用户名: 密码: 验证码:
基于车辆动态响应的轨道不平顺智能感知算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轨道交通是我国最重要的交通运输方式,是国民经济和社会发展的命脉。随着列车运行速度、运载重量和运输密度的大幅度提高,车辆与轨道结构之间的动态相互作用日益增强,导致车辆对线路结构的动力破坏作用也越严重,而线路状态的恶化反过来影响列车运行的安全性和乘坐舒适性,因此及时掌握线路状态对于保证列车运行安全和合理制定维修计划具有重要意义。本文以轨道不平顺为研究对象,结合车辆轨道耦合模型,研究了一种基于车辆振动动态响应的轨道不平顺智能感知算法,能够实现运营列车以不同速度通过线路时轨道不平顺的获取,弥补了轨检车或综合检测车检测周期内轨道不平顺状态无法获知的不足,对于保证行车安全、线路设计、养护维修等具有重要的理论意义和现实意义。
     论文首先在已有车辆轨道耦合模型的基础上,仿真分析了不同线路(不同轨道不平顺)、不同列车运行速度、不同车辆类型作用下车辆轨道动态振动特性,进一步明确了论文的研究意义,同时为后面轨道几何不平顺的估计提供了仿真数据。
     为实现利用运营车辆的车辆振动响应感知轨道几何静态不平顺,论文提出了一种基于微种群遗传算法和车辆轨道耦合模型相结合的轨道几何静态不平顺估计算法,将轨道几何静态不平顺看做车辆轨道耦合模型非线性系统的一个参数,进而将轨道不平顺求解转换为模型参数的估计。参数估计准则采用车辆轨道耦合模型与车辆测量模型输出之差平方和最小,利用遗传算法在解空间内直接搜索轨道静态不平顺的最优解。由于车辆轨道耦合模型动力学方程为大型非线性方程组,为缩短计算时间和计算量,论文研究了改进的微种群遗传算法,撇弃了一般微种群遗传算法中的重启步骤,增大了变异概率,在进化过程中使用了最优保留策略,仿真计算结果表明估计的轨道几何静态不平顺在检测误差允许范围内。
     轨道基础结构缺陷引起的刚度突变是造成轨道刚度不平顺的主要原因,在列车通过时会引起较大的动态不平顺。论文在分析了轨道基础结构缺陷下车辆轨道动态响应的基础上,提出了一种基于支持向量机和车辆振动响应进行轨道刚度突变的识别算法,为了提高轨道刚度不平顺的识别率和分类准确性,在支持向量机的参数选择上,使用了粒子群算法和遗传算法,设计了改进的支持向量机,通过仿真分析表明这两种算法对于提高分类准确率和缩短计算时间都十分有效,在轨道基础结构缺陷的识别中取得了良好效果,同时为构建真实的轨道模型进行轨道动态不平顺估计奠定了基础。
     由于测量传感器和理论模型都存在误差,为了提高轨道不平顺的估计精度,论文最后提出了一种基于遗传算法和无迹卡尔曼滤波(UKF)技术相嵌套的轨道动态不平顺优化算法。借助车辆轨道耦合模型、测量传感器的已知特性,优化轨道振动响应,提高轨道动态不平顺的估计精度。仿真结果表明,经过GA与UKF嵌套算法后的轨道几何静态不平顺、车辆、轨道振动响应精度都得到了提高,减小了轨道动态不平顺估计误差。论文研究结果实现了根据车辆振动响应估计不同运营列车不同速度通过时的轨道动态不平顺,为实现车对地的检测提供了一种新的解决方案。
Railway transportation is the most important traffic mode in China and is the lifeblood of the national economy and social development. With the substantial increase of train speed, carrying weight and traffic density, the dynamic interaction between vehicle and track is increasing. Damaging effects of vehicle on track is more serious, which even influence the train operation safety and ride comfort. Hence, it is of great significance to master the track status for ensuring the train operation safety and developing the maintenance plan. Track irregularity is studied in this dissertation, and an intelligent sensing method for track irregularity is proposed based on vehicle dynamic vibration responses, which combines with vehicle and track coupling model. Track dynamic irregularity can be acquired by this method when operating trains go through at the different speed. It can make up the deficiencies that track irregularity cannot be informed during the inspection cars detection cycle. So it has important theoretical and practical meaning for the train operation safety, track design and maintenance.
     Firstly, vehicle and track vibration characteristics are analyzed based on vehicle-track coupling system model under some kinds of conditions, such as different track condition, different speed, different vehicle types and different track irregularity. The simulation results further show the research significance and provide the data for the latter track irregularity estimation.
     A new algorithm based on micro genetic algorithm and vehicle-track coupling system model is proposed in the dissertation, which can acquire the track irregularity using the vehicle dynamic responses of operation train. In the algorithm track static irregularity is taken as an unknown parameter of nonlinear vehicle-track coupling system model, and then the solution of track irregularity is converted into a parameter estimation problem. Making the sum of error square between vehicle track model output and measurement value to be minimum is used as parameter estimation rule, and genetic algorithm is adopted to search the optimum solution in the solution space. Because the dynamic equations of vehicle-track coupling system are the large nonlinear equation set, an improved micro genetic algorithm is studied to reduce the computing time and workload. The restart step is removed from micro genetic algorithm and mutation operator is added. The optimal retention policy is adopted during the evolution process. The estimation results show the estimated track static irregularity error is in the allowable range.
     Track stiffness abrupt change caused by track infrastructure defections is the main reason which creates track stiffness irregularity. It can lead to rather large dynamic irregularity when the train goes through it. The dynamic responses of vehicle and track are analyzed when defections exist in the track substructure, and a recognition algorithm of track rigidity abrupt change is proposed based on Support Vector Machines, in which vehicle vibration responses are used. In order to improve the recognition precision, improved SVM is designed by GA and PSO methods to optimize the parameters of SVM. The recognition results show that these two methods are effective to enhance the accuracy and reduce calculation time and get the better results in track substructure defects recognition. Meanwhile, it makes a foundation for the more realistic track model.
     A nested algorithm based on GA and Unscented Kalman Filtering is investigated in the dissertation in order to improve the precision of track irregularity estimation, which is influenced by the error of measurement sensors and theoretical model. With the known characteristics of vehicle-track coupling system and measurement sensors, the dynamic responses of track are optimized to get higher estimation precision of track dynamic irregularity. The simulation results show that track static irregularity and all dynamic responses of vehicle and track are getting better after GA and UKF nested algorithm and the estimation error is decreased. Track dynamic irregularity, which operating trains go through at the different speed, can be estimated based on vehicle dynamic responses. The research in this dissertation provides a new solution to detection the track status from the vehicle devices.
引文
[1]张曙光.高速列车设计方法研究[M].北京:中国铁道出版社,2009.
    [2]翟婉明.车辆-轨道耦合动力学[M].北京:科学出版社,2007.
    [3]罗林.高速铁路必须具有高平顺性[J].中国铁路,2000(10):8-11.
    [4]雷晓燕.轨道过渡段刚度突变对轨道振动的影响[J],中国铁道科学,2006,27(5):42-45.
    [5]赵国堂.铁路轨道刚度的确定方法[J].中国铁道科学,2005,26(11):1-6.
    [6]罗林,张格明,吴旺青等.轮轨系统轨道平顺状态的控制[M].北京:中国铁道出版社,2006.
    [7]400km/h高速综合检测车课题任务书.
    [8]钱立新.世界高速铁路技术[M].北京:中国铁道出版社,2003.
    [9]法国Iris 320高速检测车正式亮相[J].中国铁路,2007,11:70.
    [10]龚增进,余祖俊.铁路综合检测列车采集分析系统总体设计方案[J],铁路计算机应用,2005,14(12):27-29
    [11]许贵阳,崔巍.GJ—-4型轨检车及其对运输安全的作用[J],中国铁路,2000,9:51-52.
    [12]邓学通,叶一鸣.准高速轨检车检测原理及应用[M].北京:中国铁道出版社,2004.
    [13]陈东生.中国高速铁路轨道检测技术发展[J].铁道建筑,2008,12.·82-86.
    [14]李明华,李立林,何晓源.高速铁路轨道不平顺幅值控制研究[J].铁道工程学报,2009(9):26-30.
    [15]D Li, A Meddah, K Hass etc. Relating track geometry to vehicle performance using neural network approach [J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,2006,220(273):273-281.
    [16]P F Westeon, C S Ling, C Roberts etc. Monitorig vertical track irregularity from in-service railway vehicles[J], Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,2007,221(F):75-88.
    [17]J Kawassaki, K Youcef-toumi. Estimation of rail irregularities [C]. Proceedings of the American Control Conference, Anchorage, AK May 8-10,2002:3650-3660.
    [18]S. Alfi, S. Bruni. Estimation of long wavelength track irregularities from on board measurement [J]. IET Seminar Digest,2008,2008(12216):1-6.
    [19]A Kawaguchi, M Miwa, K Terada. Actual data analysis of alignment irregularity growth and its prediction model[J]. Quarter Report of RTRI,2005,46(4):262-268.
    [20]M X D Li, E G Berggren, M Berg. Assessment of vertical track geometry quality based on simulations of dynamic track-vehicle interaction[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,2007,223(2):131-139.
    [21]Song Liu, Xuemiao Pang etc. Prediction of track irregularities using NARX neural network[C]. Proceedings of 2010 Second Pacific-Asia Conference on Circuits,2010,1: 109-112.
    [22]Rengkui Liu, Peng Xu, Futian Wang. Research on a short-range prediction model for track irregularity over small track lengths[J]. Journal of Transportation Engineering,2010,136(12): 1085-1091.
    [23]陈宪麦.轨道不平顺时频域分析及预测方法的研究[D].北京:铁道科学研究院博士论 文,2006.
    [24]高建敏.铁路有砟轨道下沉及高低不平顺预测[D].成都:西南交通大学博十论文,2008.
    [25]曲铭,许玉德.基于小波的列车加速度和轨道不平顺关系分析[J].华东交通大学学报,2008,25(5):36-41.
    [26]张伟.基于轴箱谱的轨道短波不平顺识别方法研究[D].北京:北京交通大学硕士论文,2007.
    [27]Hirofumi TANAKA, Atsushi FURUKAWA, Dr. Eng. Management method for large wheel loads and lateral forces using acceleration and track irregularity[J]. QR of RTRI, Vol.50, No. 2, May.2009.
    [28]Chankyoung Park, Youngguk Kim and Daesung Bae. Sensitivity analysis of suspension characteristics for Korean high speed train[J]. Journal of Mechanical Science and Technology, 2009(23):938-941.
    [29]K.L. Knothe, S.L. Grassie. Modelling of railway track vehicle/track interaction at high frequency[J]. Vehicle System Dynamics,1993(22):209-262.
    [30]K. Hou, J. Kalousek, R. Dong. A dynamic model for an asymmetrical vehicle/track system[J]. Journal of Sound and Vibration,2003,267:591-604.
    [31]Z. Cai, G.P. Raymond. Theoretical model for dynamic wheel/rail and track interaction[J]. Proceedings of 10th International Wheelset Congress,1992, pp.127-131.
    [32]J.C.O. Nielsen, A. Igeland. Vertical dynamic interaction between train and track-influence of wheel and track imperfections[J]. Journal of Sound and Vibration,1995,187(5):825-839.
    [33]R.G. Dong, S. Sankar, R.V. Dukkipati, A finite element model of railway track and itsapplication to wheel flat problem, Proceedings of the Institution of Mechanical Engineers 208, Part F,1994, pp.61-72.
    [34]W. Zhai, X. Sun, A detailed model for investigating vertical interaction between railway vehicle and track[J]. Vehicle System Dynamics,1994(23):603-615.
    [35]Luis Baeza, Huajiang, Ouyang. A railway track dynamics model based on modal substructuring and a cyclic boundary condition[J]. Journal of Sound and Vibration,2011,330: 75-86.
    [36]Ping Lou. A vehicle-track-bridge interaction element considering vehicle's pitching effect [J]. Finite Elements in Analysis and Design,2005(41):397-427.
    [37]X. Lei, N.-A. Noda. Analyses of dynamic response of vehicle and track coupling system with random irregularity of track vertical profile[J]. Journal of Sound and Vibration,2002,258(1): 147-165.
    [38]翟婉明.车辆-轨道耦合动力学研究的新进展[J].中国铁道科学,2002,23(4):1-14.
    [39]R.G. Dong, S. Sankar. The characteristics of impact loads due to wheel tread defects[J]. Rail Transportation Division, American Society of Mechanical Engineers,1994(8):23-30.
    [40]Jian Jun Zhu, A. K.W. Ahmed, etc. Development of a vehicle-track model assembly and numerical method for simulation of wheel-rail dynamic interaction due to unsupported sleepers[J]. Vehicle System Dynamics,2010,48(12):1535-1552.
    [41]高建敏,翟婉明.车辆-轨道耦合动力学在轨道下沉研究中的应用[J].西南交通大学学报,2007,42(4):431-435.
    [42]Xiaoyan Lei, Lijun Mao. Dynamic response analyses of vehicle and track coupled system on track transition of conventional high speed railway[J]. Journal of Sound and Vibration, 2004(271):1133-1146.
    [43]X Lei, B Zhang. Influence of track stiffness distribution on vehicle and track interactions in track transition [J]. Proc. IMechE Vol.224 Part F:J. Rail and Rapid Transit,2010,224(F6): 592-604.
    [44]雷晓燕.列车通过轨道不平顺和刚度突变时对轨道振动的影响[J].铁道科学与工程学报,2005,2(6):1-8.
    [45]雷晓燕.移动荷载作用下轨道基础刚度突变对轨道振动的影响[J].振动工程学报,2006,19(2):195-199.
    [46]任尊松,孙守光.道岔区轮轨接触几何关系研究[J].工程力学学报,2008,25(11):223-230.
    [47]任尊松,翟婉明,王其昌.轮轨接触几何关系在道岔系统动力学中的应用[J].铁道学报,2001,23(5):11-15.
    [48]任尊松,孙守光,翟婉明.岔枕受力与振动特性分析[J].铁道学报,2002,24(1):65-69.
    [49]冯青松,雷晓燕,练松良.不平顺条件下高速铁路轨道振动的解析研究[J].振动工程学报,2008,21(6):559-564.
    [50]陈果,翟婉明.车辆轨道耦合系统随机振动响应特性分析[J].交通运输工程学报,2001,1(1): 13-16.
    [51]张永利,魏伟.车辆-轨道耦合高频振动的研究[J].大连铁道学院学报,2006,27(2):9-12.
    [52]韩义涛.考虑轨道刚度不平顺时轮轨系统的动力特性分析[D].成都:西南交通大学硕士学位论文,2006.
    [53]向俊,赫丹,曾晶.高速列车作用下不同类型无砟轨道振动响应分析[J].机械工程学报,2010,46(16):29-34.
    [54]管震舜.轨道几何不平顺对高速客车动力响应影响的研究[D].上海:同济大学硕士论文,2008.
    [55]雷晓燕,邓福清.客货混运铁路专线轨道振动分析[J].铁道工程学报,2007(3):16-20.
    [56]马学宁,梁波,高峰.列车速度对车辆一轨道一路基系统动力特性的影响[J].中国铁道科学,2009,30(2):7-13.
    [57]刘扬.轨道不平顺与车轨动力响应之间的关系分析[J].石家庄铁道学院学报,2009,12(1):33-37.
    [58]Newton S G, Clark R A. An investigation into the dynamic effects on the track of wheel flats on railway vehicles. Journal of Mechanical Engineering Science,1979,21(4):287-297.
    [59]K. Koro, K Abe, M Ishida, etc. Timoshenko beam finite element for vehicle-track vibration analysis and its application to jointed railway track[J]. Rail and Rapid Transit, 2004,218:159-172.
    [60]徐志胜,翟婉明,王开云等.车辆-轨道系统振动响应分析-Timoshenko梁与Euler梁轨道模型的比较[J].地震工程与工程振动,2003,12(6):74-79.
    [61]罗强,蔡英,翟婉明.高速铁路路桥过渡段的动力学性能分析[J].工程力学,1999,16(5):65-70.
    [62]赵坪锐,郭利康.无碴轨道路桥过渡段刚度及变形[J].路基工程,2009,4:18-20.
    [63]段桂平,练松良,刘扬.快速线路轨道刚度合理值的研究[J].华东交通大学学报,2006,23(5):58-62.
    [64]孙加林,刘磊.重载铁路12号固定辙叉道岔轨道刚度变化分布进行研究[J].铁道建筑,2012,2:87-89.
    [65]王平,刘学毅,寇忠厚.道岔竖向刚度沿线路纵向分布规律的探讨[J].西南交通大学学报,1999,34(2):144-147.
    [66]陈小平,王平.无碴道岔轨道刚度分布规律及均匀化[J].西南交通大学学报,2006,41(4):447-451.
    [67]陈小平,王平.时速350km客运专线无砟道岔的合理轨道刚度研究[J].铁道标准设计,2010,3:1-3.
    [68]肖新标,金学松,温泽峰.钢轨扣件失效对列车动态脱轨的影响[J].交通运输学报,2006,6(1):10-15.
    [69]张健,吴昌华,肖新标等.轨枕空吊对轨枕动态性能的影响[J].西南交通大学学报,2010,45(2):203-208.
    [70]PLENGE M, LAMMERING R. The dynamics of railway track and subgrade with respect to deteriorated sleeper support[C]. System Dynamics and Long Term Behaviour of Railway Vehicles, Track and Subgrade, Berlin, Springer,2003:295-314.
    [71]金寿延,谭复兴,王午生.道床板结对轨道振动的影响[J].同济大学学报,2001,29(10):1162-1168.
    [72]Liu Zhiqiangl, Luo Shihui1, Ma Weihual, etc. Application research of track irregularity PSD in the high-speed train dynamic simulation[J]. International Conference on Transportation Engineering 2009 (ICTE 2009),2009,345:2845-2850.
    [73]练松良,李建斌,杨文忠.沪昆线与金温线轨道不平顺谱的分析[J].同济大学学报,2010,38(2):257-262.
    [74]Zeng zhiping, Yu zhiwu. Power spectral density analysis of track irregularity of CWR track of Qinghai-Tibet railway[J]. The Eighth International Conference of Chinese Logistics and Transportation Professional,2008:2294-2299.
    [75]Zeng Zhiping, Jin Shouhua. PSD analysis of slab ballastless track irregularity of Qinhuangdao-Shenyang dedicated passenger railway line[J].2009 Second International Conference on Intelligent Computation Technology and Automation,2009,3:669-672.
    [76]Cao Xiaoning.The forward kinematics solution of track irregularity simulator[J], AdvancedMaterials Research,2012,v 503-504:1100-1103..
    [77]侯传亮,张永林.工程平稳随机过程的数值模拟研究[J].武汉工业学院学报.2003,22(3):27-29.
    [78]张立伟,冯军和.轨道不平顺随机过程的数值模拟[J].世界地震工程,2008,24(1):103-109.
    [79]刘寅华,李芾,黄运华.轨道不平顺数值模拟方法[J].交通运输工程学报,2006,6(1):29-33.
    [80]蒋海波,罗世辉,董仲美.Blackman-Tukey法的轨道不平顺数值模拟[J].中国测试技术,2006,32(4):97-100.
    [81]陈果,翟婉明.铁路轨道不平顺随机过程的数值模拟[J].西南交通大学学报,1999,34(2):138-142.
    [82]Shi Hongmei, Zhou Jialiang. Study on time domain numerical simulation method of track irregularity based on IFFT[C].2010 International Conference on Computational Intelligence and Vehicular System, Cheju, Korea, November 22-23,2010:35-38.
    [83]徐劲.轨道交通系统随机振动特性及其动力可靠性分析[D].武汉:武汉理工大学,2007:31-36.
    [84]单德山,李乔.车桥耦合振动分析的数值方法[J].重庆交通学院学报,1999,18(3):14-20.
    [85]翟婉明.非线性结构动力分析的Newmark预测-校正积分模式[J].计算结构力学及其应用,1990,7(2):51-57.
    [86]Zhai Wanming. Two simple fast integration methods for large-scale dynamic problems in engineering[J]. Iternational Journal for Numerical Methods in Engineering,1996,39(24): 4199-4214.
    [87]翟婉明,黄志辉.列车动力学的非线性数值分析方法[J].西南交通大学学报,1991(1):82-90.
    [88]姜清辉,周创兵,漆祖芳.基于Newmark积分方案的DDA方法[J].岩石力学与工程学报,2009,28(增1):2778-2783.
    [89]Klapproth C, Schiela A, Deuflhard P. Consistency results on Newmark methods for dynamical contact problems[J]. Numerische Mathematic,2010,116(1):65-94.
    [90]Winkel, B (Winkel, Benjamin). Viscous nonlinearity in central difference and newmark integration schemes[J]. ACTA Mechanica,2010,209(3-4):179-186.
    [91]武瑞文,顾克秋,张国栋.某自行加榴炮闭气结构非线性有限元分析[J].南京理工大学学报,2004,28(3):261-264.
    [92]Farjoodi J. A unified starting procedure for the Houbolt method[J]. Communication in Numerical Methods in Engineering,2008,24(1):1-13.
    [93]Soroushian A, Ozkul TA. A finite element formulation for dynamic analysis of shells of general shape by using the Wilson-theta method[J]. Thin-walled Structures,2004,42(4): 497-513.
    [94]黄庆丰,王全凤,胡云昌.Wilson-θ法直接积分的运动约束和计算扰动[J].计算力学学报,2005,22(4):477-481.
    [95]马小燕,王一兵.Wilson-θ方法在结构动力分析中的应用研究[J].工程数学学报,2003,20(3)·82-86.
    [96]Baier R, Din Q, Donchev T. Higher order Runge-Kutta methods for impulsive differential systems[J]. Applied Mathematics and Computation,2012,218(24):11790-11798.
    [97]Zupan E., Saje M, Zupan D. Quaternion-based dynamics of geometrically nonlinear spatial beams using the Runge-Kutta method[J]. Finite Elements in Analysis and Design,2012,54: 48-60.
    [98]张明,聂宏.非对称非线性系统非平稳随机响应的中心差分法[J].振动工程学报,2009(2):128-133.
    [99]Wu B, Deng LX, Yang XD. Stability of central difference method for dynamic real-time substructure testing[J]. Earthquake Engineering & Structural Dynamics,2009,38(14): 1649-1663.
    [100]王万良.人工智能导论[M].北京:高等教育出版社,2005.
    [101]张煜东,吴乐南,王水花.基于遗传算法与模式搜索的混合优化算法[J].南京信息工程大学学报,2012,4(1):34-39.
    [102]吴玲玲,晏克非,陈刚.基于遗传算法的轨道交通线路排班优化研究[J].计算机科学,2007,34(4):211-212.
    [103]Acikbas, S Soylemez, MT. Coasting point optimisation for mass rail transit lines using artificial neural networks and genetic algorithms[J], IET Electric Power Applications,2008, 2(3):172-182.
    [104]Mansour M A A, Dessouky M M. A genetic algorithm approach for solving the daily photograph selection problemof the spot5 satellite[J]. Computers&Industrial Engineering, 2010,58(3):509-520.
    [105]Wetter M, Polak E. Building design optimization using a convergent pattern search algorithm with adaptive precision simulations[J]. Energy and Buildings,2005,37(6):603-612.
    [106]Seunghee Park, Jong-Jae Lee et al.. A built-in active sensing system-based structural health monitoring technique using statistical pattern recognition [J]. Journal of Mechanical Science and Technology,2007,21(6):896-902.
    [107]He YP, McPhee J. Design optimization of rail vehicles with passive and active suspensions:A combined approach using genetic algorithms and multibody dynamics[J]. Vehicle System Dynamics,2002,37(Supplement):397-408.
    [108]Persson Ingemar, Nilsson Rickard, Bik Ulf. Use of a genetic algorithm to improve the rail profile on Stockholm underground[J]. Vehicle System Dynamics,2010,37(2):89-104.
    [109]Novales Margarita, Orro Alfonso, Bugarin Miguel R. A genetic algorithm application in railway engineering[C]. Proceedings of 10th World Multi-conference on Systemics, Cybernetics and Informatics, Orlando, FL, July 16-19,2006, VOL VI:117-122.
    [110]Novales M., Orro A., Bugarin M. R. Use of a genetic algorithm to optimize wheel profile geometry[J]. Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit,2007,221(4):467-476.
    [111]Bettaieb Habib, Rejeb Houcine. Optimization of the railway vehicle's characteristics in transverse stability and in circulation in curve using the genetic algorithm [J]. Mecanique and Industries,2008,9(4):347-363.
    [112]Sayyaadi H., Shokouhi N. New dynamics model for rail vehicles and optimizing air suspension parameters using GA[J]. Scientia Iranica Transcation B-Mechanical Engineering, 2009,16(6):496-512.
    [113]Sandidzadeh Mohammad Ali, Khodadadi Ali. Optimization of balise placement in a railway track using a vehicle, an odometer and genetic algorithm [J]. Journal of Scientific & Industrial Research,2011,70(3):210-214
    [114]郭琛,黄明,梁旭.新自适应方式双倍体遗传算法求解作业车间调度问题[J].大连交通大学学报,2008,29(3):78-81.
    [115]Makhotilo KV. Diploid genetic algorithm with mortality[J]. Journal of Automation and Information Sciences,2011,43(6):60-73.
    [116]Yang, SX. Dominance learning in diploid genetic algorithms for dynamic optimization problems[C]. The 8th Annual Genetic and Evolutionary Computation Conference, Seattle, WA:,USA,2006:1435-1436.
    [117]Zhao GH, Shen WH, Wu ML. Ultra-wideband antenna design using FDTD and double population genetic algorithm[J]. Microwave and Optical Technology Letters,2009,51(2): 361-364.
    [118]尚飞,蔡亚星,张颖.阵列天线的双种群遗传算法综合[J].电波科学学报,2007,22(2):224-228,233.
    [119]廖莉,张承慧,林家恒等.基于胞腔排除双种群遗传算法的泵站优化调度[J].控制理 论与应用,2004,21(1):24-29.
    [120]郑军,诸静.基于自适应遗传算法的图像匹配[J].浙江大学学报,2003,37(6):689-692.
    [121]Liu Min, Sun Zhi-jiang, Yan Jun-wei. An adaptive annealing genetic algorithm for the job-shop planning and scheduling problem[J]. Expert Systems with Application,2011,38(8): 9248-9255.
    [122]Krishnakumar K. Micro-genetic algorithms for stationary and non-stationary function optimization[C]. SPIE Conference on Intelligent Control and Adaptive Systems, Philadelphia, PA, USA,1989:1196-1228.
    [123]李宏男,常治国.微种群遗传算法优化结构振动控制[J].地震工程与工程振动,2002,22(5):92-96.
    [124]Chen Yi, Song Zhi-Jun. Spatial analysis for functional region of suburban-rural area using micro genetic algorithm with variable population size[J]. Expert Systems with Application, 2012,39(7):6469-6475.
    [125]于希宁,李亮,范瑾.改进遗传算法在CFB锅炉热工过程建模中的应用[J].系统仿真学报,2008,20(17):4427-4430.
    [126]刘莉,陈学允.基于模糊遗传算法的配电网络重构[J].中国电机工程学报,2000,20(2):66-69.
    [127]刘胜.最优估计理论[M].科学出版社,北京:2011.
    [128]付梦印,邓志红,闫莉萍.Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社,2010.
    [129]安科.求解非线性最小二乘问题的一类新的分解拟牛顿方法[D].南京:南京理工大学,2009.
    [130]邹红伟.求解非线性最小二乘问题的一种新方法[D].南京:南京理工大学,2006.
    [131]吴浩扬,常炳国,朱长纯.基于模拟退火机制的多种群并行遗传算法[J].软件学报,2000,11(3):416-420.
    [132]白鹏,张喜斌等.支持向量机理论及工程应用实例[M].西安:西安电子科技大学出版社,2008.
    [133]杜灿谊,杨翠丽,潘威.支持向量机在汽车自动变速器故障识别中的应用[J].汽车工程.2012,3:241-244.
    [134]程跃,郑严.基于支持向量机回归的机械零件可靠性分析[J].成都大学学报,2012,31(1):73-76.
    [135]Gualdron O., Brezmes J., Llobet, E. Variable selection for support vector machine based multisensor systems[J]. Sensors and Actuators B-chemical,2007,122(1):259-268.
    [136]Kyung-Shik Shin, Taik Soo Leel, Hyun-jung Kim2.An application of support vector machines in bankruptcy prediction model[J], Expert Systems with Applications,2005, 28(1):127-135.
    [137]John Zolock, Robert Greif.A Methodology for the Modeling of Forced Dynamical Systems From Time Series Measurements Using Time-Delay Neural Networks[J], Journal of Vibration and Acoustics,2009(131):1-10
    [138]Rong-Jong Wai, Jeng-Dao Lee. Robust Levitation Control for Linear Maglev Rail System Using Fuzzy Neural Network[J], IEEE Transaction on Control System Technology, 2009,17(1):4-14
    [139]Siril Yella, Samira,Mark Dougherty. Condition monitoring of wooden railway sleepers using time-frequency techniques and pattern classification[C]//Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics,San Antonio, USA, October 2009,4164-4169.
    [140]Sorenson H. Kalman filtering theory and application [M]. New York:IEEE Press,1985.
    [141]秦侠,沈兰荪.基于小波变换的卡尔曼滤波法在ICP-AES中的应用[J].光谱学与光谱分析,2002,22(6):1009-1012.
    [142]Xu Zhuang, Rahman MF. Comparison of a sliding observer and a Kalman filter for direct-torque-controlled IPM synchronous motor drives[J]. IEEE Transactions on Industrial Electronics,2012,59(11):4179-4188.
    [143]Jo Si-Hun, Son SeoEun, Lee Soon. Kalman-filter-based multilevel analysis to estimate electric load composition[J]. IEEE Transactions on Industrial Electronics,2012,59(11): 4263-4271.
    [144]Khodadadi A., Mirabadi A., Moshiri B. Assessment of particle filter and Kalman filter for estimating velocity using odometery system[J]. Sensor Review,2010,30(3):204-209.
    [145]Kosmopoulos Dimitrios I., Doulamis Nikolaos D., Voulodimos Athanasios S. Bayesian filter based behavior recognition in workflows allowing for user feedback[J]. Computer Vision and Image Understanding,2012,116(3):422-434.
    [146]Wang Yang, Jing Zhongliang, Hu Shiqiang. Detection-guided multi-target Bayesian filter[J]. Signal Prosessing,92(2):564-574.
    [147]Sarkka S. On unscented Kalman filtering for state estimation of continuous-time nonlinear system[J]. IEEE Transactions on Automatic Control,2007,52(9):1631-1641.
    [148]Julier S J, Uhlmann J K. The scaled unscented transformation[C]. Proc. Amer. Control Conf., 2002:4555-4559.
    [149]Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[C]. Proc. IEEE,2004, 92(3):401-422.
    [150]Jafarzadeh Saeed, Lascu Cristian, Fadali M. Sami. State estimation of induction motor drives using the unscented Kalman filter[J]. IEEE Transactions on Industrial Electronics,2012, 59(11):4207-4216.
    [151]郝燕玲,杨峻巍,陈亮.基于平方根中心差分卡尔曼滤波的大方位失准角初始对准[J].中国惯性技术学报,2011,19(2):180-184,189.
    [152]Zhu Jihua, Zheng Nanning, Yuan Zejian. A SLAM algorithm based on the central difference Kalman filter[C]. IEEE Intelligent Vehicles Symposium, Xian, China,2009:123-128.
    [153]Donovan, GT. Position error correction for an autonomous underwater vehicle inertial navigation system (INS) using a particle Filter[J]. IEEE Journal of Oceanic Engineering, 2012,37(3):431-445.
    [154]Arulampalam S, Maskell S, Gordon N. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Trans on Signal Processing,2002,50 (2): 174-188.
    [155]Georgy Jacques, Noureldin Aboelmagd, Goodall Chris. Vehicle navigator using a mixture particle filter for inertial sensors/odometer/map data/GPS integration. IEEE Transactions on Industrial Electronics.2012,58(2):544-552.
    [156]Smidl Vaclav, Peroutka Zdenek. Advantages of square-root extended Kalman filter for sensorless control of AC drives[J]. IEEE Transactions on Industrial Electronics,2012,59(11): 4189-4196.
    [157]Masi Alessandro, Butcher Mark, Martino Michele. An application of the extended Kalman filter for a sensorless stepper motor drive working with long cables[J], IEEE Transactions on Industrial Electronics,2012,59(11):4217-4225.
    [158]Carlin B P, Polson N G, Stoffer D S. A monte carlo approach to nonnormal and nonlinear state-space modeling[J]. J. Amer. Statist. Assoc.,1992,87(4):493-500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700