用户名: 密码: 验证码:
古代青铜器矿料来源与产地研究的新进展
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青铜器矿料来源和产地研究,是青铜时代至关重要的考古问题,也是冶金考古的重点和难点之一。对之进行研究,能反映冶金技术的起源和传承关系以及当时社会的政治、文化、方国地理、经济贸易、交通运输、生产组织、社会结构和铜、锡矿资源的获得方式等多方面、深层次的问题。
     微量元素示踪法是最早应用于青铜器矿料来源研究的自然科学手段,但由于对青铜冶铸过程中微量元素的变化规律认识不足,除纯铜制品外,该方法难以给出令人满意的结果。于是,自上世纪60年代开始,该方法逐渐淡出了人们的视野。青铜器矿料来源与古铜矿输出方向是同一问题的两个方面。基于此,本博士论文提出了新的研究思路,将研究青铜器的矿料来源转变为探讨古铜矿的输出方向,对微量元素示踪法进行了改进。根据这一研究思路,本文采用ICP-AES方法,对湖北铜绿山、皖南的铜陵、南陵、山西中条山、内蒙古林西大井、宁夏照壁山等先秦古铜矿冶遗址的铜矿石、炼渣、铜锭或炼渣中较大铜颗粒进行系统对比研究,了解各古代铜矿床的特征元素,深入研究铜矿冶炼过程中微量元素的化学行为和变化规律,探讨了筛选特征微量元素,并将其应用于古铜料输出方向研究中的可行性。研究发现,铜矿冶炼过程中,Au、Ag、As、Sb、Bi、Se、Te、Co、Ni等元素主要富集在金属铜中,对青铜器矿料来源具有指示意义。同时,结果表明,各矿冶遗址的铜矿和铜锭,在特征微量元素上的差异比较明显;采用微量元素示踪法,研究古铜矿的输出方向是切实可行的,尤为适用于不同铜成矿带的示踪。
     在此基础上,采用改进的微量元素示踪法,初步探讨了辽西地区,安徽境内的滁县何郢遗址、淮北地区、皖南沿江的铜陵、南陵、繁昌,山西侯马的上马、柳泉春秋战国墓地以及陕西扶风李家西周铸铜遗址等地青铜器样品的矿料来源。结果发现:安徽境内的青铜器所用铜矿料主要来自长江中下游的古铜矿,辽西地区的青铜器矿料主要来自大井铜矿或其周边铜矿,同时,侯马青铜器与大井铜矿微量元素特征的相似性,暗示大井铜矿有可能曾经输入到中原地区;并进一步指出,中原王都附近,作为先秦时期的青铜器铸造中心,其所用矿料可能主要来自南方的长江中下游铜矿、山西中条山铜矿以及内蒙古林西境内的大井铜锡矿床。
     关于青铜器的产地研究,人们长期采用考古器型学的研究方法,这种方法受研究者的主观因素影响较大。近年来,国内外学者从青铜基体的铅同位素、微量元素等多方面进行了尝试,期望利用自然科学手段判断青铜器产地。但是,青铜基体的铅同位素和微量元素数据,主要反映的是青铜器矿料来源的信息,而不是青铜器产地。本博士论文另辟蹊径,探索利用青铜器内的泥芯残留,示踪青铜器产地、即铸造地的可行性。采用偏光显微镜、XRD、XRF、NAA、ICP-AES等技术手段,测试分析了湖北九连墩楚墓青铜器内的泥芯,发现九连墩外来风格青铜器的泥芯,在物相、微观结构、化学组成(主量、微量、稀土元素)、植硅体组合等方面与本地风格青铜器的泥芯有较大差异。外来风格青铜器的泥芯,其CaO含量较高,大部分样品高达6%以上,而Na_2O的含量相对较低。这一富钙、贫钠的特点,与中国黄土的典型特征极为吻合。结合泥芯中的植硅体组合特征,可以推测:九连墩楚墓中具有外来风格的青铜器,很可能来自中国北方黄土堆积地区,系当地铸造后输入到楚国的。同时,研究表明,利用青铜器内的泥芯残留,可望有效地示踪青铜器的产地。
Study on ores source and casting place of bronze vessel is one of important and difficult subjects in archaeology, which can reflect the origin and spreading route of metallurgy, politics, economy, cultural intercourse, social structure, producing mode, acquiring means of copper and tin ores, etc.
     Trace elements analysis is one of natural science means used earliest to determine ores source of the bronze vessels. Because of unknown of variation regularity of trace elements during the copper smelting process, this means doesn't make progress. Except for pure copper artifact, many scholars think that the application of trace elements analysis is unsatisfactory in study on copper ores source of bronze vessels. Therefore, since 1960s, this method is rarely applied. In this dissertation, trace elements analysis is improved. Study on copper ores source of bronze vessels is transformed into study on exporting rout of copper ores. According to the improved trace elements method, this dissertation firstly probes into variation regularity of trace elements during copper smelting and their potential application in the study on the exporting route of the ancient copper ores. All samples of copper ores, slag and copper ingots are from several Pre-Qin sites of mining and smelting, such as Tonglushan, Tongling, Nanling, Zhongtiaoshan, Zhaobishan and Dajing sites, and trace element analysis is conducted by Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). The results reveal that trace elements Au, Ag, As, Sb, Bi, Se, Te, Co, Ni, etc. mostly enriched in the copper during copper smelting and they are indicative of copper ores source of the bronze vessels. Meanwhile, this research indicates that trace element characteristics of copper ores and copper ingots from different site of mining and smelting are obviously varied, and it is feasible to determine the exporting route of ancient copper ores using trace element tracing technology, especial for copper ores from different ore belt.
     Based on the above research, this dissertation also probes into the copper ores source of the bronze vessels in Shang and Zhou Dynasties from some areas in China through trace element analysis. Results show that the copper of the bronze vessels from Anhui Province comes from ancient copper ores of the middle and lower reaches of Yangtse Rive, while the copper of bronze vessels from Western Liaoning Province and Houma comes from Dajing copper ores. At the same time, this research indicates that the copper ores used for the bronze vessels in the central area in China can mostly come from copper ores of the middle and lower reaches of Yangtse Rive, Zhongtiaoshan copper ores in Shanxi Province and Dajing copper ores in Inner Mongolia Municipality.
     Many scholars identified the foundry area of the bronze vessels through researching into the style, decoration and inscription of the bronzes. This research method is subjected to the subjective experience and knowledge of archaeologists. Some scholars analyzed lead isotope and trace elements of bronze vessels and attempt to ascertain foundry area of the bronzes using natural science means. However, signature of lead isotope and trace elements of the bronzes provide information on ores source which metal minerals used to cast the bronzes derive from, not foundry area. The composition of casting clay core might provide clue to the foundry area of the bronze vessels. Therefore, this dissertation studies the casting place of the bronze vessels on the basis of analysis of clay core residues of the bronze vessels. Samples of the fragments of the casting clay cores were removed from the bronze vessels unearthed at Jiuliandun tombs of Chu state, in Zaoyang City, Hubei province, dated back to Warring States Period, and were analyzed by polarized light microscope, XRD, XRF, NAA and ICP-AES, etc.. The results reveal the casting clay cores of extraneous bronze vessels from Jiuliandun tombs are different from those of local bronze vessels excavated in Jiuliandun tombs 1 and 2 in phase composition, microstructure, major elements, trace elements, REE, phytolith assemblages, etc.. The contents of CaO in casting clay cores of extraneous bronze vessels are very high and the contents of Na_2O are low, which are representative characteristic of loess in the northern China. Combining with the analysis of phytolith assemblages, it is possible that extraneous bronze vessels are cast in the loess area of the northern China. Meanwhile, this research indicates it is feasible to restrict the possible foundry area of the bronze vessels according to analysis of casting clay cores residues on the bronzes.
引文
[1] 夏鼐.中国文明的起源[M].北京:文物出版社,1985.
    [2] 白云翔.中国的早期铜器与青铜器的起源[J].东南文化,2002,(7):25-37.
    [3] 华觉明.中国古代金属技术—铜和铁造就的文明[M].郑州:大象出版社,1999.
    [4] 安志敏.中国早期铜器的几个问题[J].考古学报,1981,(3):269-285.
    [5] 张光直.青铜挥塵[M].上海:上海文艺出版针,2000.
    [6] 李学勤.比较考古学随笔[M].香港:香港中华书局,1991.181-182.
    [7] 张光直.中国青铜时代(二集)[M].北京:三联书店,1993.
    [8] 中国社会科学院考古研究所.殷墟妇好墓[M].北京:文物出版社,1980.
    [9] 黄崇轲,白冶,朱裕生等.中国铜矿床(上册)[M].北京:地质出版社.2001.
    [10] 华觉明.商周铜料产地与中华文明的起源.世界日报,1994-08-21.
    [11] 石璋如.殷代的铸铜工艺[J].中央研究院历史语言研究所集刊,1955,26:95-129.
    [12] 闻广.中国古代青铜与锡矿(续)[J].地质评论,1980,26(5):420-429.
    [13] 闻广.中原找锡论[J].中国地质,1983,(1).
    [14] 李晓岑.从铅同位素比值试析商周时期青铜器的矿料来源[J].考古与文物,2002,(2):61-67.
    [15] 张光直.考古学专题六讲[M].北京:文物出版社,1986.
    [16] 赵宗溥.青铜文化来源考疑[J].矿测近讯,1948,(89).
    [17] 赵宗溥.青铜文化来源续考[J].矿测近讯,1950,(98).
    [18] 郭沫若.青铜时代[M].北京:人民出版社,1954.
    [19] 郭沫若.中国史稿(第一册)[M].北京:人民出版社,1977.
    [20] 夏湘蓉,李仲均,王根元.中国占代矿业开发史[M].北京:地质出版社,1980.
    [21] 剪伯赞.中国史纲(第一卷)[M].北京:三联书店,1950.207.
    [22] 金正耀.晚商青铜器矿料来源研究[D].合肥:中国科学技术大学,1984.
    [23] 关于“夏鼎”,文史第七辑,5-6.
    [24] 童恩正.中国古代青铜器中锡原料的来源[A].见:中国西南民族考古论文集[C],北京:文物出版社,1990.
    [25] 容庚,张维持.殷周青铜器通论[M].北京:文物出版社,1958.
    [26] 张正明等.大冶铜绿山古铜矿的国屈[A].楚史论丛(初集).武汉:湖北人民出版社.1984.70.
    [27] 夏鼐,殷玮璋.湖北铜绿山古铜矿[J].考古学报,1982,(1):1-14.
    [28] Brill R. H. and Wampter J. M.. Isotope studies of ancient lead. American Journal of Archaeology. 1962, 72: 63—77.
    [29] 李晓岑等.中国铅同位素考古[J].昆明:云南科技出版社,2000.
    [30] 杨立新,皖南古代铜矿的发现及其历史价值[J].东南文化,1991,(2):131~137.
    [31] 张敬国,李仲达,华觉明.贵池东周铜锭的分析研究—中国始用硫化矿炼铜的一个线索[J].自然科学史研究,1985,4(2):168-171.
    [32] 黄石市博物馆.铜绿山古矿冶遗址[M].北京:文物出版社,1999.
    [33] Noel H., Gale and Zofia Stos-Gale. Lead isotope analysis applied to provenance studies. Modern analytical methods in art and archaeology, John Wiley & Sons, Inc., 2000.
    [34] 章邦桐,凌洪飞,陈培荣.多体系微量元素地球化学对比中存在的问题及解决途径[J].地质地球化学.2003,31(4):102-106.
    [35] 徐安武.古陶与古玉产地的研究[D].中国科学技术大学博士学位论文,1998年.
    [36] 王昌燧.文物产地研究发展简史——兼论科技考古与Archaeometry[A].见:王昌燧主编,科技考古论丛(第二辑)[C].合肥:中国科学技术大学出版社,2000:13—16.
    [37] Pemicka, E. Trace element fingerprinting of ancient copper: a guide to technology or provenance. In: S. M. M. Young, A. M. Pollard, R. Ixer and P. Budd (eds), Metals in Antiquity, Oxford, 1999: 163-171.
    [38] A.M. Friedman, M. Conway, M. Kastner, et al. Copper artifacts: correlation with some types of copper ores. Science, Vol. 152:1504-1506.
    [39] P. R. S. Moorey. Ancient Mesopotamian Materials and Industries—the Archaeological Evidence. Clarendon Press Oxford, 1999.
    [40] Bastian J. Tyler. Trace Element and Metallographic Studies of Prehistoric Copper Artifacts in North America: A Review. In: Lake Superior Copper and the Indians: Miscellaneous Studies of Great Lakes Prehistory, Anthropological Papers, Museum of Anthropology, edited by James B. University of Michigan, Griffin. 1961, No. 17.
    [41] George Rapp, James Allert, Vanda Vitali, et al. Determining geologic sources of artifact copper: source characterization using trace element patterns. 2000, University Press of America.
    [42] Brill R. H. and Shield W. R. New directions in lead isotope research. In: Application of science in examination of world of arts. 1970: 73—83.
    [43] Brill R. H. and Shield W. R.. Lead isotope in ancient coins. In: Methods of chemical and metallurgical investigation of ancient coinage. Special publication, 1972, 8: 280—303.
    [44] Yamasaki K., et al. Lead isotope in some Japanese and Chinese archaeology bronzes. In: Application of scientifically derived data in arch archaeological and historical research. Japan, 1981: 1—18.
    [45] Hisao Mabuchi, Yoshimitsu Hirao, et al. Lead isotope approach to the understanding of early Japanese bronzes culture. Archaeometry. 1985, 27(1): 131—159.
    [46] I. L. Barnes, W. T. Chase and E. C. Joel. Lead isotope ratios. In. Shang Ritual Bronzes in the A. M Sackler Collection. Harward University Press, 1987: 558—560.
    [47] W. T. Chase, I. L. Barnes and E. C. Joel. Lead isotope ratios. In: Western Zhou Ritual bronzes from the A. M. Sackler Collection. Harward University Press, 1990: 168—171.
    [48] Stos-Gale Z. A., Malitois G., Gale N. H., et al. Lead isotope characteristics of the Cyprus copper ore deposits applied to provenance studies of copper oxhide ingots. Archaeometry. 1997, 39(1): 83—123.
    [49] Willem Snoek, Ian R. Plimer, Shane Reeves. Application of Pb isotope geochemistry to the study of the corrosion products of archaeological artefacts to constrain provenance. Journal of Geochemical Exploration. 1999, 66(1-2): 421—425.
    [50] E. Niederschlag, E. Pernicka, Th. Seifert, et al. The determination of lead isotope ratios by multiple collector ICP-MS: a case study of Early Bronze Age artifacts and their possible relation with ore deposits of the Erzgebirge. Archaeometry. 2003, 45(1): 61—100.
    [51] Stos-Gale, Z.A., Gale, N.H., and Annetts, N., 1996. Lead isotope data from the Isotrace Laboratory, Oxford: Archaeometry data base 3, ores from the Aegean, Part 1, Archaeometry, 38(2), 381-390.
    [52] Stos-Gale, Z., Gale, N.H., Houghton, J., and Speakman, R., 1995. Lead isotope data from the Isotrace Laboratory, Oxford: Archaeometry data base 1, ores from the western Mediterranean, Archaeometry, 37(2), 407-415.
    [53] Gale, N. H., Stos-Gale, Z. A., Maliotis, G., and Annetts, N., 1997. Lead isotope data from the Isotrace Laboratory, Oxford: Archaeometry data base 4, ores from Cyprus, Archaeometry, 39(1), 237-246.
    [54] Rohl, B. M., 1996. Lead isotope data from the Isotrace Laboratory, Oxford: Archaeometry data base 2, galena from Britain and Ireland, Archaeometry, 38(1), 165-180.
    [55] Stos-Gale, Z.A., Gale, N.H., and Annetts, N., et al., 1998. Lead isotope data from the lsotrace Laboratory, Oxford: Archaeometry data base 5, ores from Bulgaria, Archaeometry, 40(1), 217-226.
    [56] Hauptmann, A., Begemann, F., Heitkemper, E., Pernicka, E., and Schmitt-Strecher, S., 1992. Early copper produced at Feinan, Wadi Araba, Jordan: the composition of ores and copper, Archaeomaterials, 6, 1-33.
    [57] Yener, K. A., Sayre, E. V., Joel, E. C., et al., 1991. Stable lead isotope studies of Central Taurus ore sources and related artifacts from Eastern Mediterranean chalcolithic and bronze age sites, Journal of Archaeological Science, 18, 541-577.
    [58] Pernicka, E. Crisis of Catharsis in lead isotope analysis? Journal of Mediterranean Archaeology, 1995, 8: 59-64.
    [59] 彭子成,刘永刚,刘诗中,等.赣鄂豫地区商代青铜器和部分铜铅矿料来源的初探[J].自然科学史研究,1999,18(3):241-249.
    [60] 金正耀,W.T.Chase,平尾良光,等.江西新干大洋州商墓青铜器的铅同位素比值研究[J].考古,1994,(8):744-747.
    [61] 金正耀,马渊久大,W.T.Chase,等.广汉三星堆遗物坑青铜器的铅同位素比值研究[J].文物.1995,(2):80-85.
    [62] 金正耀,W.T.Chase,马渊久夫,等.而代青铜器中的高放射性成因铅:三星堆器物与沙可乐(赛克勒)博物馆藏品的比较研究[A].“走向二十一世纪的中国考古学”国际讨论会论文集[C].北京:科学出版社,1998:258-266.
    [63] 彭子成,王兆朵,孙卫东.等.盘龙城商代青铜器铅同位素示踪研究.见:盘龙城[M].北京:文物出版社,2001,552-558.
    [64] 常向阳,朱炳泉,金正耀.殷商青铜器矿料来源与铅同位素示踪应用[J].广州大学学报(自然科学版),2003,2(4):323-326.
    [65] 金正耀.铅同位素示踪方法应用于考古研究的进展[J].地球学报,2003,24(6):548-551.
    [66] 《中国矿产志略》,《地质专报》乙种1号,1919.
    [67] 章鸿钊.古矿录[M].北京:地质出版社,1954.
    [68] 裘士京.江南铜研究—中国古代青铜铜源的探索[M].合肥:黄山书社,2004.
    [69] 童恩正,等.中国古代青铜器中锡原料的来源—评中原找锡论[J].四川大学学报(社会科学版),1984,(4).
    [70] Friedrich Begemann, Konrad Kallas, Sigrid Schmitt-Strecker, et al. Tracing ancient tin via isotope analysis. In: The Beginnings of Metallurgy, edited by A. Hauptmann, E. Pernicka, T. Rehren. Der Anschnitt. Deutsches Bergbaumuseum, Bochum, 1999: 277—284.
    [71] Gale N.H. The isotopic composition of tin in some ancient metals and the recycling problem in metal provenancing. Archaeometry. 1997, 39(1): 71-82.
    [72] Clayton R.E., Gillis C. and Pernicka E. Feasibility Criteria for the Use of Tin Isotopes in Provenance Studies. In: Abstracts 33rd Int. Conf on Archaeornetry. Amsterdam, 2002:115.
    [73] Wen Yi, Paul Budd, Rona A.R. McGill, et al. Tin isotope studies of experimental and prehistoric bronzes. In: The Beginnings of Metallurgy, edited by A. Hauptmann, E. Pernicka, T. Rehren. Der Anschnitt. Deutsches Bergbaumuseum, Bochum, 1999: 285—290.
    [74] McGill, R., Budd, P., Scaife, B., et al. The investingation and archaeologyical applications of anthropogenic heavy metal isotope fractionateon. In: S. M. M. Young, A. M. Pollard, R. Ixer and P. Budd (eds), Metals in Antiquity, Oxford, 1999: 258-260.
    [75] Rapp, G., Rothe, R., Jing, Zh-Ch. Using neutron analysis to source ancient tin (cassiterite). In: S. M. M. Young, A. M. Pollard, R. Ixer and P. Budd (eds), Metals in Antiquity, Oxford, 1999: 153-162.
    [76] 朱剑.汝瓷和原始瓷的XRFA研究[D].合肥:中国科学技术大学,2003.
    [77] Shield W R, Goldich S S, Garner E L, et al. Natural variations in the abundance ratio and the atomic weight of copper. J. Geophys. Res, 1965, 70: 479-491.
    [78] E.C.Walker, ECuttitta, F.E.Senftle, Geochim. Cosmochim. Acta 15(1958) 183.
    [79] W.R. Shields, E.L. Garner, S.S. Goldich, et al. Res. 70(1965)479.
    [80] Marechal C.N., Telouk P. and Albarede F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chemical Geology. 1999, 156:251-273.
    [81] Zhu X.K., O'Nions R.K., Guo, Y. et al.. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: implications for use as geochemical tracers. Chemical Geology. 2000, 163(1-4): 139-149.
    [82] 葛军,陈衍景,邵宏翔.铜同位素地球化学研究及其在矿床学应用的评述和讨论[J].地质与勘探,2004,40(3),5-10.
    [83] N.H. Gale, A.P. Woodhead, Z.A. Stos-Gale, et al.. Natural variations detected in the isotopic composition of copper: possible applications to archaeology and geochemistry. International Journal of Mass Spectrometry. 1999, 184(1):1—9.
    [84] S.Klein, Y.Lahaye, G.P. Brey, et al. The early roman imperial AES coinage Ⅱ: Tracing the copper sources by analysis of lead and copper isotopes—copper coins of Augustus and Tiberius.
    [1] 夏湘蓉,李仲均,王根元.中国古代矿业开发史[M].北京:地质出版社,1980.
    [2] 郭沬若.中国史稿(第一册)[M].北京:人民出版社,1977.
    [3] 华觉明,卢本珊.长江中下游铜矿带的早期开发和中国青铜文明[J].自然科学史研究,1996,15(1):1-16.
    [4] 章鸿钊.古矿录[M].北京:地质出版社,1954.
    [5] 刘诗中,卢本珊.铜岭古铜矿性质探讨[J].华夏考古,1997,(3):61-66.
    [6] 陈国生,杨晓霞.《五藏山经》中矿物名称考释及其地理分布研究[J].自然科学史研究,1997,16(4):368-383.
    [7] 闻广.中国古代青铜与锡矿(续)[J].地质评论,1980,26(5):420-429.
    [8] 后德俊.商王朝势力的南下与江南古铜矿[J].南方文物,1996,(1):81-85.
    [9] 黄崇轲,白冶,朱裕生等.中国铜矿床(上册)[M].北京:地质出版社,2001.
    [10] 刘诗中.中国早期采铜冶铜技术成就.见:高崇文,安田喜宪,长江流域青铜文化研究,北京:科学出版社,2002.340-354.
    [11] 刘诗中.曹柯平,唐舒龙.长江中游地区的古铜矿[J].考古与文物,1994.(1):82-88.
    [12] 刘诗中.中国早期铜矿初步研究[A].见:中国考古学会第八次年会论文集[C],北京:文物山版社,1991.197-207
    [13] 薛步高.史料考证与找矿(之三):铜矿[J].云南地质.2002,21(3):327-331.
    [14] 杜玉良,李文渊.甘肃铜矿资源特征与新一轮找矿思路[J].西北地质,2001,34(4):23-29.
    [15] 李延祥,朱延平,贾海新,等.辽西地区早期冶铜技术[J].广西民族学院学报(自然科学版),2004,10(2):11-20
    [16] 李延祥.从古文献看长江中下游地区火法炼铜技术[J].中国科技史料,1993,14(4):83-90.
    [17] 黄石市博物馆.铜绿山古矿冶遗址[M].北京:文物出版社,1999年.
    [18] 秦颍、王昌燧、张国茂等,皖南古铜矿冶炼产物的输出路线[J].文物,2002,(5):78-82.
    [19] 杨立新,皖南古代铜矿的发现及其历史价值[J].东南文化,1991,(2):131~137.
    [20] 穆荣平.皖南古铜矿遗址及其冶炼技术的初步研究[D].合肥:中国科学技术大学,1990.
    [21] 陈荣,赵匡华.先秦时期铜陵地区的硫化铜矿冶炼研究[J].自然科学史研究,1994,13(2):139-144.
    [22] 安徽省冶金地质勘探公司八一一队.安徽省滁县铜矿床南部地质勘探中间报告[R].1975.4~5.
    [23] 江西省文物考古研究所等.铜岭古铜矿遗址发现与研究[M].南昌:江西科学技术出版社,1997.
    [24] 港下古铜矿遗址发掘小组.湖北阳新港下古矿井遗址发掘简报[J].考古,1988,(1):30-42.
    [25] 湖南省博物馆,麻阳铜矿.湖南麻阳战国时期山.铜矿清理简报[J].考古,1985,(2):113-123.
    [26] 刘平生.安徽南陵西周硫化矿冶铜技术的研究[J].安徽师大学报(自然科学版),1994,17(1):96-100.
    [27] 李广宁.皖南古铜矿冶遗址在东亚文明史上的地位[J].文物研究,1993,(8):189-193.
    [28] 安徽省文物考古研究所,南陵县文物管理所.安徽南陵县古铜矿采冶遗址调查与试掘[J].考古,2002,(2):45-54.
    [29] 安徽省文物考古研究所.铜陵市文物管理所.安徽铜陵金牛洞铜矿古采矿遗址清理简报[J].考古,1989,(10):910-919.
    [30] 安徽省文物考古研究所,铜陵市文物管理所.安徽铜陵市古代铜矿遗址调查[J].考古,1993,(6):507-517.
    [31] 杨立新.皖南古代铜矿初步考察与研究[J].文物研究,1988,(3):181-190.
    [32] 汪景辉.安徽古代铜矿考古调查综述[J].文物研究,1993,(8):204-210.
    [33] 刘平生.南陵大工山古矿冶遗址群江木冲冶炼场调查[J].文物研究.1988,(3).
    [34] 安徽省博物馆.安徽贵池发现东周青铜器[J].文物,1980,(8).
    [35] 叶波.铜陵凤凰山发现春秋铜器[J].文物研究,1988,(3).
    [36] 沉舟.繁昌县出土春秋时期的铁锭[J].安徽文物工作,1989,(3).
    [37] 北京钢铁学院冶金史组.中国早期铜器的初步研究[J].考古学报,1981.(3):287-301.
    [38] 李京华.中原古代冶金技术研究[M].郑州:中州古籍出版社,1994.
    [39] 李延祥.中条山古铜矿冶遗址初步考察研究[J].文物季刊,1993,(2).
    [40] 河南省文物考古研究所.南阳市文物研究所,镇平县彭雪枫纪念馆.河南省镇平县楸树湾占铜矿冶遗址的调查[J].华夏考古,2001,(2):3-5.
    [41] 王刚.林西县大井古铜矿遗址[J].内蒙古文物考古.1994,(1):45-50.
    [42] 李延祥,王兆文,王连伟.韩汝玢.大井古铜矿冶炼技术及产品特征初採[J].有色 金属,2001,53(3):92—96.
    [43] 李延祥,朱延平.塔布敖包冶铜遗址初步考察[J].有色金属,2003,55(3):149-152.
    [44] 李延祥,韩汝玢.辽宁省凌源县牛河梁出土的炉壁研究[J].有色金属,2000,52(3):80-83.
    [45] 王明哲.尼勒克县古铜矿遗址的调查.见:中国考古学年鉴(1984).北京:文物出版社,1984.176.
    [46] 李延祥,梅建军.奴拉赛古铜矿冶炼技术研究[J].有色金属,2001,53(1):64-66.
    [47] 中卫县文管所.中卫县照壁山古铜矿遗址.见:中国考古学年鉴(1991).北京:文物出版社,1992.322.
    [1] 王昌燧.文物产地研究发展简史——兼论科技考古与Archaeometry.见:王昌燧主编,科技考古论丛(第二辑).合肥:中国科学技术大学出版社,2000:13—16.
    [2] Rapp George Jr., Eiler Henrickson, Michael Miller, et al. Trace Element Fingerprinting as a Guide to the Geographic Sources of Native Copper. dournal of Metals. 1980, 32: 35-45.
    [3] Rapp George Jr., James Allert and Eiler Henrickson. Trace Element Discrimination of Discrete Sources of Native Copper. In: Archaeological Chemistry Ⅲ, John Lambert edited., Advances in Chemistry Series, no. 205. New York, American Chemical Society. 1984, 273-293.
    [4] Rapp George Jr., James D. Allert and Gordon Peters. The Origins of Copper in Three Northern Minnesota Sites: Pauly, River Point, and Big Rice. In: The Woodland Tradition in the Western Great Lakes: Papers Presented to Elden Johnson, Guy E. Gibbon edited. University of Minnesota, Minneapolis. 1990, 233-238.
    [5] Allert James D., George Rapp Jr., Vanda Vitali, et al. Trace-Element Variability of Native Copper within a Large Ore Body: The Kingstone Mine, Michigan, USA. Geoarchaeology: An International Journal. 1991, 6(4):337—354.
    [6] Hancock R. G. V., L. A. Pavlish, R. M. Farquhar, et al. Distinguishing European Trade Copper and Northeastern North American Native Copper. Archaeology. 1991, 33: 69-86.
    [7] J.L. Mauk. Trace Element Geochemistry of Native Copper from the White Pine Mine, Michigan (USA): Implications for Souring Artefacts. Archaeometry 1998, 40 (1): 97-107.
    [8] 陈建立,孙淑云,韩汝玢,等.盘龙城遗址出土铜器的微量元素分析报告.见:湖北省文物考古研究所编.盘龙城——1963—1994年发掘报告.北京:文物出版社,2001:559—573.
    [9] George Rapp, James Allert, Vanda Vitali, et al. Determining geologic sources of artifact copper: source characterization using trace element patterns. 2000, University Press of America.
    [10] R.F. Tylecote, H. A. Ghaznavi, P. J. Boydell. Partitioning of trace elements between the ores, fluxes, slags and metal during the smelting of copper. Journal of archaeological science. 1977, 4(4): 305-333.
    [11] Laub, G,. Investigations into Early Smelting of Heligoland Copper Ores and Its Metallic Products. Erzmetall, 1987,40(12):676-679.
    [12] A. K. Biswas and G. Davenport. Extractive Metallurgy of Copper.昆明工学院冶金系有色金属冶炼教研组译[M].北京:冶金工业出版社,1980年.
    [13] 辽宁冶金学院有色重金属冶炼教研组.普通冶金学[M].北京:中国工业出版社,1961.60~61.
    [14] 陈道公,支霞臣,杨海涛编著.地球化学[M].合肥:中国科学技术大学,1994年.
    [15] Mark Hall. Comments on oxhide ingots, recycling and the Mediterranean metals trade. Journal of Mediterranean Archaeology, 1995, (8): 42-44.
    [16] 今清临.古青铜器矿料来源研究[D].合肥:中国科学技术大学,2004.
    [17] E.Niederschlag, E.Pernicka, Th.Seifert, et al. The Determination of Lead Isotope Ratios by Multiple Collector ICP-MS: A Case Study of Early Bronze Age Artifacts and Their Possible Relation with Ore Deposits of the Erzgebirge [J]. Archarometry. 2003, 45(1): 61-100.
    [18] 金正耀.晚商中原青铜的矿料来源研究[D].合肥:中国科学技术大学,1984.
    [19] 金正耀.二里头青铜器的自然科学研究与夏文明探索[J].文物,2000,(1):56-64.
    [20] Z.AL-SAAD' Technology and Provenance of a Collection of Islamic Copper-Based Objects as Found by Chemical and Lead Isotope Analysis [J]. Archarometry. 2000, 42(2): 385-397.
    [21] 张敬国,李仲达,华觉明.贵池东周铜锭的分析研究—中国始用硫化矿炼钢的一个线索[J].自然科学史研究,1985,4(2):168-171.
    [22] 杨立新.皖南占代铜矿的发现及其历史价值[J].东南文化,1991,(2):131~137.
    [23] 夏湘蓉,李仲均.王根元.中国古代矿冶开发史[M].北京:地质出版社,1980.208-210.
    [24] Lloyd Weeks. Metal Artifacts from the Sharm Tomb (1) [J]. Arabian Archaeology and Epigraphy, 2000, (11):180-198.
    [25] P.R.S Moorey. Ancient Mesopotamian Materials and Industries [M]. Clarendon Press Oxford. 248-249.
    [26] R. F. Tylecote, P. J. Boydell. Experiments on copper smelting, in Chalcolithic Copper Smelting (ed. B. Rothenberg), 1-14, Inst. Archaeometallurgical Stud. Monograph ser., 1, London.
    [27] P.T. Craddock, N. D. Meeks. Iron in Ancient Copper. Archaeometry, Vol. 29, Part 2, August, 1987.
    [28] 刘诗中,曹柯平,唐舒龙.长江中游地区的占铜矿[J].考古与文物,1994,(1):82—88.
    [29] 黄石市博物馆.铜绿山古矿冶遗址[M].北京:文物出版社,1999.
    [30] 湖北省地质局第一地质.湖北铜绿山铜矿床的成矿特征及探矿条件[A].铁铜矿产专辑(第一集)[C].北京:地质出版社,1972.
    [31] 穆荣平.皖南古铜矿遗址及其冶炼技术的初步研究[D].合肥:中国科学技术大学,1990.
    [32] 刘亮明.大型铜矿集区成矿聚集机制与隐伏矿床定位顺测——以中条山矿集区和铜陵矿集区为例[D].中国科学院地球化学研究所,2000.
    [33] 唐永成、吴言昌等.安徽沿江地区铜金多金属矿床地质[M].北京:地质出版社,1998.
    [34] 中条山铜矿地质编写组.中条山铜矿地质[M].北京:地质出版社,1978.
    [35] 郭妮.铜矿峪矿氧化矿石的性质特征[J].山西冶金,2004,(2):14—30.
    [36] 冀树楷,傅昭仁,李树屏等.中条山铜矿成矿模式及勘查模式[M].北京:地质出版社.1992.
    [37] 冯建忠,艾霞,吴俞斌.内蒙大井多金属矿床微量元素特征及地质意义[J].矿产与勘查,1990,(4):47—52.
    [38] 赵利青,上本武,覃功炯等.大井锡多金属矿床矿化元素分布特征研究[J].地质与勘探,2002,38(4):22—27.
    [39] 辽宁省地质局昭盟地质大队.辽宁省林西县大井铜矿地质勘探报告[R].中国地质 档案馆藏筇56746号地质档案,1977.
    [40] 王玉往,王京彬,王莉娟.大井矿床成矿阶段划分[J].九五全国地质科技重要成果学术交流会[C].2003.408-411.
    [41] 李延祥,王兆文,王连伟等.大井古铜矿冶炼技术及产品特征初探[J].有色金属,2001,53(3):92-96.
    [1] 金正耀.晚商中原青铜的矿料来源研究[D].合肥:中国科学技术大学,1984.
    [2] Yamasaki, K., et al. 1981. Lead isotope ratios in some Japanese and Chinese archaeological bronzes. Application of Scientifically Derived Data in Archaeological and Historical Research, Japan PP221-234.
    [3] E.V. Sayre. The technical examination, lead isotope determination and elemental analysis of some Shang and Zhou Dynasty bronze vessels. 1986, Zhengzhou, China.
    [4] Barnes I L, Chase W T, Deal E C. 1987. Lead isotope ratios of ancient Chinese bronzes in the Arthur M. Sackler collections. In R. Bagley: Shang ritual bronzes in the Arthur M. Sackler collections, Appendix 2, Harward University Press, 558-561.
    [5] 金正耀,W.T.Chase,平尾良光,等. 江西新干大洋州商慕青铜器的铅同位素比值研究[J].考古,1994,(8):744-747.
    [6] 金正耀,马渊久夫,W.T.Chase,等.广汉三星堆遗物坑青铜器的铅同位素比值研究[J].文物,1995,(2):80-85.
    [7] Hirao Y, Suzuki H, Hayakawa Y, et al. 1999. Lead isotopic ratios of ancient Chinese bronzes from collections of Senoku Museum. Senoku Museum Digest, (15): 25-46.(in Japanese)
    [8] 彭子成,刘永刚,刘诗中,等.赣鄂豫地区商代青铜器和部分铜铅矿料来源的初探[J]. 自然科学史研究,1999,18(3):241-249.
    [9] 金正耀.二里头青铜器的自然科学研究与夏文明探索[J].文物,2000,(1):56-64.
    [10] 彭子成,王兆荣,孙卫东,等.盘龙城商代青铜器铅同位素示踪研究.见:盘龙城[M].北京:文物出版社,2001,552-558.
    [11] Saito T. et al. Preliminary consideration of the source of lead used for bronze objects in Chinese Shang Dynasty: Was it really from the area where Sichuan, Yunnan and Guizhou Provinces meet? Proceedings of BUMA-V, Gyeonniu, Korea, 21-24 April 2002.
    [12] 金正耀,朱炳泉,常向阳等.成都金沙遗址铜器研究[J].文物,2004,(4):76-88.
    [13] Friedrich Begemann, Konrad Kallas, Sigrid Schmitt-Strecker, et al. Tracing ancient tin via isotope analysis. In: The Beginnings of Metallurgy, edited by A. Hauptmann, E. Pernicka, T. Rehren. Der Anschnitt. Deutsches Bergbaumuseum, Bochum, 1999: 277-284.
    [14] M. Ponting. Fingerprinting of Roman mints using Laser-ablation MC-ICP-MS lead isotope analysis. Archaeometry, 2003, 45(3):591-597.
    [15] 张光直.中国青铜时代(二集)[M].北京:三联书店,1993.
    [16] 刘莉,陈星灿.城:夏商时期对自然资源的控制问题[J].东南文化,2000,(3):45-60.
    [17] 《中国占代冶金》编写组.中国古代冶金[M].北京:文物出版社,1978.35-36.
    [18] 刘诗中.中国早期铜矿初步研究[A].见:中国考古学会第八次年会论文集[C],北京:文物出版社,1991.197-207.
    [19] 刘诗中.铜岭古铜矿性质探讨[J].华夏考古,1997,(3):61-67.
    [20] 夏湘蓉,李仲均,王根元.中国古代矿冶开发史[M].北京:地质出版社,1980.208-210.
    [21] 李清临.古青铜器矿料来源研究[D].合肥:中国科学技术大学,2004.
    [22] 安徽省冶金地质勘探公司八一一队.安徽省滁县铜矿床南部地质勘探中间报告[R].1975.4-5.
    [23] 江苏省冶金地质勘探公司研究室、滁县铜矿、八一一地质队专题小组.滁县矽卡岩铜矿床伴生有益组分分布规律及赋存状态的初步认识[R].1971.1-12.
    [24] 张春华.内蒙大井锡多金属矿床矿石的物质成分及特征[J].矿产与勘查,2004,(1):13—17.
    [25] 王刚.林西县大井古铜矿遗址[J].内蒙占文物考古,1994,(1):45—50.
    [26] 李延祥,王兆文,王连伟等.大井古铜矿冶炼技术及产品特征初探[J].有色金属,2001,53(3):92—96.
    [27] 冯建忠,艾霞,吴俞斌.内蒙大井多金属矿床微量元素特征及地质意义[J].矿产与勘查,1990,(4):47—52.
    [28] 王玉往,王京彬,王莉娟.大井矿床成矿阶段划分[A].九五全国地质科技重要成果学术交流会[C].2003.408-411.
    [29] 辽宁省地质局昭盟地质大队.辽宁省林西县大井铜矿地质勘探报告[R].中国地质档案馆藏第56746号地质档案,1977.
    [30] 赵利青,上本武.覃功炯等.大井锡多金属矿床矿化元素分布特征研究[J].地质与勘探,2002,38(4):22—27.
    [31] 王玉往,曲丽莉,王京彬等.大井锡多金属矿床矿石矿物成分及时空演化[J].矿床地质,2002.21(1):23—35.
    [32] 黄崇轲,白冶,朱裕生等.中国铜矿床[M].北京:地质出版社,2001.1-8.
    [33] 李延祥.中条山古铜遗址初步考察研究[J].文物季刊,1993,(2).
    [34] 彭子成.刘永刚,刘诗中等.赣鄂豫地区商代青铜器和部分铜铅矿料来源的初探[J].自然科学史研究,1999,18(3):241-249.
    [1] 刘莉,陈星灿.城:夏商时期对自然资源的控制问题[J].东南文化,2000,(3):45-60;
    [2] 《中国古代冶金》编写组.中国古代冶金[M].北京:文物出版社,1978.35-36;
    [3] 刘诗中.中国早期铜矿初步研究[A].见:中国考古学会第八次年会论文集[C],北京:文物出版社,1991.197-207.
    [4] 刘诗中.铜岭古铜矿性质探讨[J].华夏考古,1997,(3):61-67.
    [5] 黄石市博物馆.铜绿山古矿冶遗址[M].北京:文物出版社,1999.
    [6] 江西省文物考古研究所等.铜岭古铜矿遗址发现与研究[M].南昌:江西科学技术出版社,1997.
    [7] 安徽省文物考古研究所.安徽铜陵市古代铜矿遗址调查[J].考古,1993,(6):507-517
    [8] 杨立新.皖南古代铜矿的发现及其历史价值[J].东南文化,1991,(2):131-137.
    [9] 穆荣平.皖南古铜矿遗址及其冶炼技术的初步研究[D].合肥:中国科学技术大学,1990.
    [10] 王刚.林西县大井占铜矿遗址[J].内蒙古文物考古,1994,(1):45-50.
    [11] 李延祥,王兆文,王连伟等.大井古铜矿冶炼技术及产品特征初探[J].有色金属,2001,53(3):92—96.
    [12] 李延祥.中条山占铜矿冶遗址初步考察研究[A].见:《中国冶金史论文集》[C],北京科技大学,1994:74-78.
    [13] 《中卫发现十多处古铜矿遗址》.中国文物报,1990-12-13.
    [14] 马承源.中国青铜器[M].上海:上海古籍出版社,1988.510-515.
    [15] 燕耘.商代卜辞中的冶铸史料[J].考古,1973,(5).
    [16] 王宇信.建国以来甲骨文研究[M].中国社会科学出版社,1981:156-157.
    [17] 杨国宜.中国古代青铜铜源之谜的破解[J].安徽师范大学学报(人文社会科学版),2005.33(2):182-185.
    [18] 夏鼐.中国文明的起源[M].北京:文物出版社,1985.
    [19] Catherine S.L. Yeung, Raymund W.M. Kwok, Peter Y.K. Lam, et al. SIMS Analysis of Lead Isotope Composition in Ancient Chinese Metallic Artifacts [J]. Surface and Interface Analysis, 2000, 29: 487-491.
    [20] 周卫荣、董亚巍、万全文等.中国青铜时代不存在失蜡法铸造工艺[J].江汉考古,2006,(2):80-85.
    [21] 谭德睿.侯马东周陶的材料及其处理技术的研究[J].考古,1986,(4):355-362.
    [22] 谭德睿.中国青铜时代陶范铸造技术研究[J].考占学报,1999,(2):211-249.
    [23] 谭德睿.商周青铜器陶范处理技术的研究[J].自然科学史研究,1986,5(6):346-360.
    [24] 华觉明等.中国冶铸史论集[M].北京:文物出版社,1986.71-75.
    [25] 谭德睿,黄龙,王永吉,等.植物硅酸体及其在古代青铜器陶范制造中的应用[J].考古,1993,(5):469-474.
    [26] 王永吉,吕厚远.植物硅酸体研究及应用[M].北京:海洋出版社,1993.
    [27] Piperno D R. Phytolith analysis: an archaeological perspective. San Diego: Academic Press, 1988.9-27, 132-156.
    [28] 陈报章,刘广民,葛兆帅,等.植物硅酸体及其在环境考古学中的应用[J].徐州师范学院学报(自然科学版),1994,12(3):48-53.
    [29] 陈报章,刘广民.植物硅酸体分析在农业考占中的应用[J].徐州师范学院学报(自然科学版),1995,13(1):59-62.
    [30] 刘东生等.中国的黄土堆积[M].北京:科学出版社.1965.
    [31] 戴雪荣.黄土及其本质意义的新认识[J].地理教学,2001,(12):1-3.
    [32] 文启忠等.中国黄土地球化学[M].北京:科学出版社,1989.
    [33] 刘东生等.黄河中游黄土[M].北京:科学出版社,1964.189-190.
    [34] 刘东生等.黄土与环境[M].北京:科学出版社,1985.
    [35] 刁桂仪,文启忠,吴明清.黄河中游马兰黄土中若干微量元素的平均含量及相关性研究[J].海洋地质与第四纪地质,1996,16(2):85-92.
    [36] 杨立辉,叶玮,朱丽东,等.中国南方第四纪红土的形成时代[J].热带地理.2005,25(4):293-297.
    [37] 郑琰明,周尚哲,康建成,等.南方网纹红土及其形成环境的初步探讨[J].嘉兴学院学报(自然科学),2005,23(3):79-83.
    [38] 王清,唐大雄.我国南方中更新世网纹红土的工程地质评价[J].工程地质学报,2000,(8):330-333.
    [39] 王芳,周尚哲,康建成,等.中国网纹红土研究进展[J].烟台师范学院学报(自然科学版),2006,22(1):63-68.
    [40] 张俊民,蔡凤歧,何同康.中国的土壤[M].北京:商务印书馆,1995.
    [41] 朱照宇,王俊达,黄宝林.红土.黄土.全球变化[J].第四纪研究,1995,(3):268-276.
    [42] 刘雪梅.兰州黄土150ka以来的植硅体与古气候初步研究[J].地球科学—中国地质大学学报,1999,249(1):88-97.
    [43] 顾延生,肖春娥,章泽军,等.中国南方红土的研究进展[J].华东师范大学学报(自然科学版),2002,(1):69-75.
    [44] 黄翡,熊尚发.江西九江第四纪红土中的植物硅酸体及孢粉[J].微体古生物学报,2001,18(2):203-210.
    [45] Formigli, E., Schneider, G. Antiche terre di fusione. Indagini archeometriche sulle terre di fusione bronzi greci, romanie rinascimentali. In Atti del seminario di studied esperimenti, Murlo, 26-31 luglio 1991, 69-102. Nuova imagine editrice, Siena, 1993.
    [46] Cipriani, N., Ferrari, G. A. and Magaldi, D. (1984). Contributo alla conoscenza dei materiali di riempimento dei bronzi di Riace. Bollettino d'Arte, 3 serie speciale "Due bronzi da Riace". Restauro ed ipotesi di interpretazione Ⅰ, 142-145.
    [47] Mannoni, T. (1984). Le terre di riempimento delle statue e i frammenti ceramici: analisi mineralogico-petrografiche in relazione alia provenienze dei bronzi. Bollettino d'Arte, 3 serie speciale "Due bronzi da Riace". Restauro ed ipotesi di interpretazione Ⅰ, 29-30.
    [48] Reedy, C. L. (1991). Petrographic analysis of casting core materials for provenance studies of copper alloy sculpture. Archeomaterials, 5, 121-163.
    [49] Holmes, L. L., Harbottle, G., 1991, Provenance study of core from Chinese bronze vessels, Archeomaterials, 5, 165-184.
    [50] Gianni Lombardi. From the shell to its content: the casting cores of the two bronze statues from Riace (Calabria, Italy). Journal of Archaeological Science, 1998, 25(11): 1055-1066.
    [51] G. Lombardi. A petrographic study of the casting core of the LUPA CAPITOLINA bronze sculpture (Rome, Italy) and Identification of its provenance. Archaeometry, 2002, 44(4): 601-612.
    [1] 刘国胜.湖北枣阳九连墩楚墓获重大发现[J].江汉考古,2003(2):29-30.
    [2] Hanson G H. Rare earth elements in petrogenetic studies of igneous systems. Ann Rev Earth Planet Sci, 1980, 8(4):371-406.
    [3] Meneies M S, Seyfried W J, Blanchard D. Experimental evidence of rare earth element immobility in greenstones. Nature, 1979, 282 (5737):398-399.
    [4] Olin, J.S., Harbottle. G & Sayre. E. V. (1978). Elemental compositions of Spanish and Spanish-colonial majolica ceramics in the identification of provenance, in Archaeological Chemistry Ⅱ, Advances in Chemistry Series 171, Washington D. C., American Chemical Society, pp200-229.
    [5] J. Cogswell, H. Neff, M. Glascock. The effect of firing temperature on the elemental characterization of pottery. Journal of Archaeological Science, 1996, 23(2): 283-287.
    [6] 李家治,张志刚,邓泽群等.新石器时代早期陶器的研究—兼论中国陶器起源[A].古陶瓷科学技术国际讨论会议文集[C].上海:上海科学技术文献出版社,1997.
    [7] 李士,秦广雍.现代实验技术在考古学中的应用[M].北京:科学出版社,1991.192-193.
    [8] Balla M, Keomley G, Rosner G Y. Journal of Radioanalytical and Nuclear Chemistry, 1990, 141(1): 7-16.
    [9] A. Hein, H. Mommsen. Element concentration distributions and most discriminating elements for provenancing by Neutron Activation Analyses of ceramics from Bronze Age sites in Greece. Journal of Archaeological Science, 1999, 26:1053-1058.
    [10] Anno Hein, Hans Mommsen, Guido Zender. Pliocene clays from Aegina (Greece): reference material for chemical provenance studies on Bronze Age pottery from the Island. Geoarchaeology: An International Journal, 2004, 19(6): 553-564.
    [11] 徐安武,王昌燧,池锦祺等.新沂县花厅遗址出土古陶器产地的INAA研究[J].核技术,1997,20(12):727-731.
    [12] 陈铁梅,Rapp G Jr.等.中子活化分析对商时期原始瓷产地的研究[J].考古,1997,(7):49-52.
    [13] 陈铁梅,Rapp G Jr.,荆志淳.商周时期原始瓷的中子活化分析及相关问题讨论[J].考古,2003,(7):69-78.
    [14] 李国霞.赵维娟.高正耀,中子活化分析在古陶瓷原料产地研究中的应用[J].原子核物理评论,2000,17(4):248-250.
    [15] Jacqueline, S. O., et al. Archaeological Chemistry-Ⅲ, American Chemistry Society, Washington, D. C., 100(1984).
    [16] Titl, M. S., Method of physical examination in archaeology. Seminars Press Ltd., London, 308(1975).
    [17] 李虎侯.铜镜的快中子活化分析.核电子学与探测技术[J].1989,9(4):21-215.
    [18] EC. Chapdelaine, G. Kennedy, S. Uceda Castillo. Neutron activation analysis of metal artefacts from the Moche site, north coast of Peru. Archaeometry, 2001, 43(3): 373-391.
    [19] Thorpe, O. W., et al. Journal of Archaeological Science, 11, 135(1984). Aspinall, A., et al. Nature, 217, 388(1968).
    [20] 杨学明,杨晓勇,陈双喜.岩石地球化学[M].合肥:中国科学技术大学出版社,2000.
    [21] 赵志根.含煤岩系稀上元素地球化学研究[M].北京:煤炭工业出版社,2002.
    [22] 章邦桐、凌洪飞、陈培荣等.多体系微量元素地球化学对比中存在的问题及解决途径[J].地质地球化学,2003,31(4):102-106.
    [23] 王才林,宇田津彻郎.植物蛋白石分析法及其在考古学士的应用[J].东南文化,1997,(3):14-22.
    [24] 王永吉,吕厚远,王国安,等.C3、C4植物和现代土壤中硅酸体同位素分析[J].科学通报,2000,45(9):978-981.
    [25] 文启忠等.中国黄土地球化学[M].北京:科学出版社,1989.14-15,115-145.
    [26] 谭德睿.侯马东周陶的材料及具处理技术的研究[J].考古,1986,(4):355-362.
    [27] 谭德睿.中国青铜时代陶范铸造技术研究[J].考古学报,1999,(2):211-249.
    [28] 谭德睿.商周青铜器陶范处理技术的研究[J].自然科学史研究,1986,5(6):346-360.
    [29] 吴明清,文启忠,潘景瑜等.黄河中游地区马兰黄土主要化学成分的再研究[J].自然科学进展—国家重点实验室通讯,1996,(1):80-85.
    [30] 谭德睿,黄龙,王永吉,等.植物硅酸体及其在古代青铜器陶范制造中的应用[J].考古,1993,(5):469-474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700