman R, Samulski, et al. Adeno-associated virumediatedexpression and constitutive secretion of NPY or NPY13-36suppressesseizure activity in vivo. Gene Ther,2007,14:1534-1536
    49Richichi C, Lin EJ, Stefanin D, et al. Anticonvulasant and antiepilepto-genic effects mediated by adeno-associated virus vector neuropeptide Yexpression in the rat hippocampus. J N eurosci,2004,24:3051-3059
    50Haberman R, Criswell H, Snowdy S et al. Therapeutic liabilities of in vivoviral vector tropism: adeno-associated virus vector, NMDAR1antisense,and focal seizure sensitivity. Mol Ther,2002,6:495-500
    51Raol YH, Lund IV, Bandyopadhyay S, et al. Enhancing GABA(A)receptor alpha1subunit levels in hippocampal dentate gyrus inhibitsepilepsy development in an animal model of temporal lobe epilepsy. JNeurosci,2006,26:11342-11346
    52Noe F, Nissinen J, Pitkanen A, et al. Gene therapy in epilepsy:the focus onNPY. Peptides,2007,28:377-383
    53Lado FA, Moshe SL. How do seizures stop? Epilepsia,2008,49(10):1651-1664
    54McGaraughty S, Cowart M, Jarvis MF, et al. Anticonvulsant andantinociceptive actions of novel adenosine kinase inhibitors. Curr Top MedChem,2005,5(1):43-58
    55Huber A, Padrun V, Degton N, et al. Grafts of adenosine releasing cellssuppress seizures in kindling epilepsy. Proc Nat Acad Sci USA,2001,98(13):7611-7616

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700