用户名: 密码: 验证码:
柞山地区铜锌多金属矿床地质—地球化学—后生成矿作用的重要性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柞山地区位于南秦岭造山带东段,以发育众多铅锌多金属矿床而闻名于世。多年来,这些铅锌多金属矿床一直被厘定为泥盆纪热水沉积矿床(SEDEX)。近年来的金属找矿勘探实践证明,该地区不仅存在同生热水沉积成矿作用,而且后生成矿作用也非常重要。通过穆家庄铜矿和桐木沟锌矿的地质特征、同位素地球化学、流体包裹体地球化学、成矿年代学研究后提出,穆家庄铜矿床是后生流体交代充填型矿床,桐木沟锌矿为热水沉积-后生流体交代改造矿床。通过对比区域热事件结构提出石炭纪秦岭地块与华北板块的点接触碰撞而使深部形成花岗岩浆,导致浅部地壳出现高热背景场,从而形成后生流体交代成矿作用。
     通过对南秦岭东段区域岩浆作用、变质作用和成岩成矿年代学数据分析,证明了柞山地区自古生代以来的区域热事件结构与成矿事件的耦合关系,厘定了三个极为重要的热事件和成矿作用事件:360~340Ma热水沉积事件与热水沉积成矿作用;320~280Ma深部岩浆活动和地热活动与后生流体交代成矿作用;190~170Ma发生在地壳水热活动中的脆韧性变形构造活动与构造蚀变和韧性剪切等构造-流体成矿作用。首次确认320~280Ma是柞山地区后生流体交代成矿的重要热事件之一。
     详细解剖了柞山地区二个典型金属矿床,确定了后生成矿作用的两种情形:流体交代成矿作用和热水沉积-流体交代改造成矿作用。穆家庄铜矿床为后生流体交代矿床,它产于柞山地区红岩寺-黑山复式向斜南翼金井河-胡家沟次级背斜中。该背斜南陡北缓并倒转,南翼近轴部断裂早期表现为滑脱,晚期表现为左行压剪的复合构造带。二个构造阶段均有含铜铁白云石石英脉充填,但矿体主体形成于压剪阶段。矿体赋存于泥盆系青石垭组中上部白云质岩石中,其空间展布严格受背斜陡倾南翼(倒转翼)近轴部的层间断裂.裂隙带构造控制,在缓倾北翼(正常翼)相同层位未发现含矿构造带,且地层岩石含铜低于20×10~(-6),低于区域背景值。团块状富矿石和密集网脉带沿构造引张部位即构造扩容带充填。矿体在走向上呈膨大缩小,倾向上呈S形,其规模取决于断裂构造的部位,而矿石类型(团块状富矿、网脉状矿)则取决于围岩性质和构造属性,相对脆性岩石中以网脉状矿石为主,相对软弱岩石以团块状、块状矿石为主。黑云母化蚀变与铜矿成矿关系密切。桐木沟锌矿床为热水沉积-流体交代改造矿床,产于马鹿坪倒转向斜北翼(倒转翼)的层间破碎带中。赋矿地层为中泥盆统青石垭组下部一套粉砂质泥质岩,其中发育数层层纹状细粒.微细粒贫锌矿石。这种矿石与泥质矿物(绢云母)紧密交生、构成细密纹层,残余层理清楚,单侧不对称蚀变,其热水交代蚀变岩包括钠长石岩、方柱石岩等,为典型的同生热水沉积作用形成的。富矿体位于F2断裂带的次级断裂F3构造带中,靠近两断裂交点开始以东矿体厚而富,在倾向上呈雁行排列,闪锌矿多呈胶结物胶结围岩角砾和热水沉积岩角砾。富矿体两侧发育流体交代岩(绿色岩),这些绿色岩石是块状富矿体和角砾状富矿体的主要容矿岩石,这与热水沉积形成的层纹状锌矿(钠长石方柱石板岩)具有显著差异。后生流体交代岩(主要由透闪石、绿帘石、透辉石、黑云母、石英、绿泥石等矿物组成)显著受层间断层控制,它是流体交代原热水沉积层和热水沉积闪锌矿纹层而形成的,该矿床为热水沉积.流体交代改造矿床。
     穆家庄铜矿矿石铅和近矿围岩岩石铅具有极高的放射性成因铅特点。通过对矿石铅、近矿围岩岩石铅与测定的寒武系碳硅质岩岩石全岩铅进行综合对比,发现它们的组成特征类似,说明穆家庄铜矿铅源来自于寒武系。由于极高的放射性异常铅仅分布在矿体及其近矿围岩中,因而提出异常铅同位素组成可以作为勘查的主要地球化学标志之一。桐木沟矿石铅也是异常铅,反映的铅源和早期热水沉积期的来源于基底的铅源是一致的。综合对比区内几个重要矿床的铅同位素组成特征,反映了三种不同的铅源特征:小河口铜矿反映的是与同期岩浆岩(印支期)具有相同铅源;桐木沟锌矿和银洞子银铅矿的铅源一致,说明和热水沉积期的铅源一致;穆家庄铜矿的铅则是来自于寒武系的极高放射性异常铅源。
     流体包裹体研究揭示了后生成矿流体的两阶段流体演化过程:第一阶段的成矿流体为中温,中、高盐度岩浆热液含CO_2的NaCl-H_2O流体。均一温度为190~265℃,盐度12.5~35.34wt%NaCl,压力12.8~21.3Mp,在同一寄主矿物中均一温度变化小,而盐度变化极大,是岩浆流体沸腾的产物。第二阶段流体为为中高温,中高盐度岩浆期后热液NaCl-H_2O流体。均一温度为300~350℃,盐度7.4~41.59wt%NaCl,压力10.8~19.3Mp。反映了岩浆期后热液流体的二次沸腾。这两期流体与二个断裂构造阶段相吻合。流体的演化过程为:第一阶段,深部岩浆上侵,岩浆的气液流体上升,混入地层建造水,当到达浅地表构造带时减压,流体迅速沸腾,产生流体不混溶,因而沉淀出金属,形成网脉状矿石。第二阶段的流体为岩浆期后热液NaCl-H_2O流体,随着第二个断裂构造阶段的发生,流体发生二次沸腾并沉淀出金属。桐木沟锌矿后生成矿流体仅发育第一阶段,并未见流体的二次沸腾。
     应用流体地球化学的综合方法(包裹体流体组成、演化,包裹体稀有气体示踪和包裹体中流体稀土元素示踪)识别出后生交代流体性质,桐木沟为地层水(建造水)加岩浆水,穆家庄铜矿的成矿流体第一阶段为岩浆水,第二阶段的成矿流体为岩浆水加部分地层水(建造水)。氢氧同位素分析也支持上述结论。
     获得了穆家庄铜矿与黄铜矿共生的黑云母氩氩坪年龄为323.68Ma;桐木沟块状富矿石中后生交代蚀变岩(绿色岩)中透闪石钾氩表面年龄为293Ma。认为柞山地区后生流体交代形成的铜铅锌矿床的主期成矿年龄在293~323Ma间,这个成矿年龄刚好和区域热事件结构中的320~280Ma热事件相吻合。确定的石炭纪(300Ma左右)的流体交代成矿作用,可能是南秦岭地区又一次非常重要的成矿作用。本文根据穆家庄铜矿、桐木沟锌矿等地质地球化学特征,建立了后生流体交代矿床的成矿作用模型,为南秦岭地区找矿勘查提供了新的方向。
Zhashan polymetallic concentration area,is located in the East part of South Qinling Orogenic belts,is famous for Lead-Zinc polymetallic ore deposits.Most of them are regarded as SEDEX deposits formed during Devonian. Recently, some advancement of exploration approves there is not only hydrothermal exhalation-sedimentary mineralization but also epigenetic mineralization, which is very important. It is very clear that the Mujiazhuang copper deposit,located in the Zhashan polymetallic concentration area, is an epigenetic one formed by fluid metasomatism during Carboniferous and the Tongmugou zinc deposit, located in the Zhashan polymetallic concentration area, is fluid matomatism reformed ore deposit based on hydrothermal exhalation-sedimentary ores or rocks on basis of researching on gological characteristics of isotopes geochemistry, fluid inclusions geochemistry, mineralization dating and event geology both the Mujiazhuang copper deposit and the Tongmugou zinc deposit in the Zhashan area. By comparing of regional geothermal events, it is put forward that the point-to-point collision between the Qinling Block Mass and the North China Plate during Carboniferous begin forming the granite in the deep interior of the Zhashan area to make this area forming high geothermal background, and forming fluid metasomatic metallogenics.
     It is established three more key construct-magma-geothermal events and matched mineralizationat events based on researching regional magmatism, metamorphism and chronology: the hydrothermal sedimentary event during 360~340Ma, the structurally magmatic reformation mineralization formed by the deep-derived magma activity and the geothermal activity during 320~280Ma,and the alteration .i.e the retrometamorphism happening at the fragile-ductile deforming zone within the later-stage crust water hydrothermal activity during 190~170Ma. It is discovered firstly that fluid matomatism event during 320~280Ma(Carboniferous) is very important among regional hydrothermal events.
     It is clear that there are two kinds of epigenetic mineralization based on researching two typical ore deposits in the Zhashan polymetallic concentration area: fluid metasomatism and fluid matomatism reformed mineralization based on hydrothermal exhalation-sedimentary ores or rocks. The Mujiazhuang copper deposit is a fluid metasomatic ore deposit which is located nearly in axialplane fracture of Jinjinghe-hujiamiao inverted anticline which is in south limb of Hongyansi-heishan composite syncline in the Zhashan area. The axialplane fracture, is a complicated structure, forms in inverted limb, has two stages construct activities: detachment early and left-lateral strike-slip fault lately. They are filled by Cu-bearing ankerite-quartz veins, but main ore bodies are located the later stage fractures. Most of ores, filled in dilatant zone of fracture, are mass and network mineralization. The scale of ore bodies depends on the property of embracing rocks: network veins ore body in fragile rocks and mass ore body in soft rocks. Biotite alteration is relation to copper mineralization. The Tongmugou zinc deposit, is located in North lamb(inverted lamb) interlays fracture of Maluping inverted syncline, is a rich zinc deposit of fluid matomatic reformed. The main ore-bearing rock is Qingshiya group of Devonian (albite slate or albite-scapolite slate), in which there are multiplayer lamellar and minutiness sphaleritite low-grade ores that it is intergrows with pelite, composes minutia lamellar and shows remains layering. Wall-rock alteration(aibite,silication, scapolite et, al) is single side nonsymmetry, It is clear that they are formed by hydrothermal exhalation-sedimentary during Devonian. Ore shoots, are located in subsidiary fracture(F3) derived from structure F2, are larger and thickness near point of intersection between F2 and F3, and are enchelon arrangement in dip. Wall-rock alteration(green color stone, mainly composed of hoepfnerite, epidote, diopside, biotite, quartz, and chlorite etc.) is around ore shoots to be distribute with symmetry, that show the block and brecciated ores of the Tongmugou zinc deposit are fluid metasomatic reformed deposit.
     It is discovered that ore mineral lead isotopes of the Mujiazhuang are sky-high radioactivity lead abnormal, and alteration rocks nearly ore body are also. On the contrast of both the Mujiazhuang and Cambrian ores and rocks lead isotopes composition, they are homoplasy, and it is suggested that the lead abnormal isotopes resource of the Mujiazhuang are from Cambrian.It is put forword that lead of the Tongmugou zinc deposit are also abnormal lead isotopes which are from the basis rocks like hydrothermal deposit rocks.It is approved with regional contrast research.
     On the basis of fluid inclusions for the Mujiazhuang copper deposit, it is showed that there were two stages of fluid evolution: the first stage is magma hydrothermal with middle temperature, middle and high salinity (CO_2)-H_2O+NaC1 fluid, its homogenization temperature are 190~265℃and salinity 12.5~35.34wt%NaCl,preture 12.8~21.3Mp, Meanwhile, a large of three faces fluid inclusions with a salty crystal coexistence to vapour face inclusions are discovered in the high and middle high temperature steps of homotemperature of fluid inclusions for the Mujiazhuang copper deposit, it is suggested that the mineralization fluid is over-saturation and occurring boilization and supposed that there is magma chamber in deep of mining area. The second stage is behind hydrothermal of magma with middle-high temperature, middle and high salinityH_2O+NaCl fluid, its homogenization temperature are 300~350℃and salinity 7.4~41.59wt%NaCl,preture 10.8~19.3Mp. On the basis of fluid inclusions for the Tongmugou zinc deposit, it shows that there is only first stage of fluid evolution, a large of three faces fluid inclusions with a salty crystal coexistence to vapour face inclusions are discovered in the high and middle high temperature steps of homotemperature of fluid inclusions for the Tongmugou zinc deposit, it is suggested that the mineralization fluid is occurred boilization. Boilization is an important mechanism of mineral matters precipitation. The process of fluid evolution is: first, with magma invasion in deeper area, hydrothermal fluid of magma mixied with strata-formed water transports up to near surface and quickly are boiling and form nonintermingle fluid, then mineral matters deposit form strangle lode ores; second, The late hydrothermal fluid of magma are boiling again to form main ores. The evolution of fluid is going along with two stages tectonic movement.
     On the basis of Geochemistry of fluid inclusion(fluid composition, fluid evolution, the fluid resource judged from the tracing of indifferent gas and REE), it is approved that the mineralization fluid is from the formational water(water in the strata)and magma water in the Tongmugou, and is from the magma water in the Mujiazhuang(the first stage), and is from the formational water and the deep-derived magma in the Mujiazhuang (the second stage). In addition, the hydrogen and oxygen isotopic data of the Mujiazhuang copper deposit supports the results.
     The biotite associated with chalcopyrite in the Mujiazhuang copper deposit, its Ar-Ar age is 323.68Ma, which represents the age of mineralization. The forming age of hoepfnerite mineral was close to the forming time of Pb-Zn deposit, and the K-Ar surface age is 293Ma. The main ore-forming age of Cu-Pb-Zn deposits in the Zhashan area is about 323~293Ma.It is supposed that Carboniferous mineralization maybe was a very important metallogenesis period in the Zhashan area. The mineralization model of epigenetic fluid matomatism, is founded according to geological and geochemistry characteristics, and suggests a new direction for ore deposits exploration.
引文
陈好寿,周肃,魏林等.1994.成矿作用年代学及同位素地球化学.北京:地质出版社.
    陈德兴,林兵.1990.南秦岭泥盆系层状层控铅锌成矿带成矿地球化学研究.见:张本仁主编,秦巴区域地球化学文集,武汉:中国地质大学出版社:168~192.
    陈晋镳,秦正永,王寿琼等.1991.武当群地质特征.天津:天津科技翻译出版公司,41~116.
    陈宗汉.1987.鄂东北早前寒武世地质年代学研究,地球化学,(2):153~159.
    陈衍景,陈华勇,刘玉琳等.1999.碰撞造山过程内生矿床成矿作用的研究历史和进展,科学通报,1999(16).
    陈衍景.2001.碰撞造山体制的流体作用及其成矿效应—东秦岭金矿床成矿流体研究的意义,见陈衍景主编:大陆动力学与成矿作用,北京:地震出版社pp133~147.
    崔建堂,赵长缨,王炬川.1999.南秦岭东江口、柞水岩体岩石谱系单位划分及演化,陕西地质,17(2):7~15
    杜远生,1997.秦岭造山带泥盆纪沉积地质学研究,武汉:中国地质大学出版社.
    杜玉良,汤中立,蔡克勤等,2003.秦岭-祁连造山带印支-燕山期构造与大型-超大型矿床的形成关系,矿床地质,22(1):65~71.
    董王仓.1991.惠家沟地区金矿化地质特征及其成因探讨,陕西地质,9(2):13~28.
    冯建忠,汪东波,邵世才等.2002.西秦岭小沟里石英脉型金矿床成矿地质特征及成因[J].矿床地质,21(2):160~167.
    冯建忠,汪东波,王学明等.2003.陕西凤县八卦庙超大型金矿床成矿地质特征及成矿作用[J].地质学报,77(3):387~398.
    冯建忠,汪东波,王学明等.2003.甘肃李坝大型金矿床成矿地质特征及成因[J].矿床地质,22(3):257~263.
    方维萱,1998.秦岭造山带泥盆纪构造热水沉积成矿盆地与流体成岩成矿系统特征及其演化规律,西北大学博士论文樊硕诚,1994.陕西双王大型金矿床成矿模式成矿规律与找矿前景探讨,陕西地质,12(1):27-36
    侯增谦,韩发,夏林圻等,2003.现代与古代海底热水成矿作用—以若干火山块状硫化物矿床为例,北京:地质出版社.
    胡瑞忠,成矿流体氦、氩同位素地球化学,矿物岩石地球化学通报.1997(2).
    胡瑞忠,毕献武,TurnerG等.1997.马厂箐矿床黄铁矿流体包裹体He-Ar同位素体系.中国科学(D辑).27:503~508.
    胡瑞忠,钟宏,叶造军等.1998.金顶超大型铅-锌矿床氦、氩同位素地球化学,中国科学(D辑).28(3):208~213.
    胡西顺.1998.陕西柞山地区钠长角砾岩的成因及形成机制,有色金属矿产与勘查,7(6):。
    湖北省地质矿产局.1991.湖北省区域地质志,北京:地质出版社.
    黄萱,吴利仁.1990.陕西地区岩浆岩Nd、Sr同位素特征及其大地构造发展的联系,岩石学报,994):1~11
    黄月华.1993.岚皋碱性镁铁-超镁铁质火山杂岩中金云角闪辉石岩类地幔捕掳体矿物学特征.岩石学报,9(4):367~378.
    郭健、张蓉、朱华平等.1998.秦岭沉积岩容矿的金矿成矿特征,矿床地质,17(增刊:397~400.
    郭健、刘平、张万业、朱华平等.2000,陕西八卦庙金矿成矿勘查模式.见:31届国际地质大会中国代表团学术论文集,北京:地质出版社:349~353.
    侯满堂,藏世权.2002.镇旬铅锌矿田稳定同位素地球化学研究,陕西地质,20(1):30~36.
    贾承造等.东秦岭地块构造,南京大学出版社,1988.。
    矿床同位素地球化学(中国矿物岩石构造地质专业委员会编,地球化学学会同位素地球化学专业委员会和中国地质学会同位素地质专业委员会主编),北京:地震出版社,43~44.
    马国良.1988,陕西山阳桐木沟锌矿地质、地球化学特征及成因,西安地质学院硕士论文.
    马国良,祁思敬,李英等.1998,厂坝铅锌矿床中钠长石岩的成因探讨,地质地球化学,26(2):29~33..
    马少龙.1981.秦岭东段变质岩带的分布及其与板块构造的关系,见:中国地质学会第二届全国构造学术会议论文选集,大地构造和前寒武纪构造(第一卷),北京:地质出版社:67~78.
    孟庆任,张国伟,于在平等.1996.秦岭晚古生代裂谷一有限洋盆沉积作用及构造演化,中国科学(D辑).26(增刊):28~33.
    孟庆任,张国伟,于在平等.1993,秦岭俯冲板块前缘石炭纪构造沉积环境,西安地质学院学报.15(1):11~15.
    孟庆任,薛峰,张国伟.1994.秦岭商丹带内黑河地区砾岩沉积及其构造意义,沉积学报,12(3):37~46.
    毛景文,赫英,丁悌平.2002.胶东金矿形成期间的地幔流体参与成矿过程的碳氧同位素证据.矿床地质,21(2):121~127.
    梅友松,汪东波,黄浩等.1995.同位成矿概论,地质与勘探,31(5):3~8.
    李厚民,祁思敬,1993.陕西山阳小河口铜矿床地质特征及成因[A],祁思敬,李英,秦岭热水沉积型铅锌,(铜,)矿床,北京:地质出版社.154-165.
    李厚民,2002,山东莱州金城金矿床构造-流体成矿特征,中国科学院地质与地球物理研究所博士论文.
    李勇等.苏春乾,刘继庆.1999.东秦岭造山带钠长岩的特征、成因与时代,岩石矿物学杂志.18(2):121~127.
    李曙光,孙卫东,张国伟等.1996.南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学-古生代洋盆及其闭合时代的证据,中国科学(D辑).26(3):223~230.
    李曙光.1997.秦岭-大别山带构造演化的同位素年代学及地球化学.见:中国同位素地球化学研究(于津生,李耀松主编),北京:科学出版社:120~143.
    李曙光,聂永红,S.R.Hart等.1998.俯冲陆壳与上地幔的相互作用--Ⅱ.大别山同碰撞镁铁-超镁铁岩的Sr、Nd同位素地球化学,中国科学(D辑),28(1):18~22.
    李泽九等.陕西柞水—山阳成矿带中酸性小岩体的地球化学研究,地球科学,1986(4).
    李石.1991.鄂北地区碱性岩的时代与成因,岩石学报,7(3):27~36.
    李英.1999.中国北方超大型矿床成矿模式,中国矿物岩石地球化学通报.1997(3)
    李齐,王瑜,万景林等.2002.秦岭造山带中段中、新生代构造-热冷却过程,地质论评,48: 增刊:135~139.
    李长江,徐有浪,蒋叙良.1995.成矿物质来源的定量判别方法的探讨,矿床地质,14(4).
    李华芹,刘家齐,魏林.1993.热液矿床流体包裹体年代学研究及其地质应用,北京:地质出版社.
    李三忠等,2003;秦岭勉(县)-略(阳)缝合带及南秦岭地块的变质动力学研究,地质科学,38(2):137~154.
    柳淼,1994.李坝金矿床地质特征,见:刘东升主编.中国卡林型(微细浸染型)金矿,南京:南京大学出版社,160-202.
    林兵,1993.西秦岭泥盆系层控铅锌矿带成矿地球化学模式及其预测系统的建立,北京:中国地质大学出版社.
    梁文艺,1988.陕西山阳桐木沟矿床的地质特征、成矿环境及矿床成因,西安地质学院科研报告.
    卢焕章.高盐度高温和高成矿金属的岩浆成矿流体——以格拉斯伯格Cu、Au矿为例[J].岩石学报,2000,16(4):465-472.
    卢焕章,1998.研究地壳中流体的工作方法,地学前缘,5(2).
    卢焕章,1997.成矿流体,北京:北京科学技术出版社.
    卢纪英,李作华,张复新等.2001.秦岭板块金矿床.西安:陕西科学技术出版社.
    卢欣祥.1996.秦岭造山带花岗岩与构造演化,河南地质矿产与环境文集,北京:中国环境科学出版社.
    骆庭川,张宏飞,张本仁等.1993.北秦岭丹凤-西峡地区岛弧花岗岩类成分极性及原因探讨.地球科学,18(1):67~72.
    梁文艺,薛春纪,马国良.1993.陕西山阳桐木沟锌矿床地质特征—一个典型海底喷气热液沉积矿床,见祁思敬等主编:秦岭热水沉积型铅锌(铜)矿床,北京:地质出版社.。
    刘宝君.1990.东秦岭柞水—镇安地区泥盆纪沉积环境和沉积盆地演化,沉积学报,8(4):
    刘国惠,张寿广,游振东等.1993.秦岭造山带主要变质岩群及变质演化,北京:地质出版社.1~190.
    刘敬秀,王明州,于桂香.1998.热液体系氩同位素示踪研究,地质科学,1998(3)
    刘建明,赵善仁,沈洁.1998.成矿流体活动的同位素定年方法评述,地球物理学进展,1998(3).
    刘建明,刘家军.1997.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式.矿物学报,17(4):448~456.
    刘继顺,吴延之,段嘉瑞等.1993.云南东川铜矿田晋宁晚期基性火山-侵入杂岩及其成矿意义,第五届全国矿床会议论文集.北京:地质出版社:392~393.
    刘斌,沈昆.1999.流体包裹体热力学,北京:地质出版社.
    刘斌,朱思林,沈昆.2000.流体包裹体热力学参数计算软件及算例,北京:地质出版社.
    邱华宁.流体包裹体~(40)Ar/~(39)Ar计时技术及其矿床定年应用,矿物岩石地球化学通报,1999(2).
    邱家骧等.1993.秦巴碱性岩,北京:地质出版社.1~183.
    祁思敬,李英等.1993a.秦岭热水沉积型铅锌(铜)矿床,北京:地质出版社.。
    祁思敬,李英等.1993b.秦岭泥盆系铅锌成矿带,北京:地质出版社.。
    祁思敬,李英.1997.南秦岭泥盆系成矿带热水沉积成矿系列,西安地质学院学报,19(3):19-26
    祁思敬,李英,1999.南秦岭晚古生代海底喷气沉积成矿系统[J],地学前缘,6,(1):171-179,
    全国同位素地质年龄数据汇编(二集),1977,北京:地质出版社.。
    全国同位素地质年龄数据汇编(三集),1977,北京:地质出版社.。
    裴先治,李厚民,李国光.1996.东秦岭商丹断裂带南侧变质基性火山岩的时代和岩石地球化学特征,西北地质科学.16(2):49~57.
    裴先治.1997.东秦岭商丹构造带的组成与构造演化,西安:西安地图出版社.119~133.
    芮宗瑶,李宁.1991.王龙生等.关门山铅锌矿床一盆地热卤水成矿及铅同位素打靶,北京:地质出版社:102~112.
    秦克令,邹湘华,何世平等.1990.西秦岭鱼洞子群的建立和时代归属,见:秦岭-大巴山地质论文集(一)变质地质(刘国惠、张寿广主编),北京:北京科学技术出版社.
    石准立,1989,陕西双王金矿床地质特征及其成因[M],西安:陕西科学技术出版社,45-102.
    陕西省地质局区调队507分队.1980,黑山幅、山阳幅(1:50000)区域地质调查报告.
    尚瑞均等.1988,秦巴花岗岩,中国地质大学出版社。
    孙卫东,李曙光等.2000,南秦岭花岗岩锆石U-PB定年及地质意义,地球化学,29(3).
    孙勇,东秦岭古洋盆与加里东运动,地质论评.1991.37(6):555-559.。
    苏瑞侠,刘平等.2001.秦岭穆家庄铜矿地球化学特征,地质地球化学.29(4):20~26.
    邵世才、汪东波、郭健、朱华平等.1998:秦岭地区沉积岩型金矿的主要类型及找矿潜力剖析,矿床地质,17(增刊:861~864.
    邵世才,汪东波.2001.南秦岭三个典型金矿床的Ar-Ar年代及其地质意义,地质学报,75(1):106-110
    涂光炽等.中国层控矿床地球化学.北京:科学出版社,1988,3:376
    韦龙明、吴烈善、黄建军、朱华平等.2001.秦岭若干重要类型金矿床(体)快速定位预测,地质地球化学.2001年3):164~169.
    韦龙明、吴烈善、黄建军、李富东、朱华平等.2002.秦岭若干重要类型金矿床成矿地质条件研究新进展,矿产与地质,16(2):65~459.
    汪东波,梅友松,刘国平.1998.同位成矿作用的概念、类型与机制,中国有色金属学报,8(4):700~705.
    汪昭祥,对陕西凤县—商南泥盆系中钠化特征的初步认识,陕西地质,1987(2):。
    王春增,张明华.1996.幔源基性岩席在某些层状铜矿成矿过程中的作用及机理,桂林工学院,16(4):344~351.
    王全庆,秦岭造山带构造特征与地壳深部构造,西安地质学院学报.1993.15(4):26—30.。
    王俊发,张复新,1991.秦岭泥盆系层控金属矿床[M],西安:陕西科学技术出版社.
    王根宝,李三忠.1998.论秦岭佛坪地区隆-滑构造,长春科学技术大学学报.28(1):23~29.
    王相,唐荣扬,李实等.1996.秦岭造山与金属成矿,冶金工业出版社.。
    王集磊,何伯墀等.1996.中国秦岭型铅锌矿床,地质出版社.。
    王清廉.1987.陕西山阳桐木沟锌矿的地质特征极其成因,地质找矿论丛,(2):
    王居里.1997.陕西佛坪五龙岩体的形成环境及其意义.西北地质科学,18(1):19~24.
    王晓霞,王涛,李伍平.1997.南秦岭沙河湾环斑花岗岩浆形成P-T条件及源岩性质的讨论,西安地质学院学报,(3):54~59.
    王秀璋,程景平,张宝贵等.1992.中国改造型金矿床地球化学.北京:科学出版社.
    魏春生,郑永飞,涂光炽.1997.强烈热液交代金矿石Rb-Sr等时线意义讨论,地球学报,1997 (3)
    魏菊英,1988.同位素地球化学,北京:地质出版社
    薛春纪.1997.秦岭泥盆纪热水沉积[M],西安:西安地图出版社.
    薛春纪.1998.秦岭泥盆纪热水沉积,成都理工学院博士论文.
    薛春纪.1998.秦岭泥盆纪热水沉积环境及热水沉积成岩成矿学研究[D],成都:成都理工学院图书馆.
    谢茂祥,1994.山阳-柞水隐爆角砾岩与金矿化关系及其成因探讨,河南地质,12(4):290~293.
    夏令圻,夏祖春,张城等.1994.北大巴山碱质基性-超基性潜火山杂岩岩石地球化学,北京:地质出版社.
    许志琴.1991.秦岭—大别‘碰撞—陆内’型复合山链的构造体制及陆内板块动力学机制,秦岭造山带学术讨论会论文集,西北大学出版社.。
    许志琴.1986.东秦岭造山带的变形特征及构造演化,地质学报,60(3):237~247.。
    徐强,刘宝钧,许效松等.1991.东秦岭南带沉积盆地演化及多金属成矿条件,成都:西南交通大学.
    游振东.1991.造山带核部杂岩变质过程与构造解析-以东秦岭为例,武汉:中国地质大学出版社.166~311.
    杨崇辉,魏春景,张寿广等.1999.南秦岭佛坪地区麻粒岩相岩石锆石U-Pb年龄,地质论评,45(2):173~179.
    扬志华等.1991.边缘转换盆地的构造岩相与成矿,北京:科学出版社.。
    杨兴科,宫同伦.1998.论动力作用与动力成矿,地学工程进展,15(2):1~4.
    杨兴科,宫同伦.1992.铅硐山铅锌矿床动力热液成矿特征,西安地质学院学报,14(1).
    于在平,柳小明,张成立等.1996.东秦岭毛坪变质沉积岩系基本特征及其大地构造意义,中国科学(D辑).26(增刊):69~79.
    殷鸿福等.1991.秦岭晚海西—印支)构造古地理发展史,秦岭造山带学术讨论会论文集,西安:西北大学出版社.
    殷鸿福,1995.早古生代镇淅地块与秦岭多岛小洋盆的演化,地质学报,69(3):193~204.
    严阵等.1985.陕西省花岗岩,西安:西安交通大学出版社.
    袁学诚等.1991.秦岭造山带的深部构造与构造演化,秦岭造山带学术讨论会论文集,西安:西北大学出版社.
    张二朋等.秦巴及邻区地质构造特征概论,北京:地质出版社.1993.。
    张宗清,张国伟,唐索寒,卢欣祥.1999.秦岭沙河湾奥长环斑花岗岩的年龄及其对秦岭造山带主造山)结束时间的限制.科学通报,44(9)
    张宗清,张国伟,刘敦一等.1993.秦岭变质地层年龄及扬子、华北陆块拼合时间.见:壳幔演化与成岩成矿地球化学(中国矿物岩石地球化学学会同位素地球化学专业委员会和中国地质学会同位素地质专业委员会主编),北京:地震出版社.
    张宗清,刘敦一,付国民.1994.北秦岭变质地层同位素年代学研究,北京:地质出版社.
    张宗清,唐索寒,宋彪等.1997.秦岭造山带晋宁期强烈地质事件及构造背景,地球学报,18(增):43~45.
    张宗清.2002.南秦岭变质地层年龄,北京:地质出版社
    张本仁主编,1994.秦巴岩石圈构造及成矿规律地球化学研究,中国地质大学出版社.
    张本仁、陈德兴等.1989.陕西柞水—山阳成矿带区域地球化学,北京:中国地质大学出版社.
    张国伟.1993.秦岭造山带基本构造的再认识.见:亚洲的增生,北京:地震出版社,95~99.
    张国伟,孟庆任,赖绍聪.1995.秦岭造山带的结构与构造,中国科学(B辑).25(9):994~1003.
    张国伟,孟庆任,刘少峰等.1997.华北地块南部巨型陆内俯冲带与秦岭造山带岩石圈现今三维结构,高校地质学报,3(2):129~143.
    张国伟,张本仁,袁学诚等.2002.秦岭造山带与大陆动力学,北京:科学出版社.
    张国伟等.1995.秦岭造山带岩石圈主要构造岩石地层单元的构造性质极其大地构造意义,岩石学报.11(2).
    张国伟等.1991.秦岭造山带岩石圈组成,结构与演化特征,秦岭造山带学术讨论会论文集,西安:西北大学出版社.
    张国伟等.1988.秦岭造山带的形成及其演化,西安:西北大学出版社.
    张秋生.1980,中国东秦岭变质岩,长春:吉林人民出版社.1~223.
    张复新,张旺定,张正兵.2000.秦岭造山带金矿床类型与构造背景.黄金地质,6(4):59-65.
    张复新,季军良,龙灵利等.2001.南秦岭卡林型-似卡林型金矿床综合地质地球化学特征.地质论评,47(5):492-499.
    张复新.1991.陕西秦岭地区泥盆系同生断裂、岩相与海底喷流沉积矿床.矿床地质,10(3):217~231.
    张作衡.2003.西秦岭造山型金矿床,中国地质科学院矿产资源研究所博士学位论文.
    张宏飞,张本仁,赵志丹等.1996.东秦岭商丹构造带陆壳俯冲碰撞——花岗质岩浆源区同位素示踪证据,中国科学(D辑),26(3):231~236.
    张寿广,魏春景,赵子然等.1996.东秦岭陡岭群杂岩的形成与变质演化.中国科学(D辑),26(增):73~77
    郑作平,于学元,郭健.1994.八卦庙金矿床地质及稳定同位素研究.陕西地质, 12(2):22-30.
    郑永飞.2001.稳定同位素体系理论模型及其矿床地球化学应用,矿床地质,20(1):57~70。
    翟刚毅.2000.东秦岭佛坪穹隆变质作用与构造动力学分析,矿物岩石.20(2):86~90.
    赵子然,万渝生,张寿广等.1995.陡岭群变质杂岩的岩石地球化学特征.岩石学报.11:170~179.
    朱铭.1995.秦岭地区花岗岩的K-Ar等时年龄及地质意义,岩石学报.11(2):179~192.
    朱华平,张德全.2002.从南沙沟铅锌矿床地质特征讨论秦岭志留系铅锌矿的找矿前景,矿床地质.21(增刊:557~560.
    朱华平,叶磊,甘宝新等.2003.山柞镇旬地区盆地体制与金属成矿关系,西北地质,36(1):52~58.
    朱华平,郭健,张蓉等.2001.南秦岭成矿带主要矿集区成矿背景与示矿要素组合研究.见:李明利主编,西北有色金属科技与产业进展,西安:世界图书出版公司:204~209.
    朱华平,张德全.2003.区域化探异常的地球化学勘查评价方法技术进展综述,地质与勘探,39(2):35~38.
    朱华平,张德全.2004.陕西柞山地区穆家庄铜矿稀土元素地球化学特征,中国地质,31(1):85~90.
    朱华平.2004,东秦岭中带几个典型金矿床流体来源、成岩成矿时代的确定及勘查意义,地学前缘,11(1).
    朱华平,祁思敬.1996.陕西柞山地区铜矿找矿突破口的选择,西北地质,18(1):76~82.
    朱华平,张蓉,郭健等.1999.秦岭沉积岩容矿金矿类型、控矿条件及找矿方向,地质与勘探,35(5):9~12.
    朱华平,郭健,张蓉等.1999.凤太八卦庙金矿微量元素特征及成因认识,有色金属矿产与勘查,8(1):60~64.
    朱华平,郭健,朱红周等.1998.秦岭凤太盆地沉积建造的碳氧同位素特征,有色金属矿产与勘查,7(6):321~325.
    朱华平.1999.秦岭佛坪古陆及周边热事件、盆地与成矿,有色金属矿产与勘查,8(1):16~20.
    朱华平,郭健,刘平等.2000,陕西凤太泥盆纪盆地的形成与金铅锌矿成矿规律.见:31届国际地质大会中国代表团学术论文集,北京:地质出版社:285~287.
    朱华平,郭健,张蓉等.2000,秦岭造山带成矿作用演化的铅同位素特征,西北地质科学,21(2):20~27.
    朱华平,张德全.2004,陕西柞山地区穆家庄铜矿稀土元素地球化学特征,中国地质,31(1):85~90.
    朱茂旭等.1998.南秦岭东江口岩体群Pb、Sr和Nd同位素地球化学特征及其对物源的制约,地质地球化学,1998(1):30~36.
    周文戈.1996.秦岭大别造山带碰撞后陆内构造发展—区域岩浆作用地球化学制约,中国地质大学博士论文(武汉).
    Barnes H. L., 1997. Geochemistry of hydrothermal ore deposita. 3~(rd) ed. New York: John Wiley &Sons. pp972.
    Bau M, Dulski P(1995)comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids.Contributions to Mineralogy and petrology. 119: 213~223.
    Barley M E, Groves, D I. Supercontinental cycles and the distribution of metal deposits through time. Geology, 1992, 20: 291-294
    Bell K., Anglin C. D. and Franklin J. M. (1989), Sm-Nd and Rb-Sr isotope systematics of scheelites: Possible implications for the age and genesis of vein-hosted gold deposits. Geology 17, pp500-504.
    Bonhomme M. G., Buhmarm D.and Besnus Y. (1983), Reliability of K/Ar dating of clays and silicifications associated with vein mineralizations in Western Europe. Geol. Rundsch. 72, pp105-117.
    Changkakoti A., J. Gray , D. Krstic, G. L. Cumming and R. D. Morton(1988), Determinations of radio genic isotopes (Rb/Sr, Sm/Nd, and Pb/Pb) in fluid inclusion waters: An example from the Bluebell Pb-Zn deposit, British Columbia, Cananda. Geochim. Cosmo chim. Acta52, pp. 961-967.
    Cathelineau M. (1987), U-Th-REE mobility during albilization and quartz dissolution in granitoids: evidence from southeast French Massif Central. Bull. Mineral. 110, pp. 249-259.
    Claoue-Long J. C., R. W. King and R. Kerrich(1990), Archean hydrothermal zircon in the Abitibi greenstone belt: constraints on the timing of gold mineralization. Earth Planet. Sc. Lett. 98, pp109-128.
    Chesley J. T., Holliday A. N. and Crivener R. C. (1991), Sm-Nd direct dating of fluorite mineralization. Science 252, pp949-951.
    Channer DW Der, Randell RN, Bray CJ, Spooner ETC(1993)Combined gas and ion chromatographic analysis of fluid inclusions:application to the Polaris MVT Pb-Zn deposit, Canadian Arctic Archipelago.In:Parnell J, Moles NR(eds)Geofluids'93—Proc IntConf Fluid Evolution, Migration and Interaction inRocks, Torquay, England, 4-7 May 1993.British Gas, pp342~346.
    Chi G, Kontak DJ, Willian-Jones AE(1998)Fluid composition and thermal regime during Zn-Pb mineralization in the lower Windsor Group, Nova Scotia, Canada.Econ Geol 93:883-895.
    Dunai T, and Touret JRL. 1995.Helium, neon and argon isotope systenatics of European Lithospheric mantle xenoliths:implications for its geochemical evolution.Geochim.Cosmochim.Acta, 59:2767-2783.
    Erwin M.E.and Long L.E.(1989), Rb-Sr age of diagenesis of Mg-rich clay, Permian evaporite sequence. Palo Duro Basin.Geol.Soc.Am.Abstr.Programs 21, pp.A-17.
    Fryer B.J.and Taylor R.P.(1984), Sm-Nd direct dating of the Collins Bay hydrothermal uranium deposit, Saskatchewan.Geology 12, pp479-482.
    Flynn TR, Burnham CW(1978)An experimental determination of rare earth partition coefficicients between chloride containing vapor phase and silicate melts.Geochemica et Cosmochimica Acta.42:685~701.
    Folger H.A., Eberl D.D., Hofstra A.H., 1997.Illite crystallinity:a key to understanding 40Ar/39Ar dates from golg deposits in the Jerritt Canyon District, Nevada.In:Geological Society of America.29(6):207.
    Girard G.P., Aronson J.L.and Savin S.M.(1988), Separation, K-Ar dating and ~(18)O/~(16)O ratio measurements of diagenetic K-feldspar over growths:An example from the Lower Cretaceous arkoses of the Angola Margin.Geochim.Cosmochim.Acta52, pp.2207-2214.
    GuoJian, Liu Ping, Zhang Wanye, Zhu Huaping, 2000, Ore-formming and Exploration Models of the Baguomiao Gold Deposit, Shaanxi Province, ACTA GEOLOGIGA SINICA, Vol.74, No.3:582~586.
    Giggenbach WF(1986)The use of gas chemistry in delineating the origin of fluid discharges over the Taupo volcanic:A review.Proc Intel Volcanol Congress, New Zealand.5:47~50.
    Giggenbach WF, Watsuo S(1991)Evaluation of results from Second and Third IAVCEI Field Workshops on Volcanic Gases, Mt.Usu, Japan, and White Island, New Zealand.Appl Geochem, 6:125-141.
    Giggenbach WF, Glover RB(1992)Tectonoc and Major processes governing the chemistry of water and gas discharges from the Rotorua Geothermal Field , New Zealand.Geochemics, 21:121-140.
    Giggenbach WF(1992)The composition of gases in geothemal and vocanic systems as a function of tectonic setting.In:Kharata Maest, ed. Water-Rock Interaction 7.Rotterdam:Balkema, 873-878.
    Groves D.I.,Goldfarb R.J.,Gebre-marian M.,et al.1998.Orogenic gold deposits:proposed classification in the context of their distribution and relationship to other gold deposits types.Ore Geology Review, 13:7-27.
    Haas JR, Shock EL, Sassani DC(1995)Rare earth elements in hydrothermal systems:Estimates of standard partial modal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperature. Geochemica et Cosmochimica Acta.59:4329~4350.
    Hopf S(1993)Behaviour of rare earth elements in geothermal systems of New Zealand. Journal of Geochemical Exploration.47:333~357.
    Hsu K, Wang Q, Li J et al. Tectonic evolution of the Qinling Mountains, China. Eclogae Geol Helvetiae, 1987, 83:735-752
    Hamilton P.J. , Kelley S.and Fallick A.E.(1989), K-Ar dating of illite in hydrocarbon reservoirs.Clay Miner.24, pp.215-231.
    H.J.Stein, J.W.Morgon,R.J.Markey,J.L.Hannah.1999.The status of the Re-Os chronometer for dating sulphides and oxides.Proceedings of the fifth biennial SGA meeting and the tenth quadrennial IAGOD symposium/London/United Kingdom/22-25 August 1999,Mineral deposits:Processes to processing,edited by Stanley et al.,volum 2,A.A.Balkeman/Rotterdam/Brookfield/1999:pp1291-1294.
    J.D.Gilmour, R.A.D.Pattrick,G.Turner,D.I.Groves,P.McConville. 1999.Xe-Xe dating of telluride minerals:First results. Proceedings of the fifth biennial SGA meeting and the tenth quadrennial IAGOD symposium/London/United Kingdom/22-25 August 1999,Mineral deposits:Processes to processing,edited by Stanley et al.,volum 2,A.A.Balkeman/Rotterdam/Brookfield/1999:pp1259~1261.
    
    J.J.Wilkinson, 2001.Fluid inclusions in hydrothermal ore deposit.Lithos, 2001, 55:229-272.
    Joseph N.Moor, David I.Norman, B.Mack Kennedy, 2001.Fluid inclusion gas compositions from an active magmatic-hydrothermal system:a case study of the Geysers geothermal field, USA.Chemical Geology 173(2001)3-30.
    Jones HD, Kesler SE(1992)Fluid inclusions gas chemistry in East Tennessee Mississippi Valley-type ores during late stages of diagenesis.Bull Can Petrol Geol 15:383-433.
    Jia Yiefei, Kerrich-Robert, 1999.Nitrogen isotope systematics of mesothermal lode gold deposits:metamorphic , granitic , meteoric water , or mantle origin?.SO:Geology(Boulder).2-7(11):1051~1054.PB:Geological Society of America(GSA).Boulder, Co.United States. 1999.
    Kontak Danel J., Kerrich-Robert, 1997.An isotopic(C, O, Sr)study of vein gold deposits in the Meguma Terrane , Nova Scotia:implication for source reservoirs. Econ Geol92(2):161~180.
    Kelley S., GTurner, A.W.Butterfield and T.GShepherd (1986), The source and significance of argon isotopes in fluid inclusions from are as of mineralization.Earth Planet.Sci.Lert.79, pp.303-318.
    Karpenko M.I.and Sutter J.F.(1995), ~(40)Ar/~(39)Ar and its laser variant.In:Marfunin A.S.(ed.), Andvanced Mineralogy Vol.2, Methods and instrumentations:Results and recent developments.Springer, Berlin, pp.362-364.
    Kontak DJ(1998)A study of fluid inclusions in ore and gangue mineral phases from a carbonate-hosted Zn-Pb deposit, Gays River, Nova Scotia.Econ Geol 93:793~918.
    MorganJ.W.andWandlessG.A.(1980), Rare earth element distribution in somehydrothermal minerals:Evidence for crystallographic control.Geochim.Cosmochim.Acta44 , pp973-980.
    Meng Q R, Zhang G W. Timing of collision of the North and South China blocks; controversy and reconciliation. Geology, 1999, 27(2): 123-126
    Meng Q R, Zhang G W. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 2000, 323:183-196
    Mattauer M, Matte P, Malavieille J et al. Tectonic of Qinling Belt: Build-up and evolution of Eastern Asia. Nature, 1985, 317:496-500
    M.M.Savard, G.Chi, T.Sami A.E.Williams, K.Leigh(2000)Fluid inclusion and carbon, oxyen, and strontium isotope study of the Polaris Mississippi Valley-type Zn-Pb deposit, Canadian Arctic Archipelago:implication for ore genesis. Mineralium Deposita, (2000)35:495-510.
    Norman DI, Sawkins FJ. (1987).Analysis of gases in fluid inclusions by mass spectrometer.J Chem Geol, 61:1-10.
    Norman DI, Musgrave J.(1994).N2-Ar-He composition of gases in fluid inclutions:indicators of fluid source.Geochim Cosmochim Acta, 58:1119-1131.
    Norman DI, Moor JN, Yonaka B, et al. (1996).Gaseous speies in fluid inclusions:a tracer of fluids and indicator of fluid processes.In:Proceeding of 21~(st) Workshop on Geothermal Reservoir Engineering, Stanford, Stanford University.pp1~8.
    Nakai S., A.N.Halliday, S.E.Keslerand H.D.Jones(1990), Rb-Sr dating of sphalerite and genesis of MVT deposits/Nature 346, pp.354-357.
    Oreskes N, Einaudi MT(1990)Origin of rare earth elements-enriched hematite breccias at the Olympic Dam Cu—Au-Ag deposit, Roxby Downs, South Australia.Econ. Geol.85:1~28.
    Ohr M., Halliday N.and Peacor D.R.(1991), Srand Nd isotopic evidences for punctuated clay diagenesis, Texas Gulf Coast.Earth Planet.Sci.Lett.84, pp.303-318.
    Shepherd T.J.and Garbysgire P D.P.F.(1981), Fluid inclusion Rb-Sr isochrones for dating mineral deposits. Nature 290, pp578-579.
    Patrick E.smith, Norman M.Evensen,Derek York.2001.Single-crystal 40Ar/39Ar dating of pyrite:No fool'sclock.Geology,29(5):404~406.
    Turner G.(1988), Hydrothermal fluids and argon isotopes in quartz veins and cherts. Geochim. Cosmochim. Acta52, pp.1443-1448.
    Vinogradov V.I., DePaolo D.J.and Anderson T.F.(1995), The Sm-Nd method of isotope dating.In:Marfunin A.S.(ed.) , Andvanced Mineralogy Vol2 , Methods and instrumentations:Results and recent developments.Springer, Berlin, pp36 5-368.
    Stuart FM, Bunard PG, Taylor RP et al., 1995.Resolving mantle and crustal contributions to ancient hydrothermal fluids:He-Ar isotopes in fluid inclutions from Dae Hwa W-Mo mineralization, south Korea.
    Samson Iain M., Bas Bulent, Holm Paul E., 1997.Hydrothermal evolution of auriferous shear zones, Wawa, Ontario.Economic Geology, 92(3):325~342.
    Zhai X M, Day H W, Hacker B R et al. Paleozoic metamorphism in the Qinling Orogen, Tongbai Mountains, central China. Geology, 1998, 26(4): 371-374
    Zhang G, Xiang L, Meng Q et al. the Qinling orogen and intracontinental orogen mechanisms. Episodes, 1995, 18:36-39
    Zheng Y.F,1990.Carbon-oxygen isotopic covariations in hydrothermal calcite during degassing of CO2:A quantitative evolution and application to the Kushikino gold mining area in Japan,Mineralium Deposita,25:246~250.
    zheng Y.F.,Hoefs J., 1993. Carbon-oxygen isotopic covariations in hydrothermal calcites. Mineralium Deposita,28:79~89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700