用户名: 密码: 验证码:
基于船舶电力推进系统直接转矩控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于船舶电力推进系统直接转矩控制技术研究,以大容量、大转动惯量系统为研究对象,以直接转矩控制理论为基本控制原理,以解决应用于交流电力推进船舶的推进电机控制技术为目的开展了系统研究,为完善和改进目前船舶电力推进系统中存在的问题,掌握电力推进控制系统控制技术,并逐步实现国产化提供理论依据和实践经验。
     本文首先对船舶电力推进系统的发展历史和应用现状进行了详细的阐述,并对直接转矩控制技术的发展过程、存在的问题以及目前的研究热点和现状等方面进行了系统描述和研究,从而找出直接转矩控制技术在应用于船舶电力推进系统时的特殊需求,探索适用于船舶电力推进系统的直接转矩控制技术的完善与改进方向。
     其次,在建立基本直接转矩控制系统模型的基础上,提出了转矩脉动分析指标,并对输出转矩脉动成因进行了系统分析。以此为出发点,探索减小电磁转矩脉动的改进控制策略。
     之后,对零电压矢量在直接转矩中的调节作用以对比分析和定性分析加定量分析计算的方式进行了系统研究,给出了零电压矢量的作用效果与其它相关控制变量的定量关系,为零电压矢量的合理使用提供了理论依据。在此基础上,提出了电压矢量控制扇区12扇区划分的理论和预置区域的零电压矢量插值算法,不需增加主控回路功率器件,解决零电压矢量施加效果的不可预知问题,发挥其对转矩的“独特”调节作用,减小电磁转矩脉动,为大容量、大转动惯量系统实现推进电机加速控制提供控制思想。
     通过各控制变量空间矢量关系的数学分析,提出了直接转矩控制预测算法,设计了一个磁链幅值预测单元,提供了磁链幅值增量计算公式和电磁转矩定量预算公式,为直接转矩预测控制技术研究提供理论基础。
     通过α角对电压矢量调节作用影响的定性与定量分析,并结合船舶电力推进系统的自身特点与工况要求,以及直接转矩常规控制策略面对大容量、大转动惯量系统所暴露出的问题,系统分析了转矩调节不对称性的成因,探求转矩调节不对称性本质,为在特定的工况时,合理的利用转矩调节的不对称性,对提高控制系统的动态响应速度、保证DTC系统的动态性能和静态调节精度提供理论依据。
     最后,针对船舶电力推进系统,在不增加任何外部硬件设备的前提下,基于零电压矢量作用效果的研究结果、“十二扇区划分”、“零电压矢量插值算法”、转矩调节不对称性分析的结论等,设计了“船舶电力推进直接转矩控制自适应控制系统”,并经过与实船测试数据的对比分析,验证其有效性。
In order to master the key control techniques and solve the existing problems in ship electric propulsion system, and provide the theoretical basis and experience for the localization of above control system, the direct torque control (DTC) technique of AC motor drives with high-capacity and large-inertia for the ship electric propulsion system is studied in this article.
     Firstly, after studying the developing history and implementation status of ship electric propulsion system and investigating the developing process, existing problems and hotspots in DTC system, the special requirements and the improving direction for DTC technique in ship electric propulsion system are analyzed.
     Secondly, based on the establishment of the DTC system models, the reasons for producing output torque ripple are analyzed in detail and the assessment index of torque ripple in DTC system is proposed. Then the control strategies for reducing the torque ripple is discussed.
     Thirdly, after the qualitative and quantitative analysis of regulating function of zero voltage vectors to direct torque control, the effect and the quantitative relationship with other variables of zero voltage vectors is discussed, which provides the theoretical basis for the suitable use of zero voltage vectors. Based on that, the 12-sector dividing theory of space vector control and the regional interpolation of zero voltage vectors are proposed. According to above control strategies, the unexpected problems of the applied effect of zero voltage vectors are solved in the conditions of not increasing the numbers of power electronic devices in main control system. The zero voltage vectors possess special regulation function to the electromagnetic torque and can effectively reduce the torque ripple, which provides the control ideas for the ship electric propulsion motor drives with high-capacity and large-inertia.
     Fourthly, according to the mathematic analysis for the various space vectors of control variables, the control predictive algorithm of DTC is proposed and the predictive unit of flux linkage amplitude is designed. Then the calculation equations of flux linkage amplitude increment and electromagnetic torque are provided, which provides the theoretical basis for the predictive control technique of the DTC system.
     After that, according to the qualitative and quantitative analysis of angleαto the regulating function of voltage vectors and combining the internal characteristics and the operation requirement of the ship electric propulsion system and the problems existing in DTC general control strategy for high-capacity and large-inertia motor drive system, the reasons and essence of non-symmetry of torque regulation is analyzed systematically. The above study provides the theoretical foundation for rational utilization of the non-symmetry of torque regulation; increase the dynamic response speed of the control system, and assurance for the dynamic features and static regulating precision of the DTC system.
     Finally, based on the action effect of zero voltage vectors, the dividing theory of 12-sectors, the regional interpolation algorithm of zero voltage vectors, and the analytical conclusions of non-symmetry of torque regulation, the DTC adaptive control system for ship electric propulsion system is designed under the condition of not increase the hardware. Through the comparative analysis with the practical ship testing data, the effectiveness of above conclusions is proved
引文
[1]樊印海.电力推进自动控制.大连:大连海事大学出版社,1998.
    [2]金德昌,姜孟文,云峻峰.船舶电力推进原理.北京:国防工业出版社,1993.
    [3]陈新毅,杨烨.船舶电力推进技术发展概述.中国水运,2008,08(8):48-49.
    [4]栾胜利.船舶电力推进技术的发展.船电技术,2009,29(4):46-49.
    [5]Sigrist JF, Gervot C, Laine et al. Numerical model for naval POD. Proceedings of the first International Conference on Technological Advances in Poded Propulsion University of New castle, UK.2004:419-429.
    [6]http://zh.wikipedia.org/zh-cn/
    [7]http://www.81tech.com/2010/0802/28569.html?updatedata=index
    [8]http://car.newmaker.com/art_29297.html
    [9]Rodger P.Bradley Contributor. AC Drives in marine service the all-electric ship is making progress. The Motor Ship,2004(9):38-40.
    [10]http://2010.shipbuilding.com.cn/2000/1101/1309. html
    [11]http://www.cssc.net.cn/news-c3.php?id=345
    [12]http://www.shtong.gov.cn/node2/.../userobjectlai110253. html
    [13]http://www.news.xinhuanet.com
    [14]樊印海,赵宏革.船舶电力推进系统设计研究国防科工委课题2004
    [15]陈新毅,杨烨.船舶电力推进技术发展概述.中国水运,2008,08(8):48-49
    [16]金焘.国外舰船电力推进技术发展概况.上海造船,2006,06(2):33-35
    [17]李玉生.全电力推进在舰船上的应用及其展望.船电技术,2005,05(2):1-3
    [18]刘纯顺.船舶综合电力推进的发展及应用.中国水运,2009,09(11):11-12
    [19]刘赞,徐绍佐.船舶综合电力推进系统综述.柴油机Diesel Engine,2004,04 (2):1-3
    [20]Pakast R, Laukia K, Wilhelmson M etal. Azipod propulsion systems for marine vessels. Engineering TECHNOLOGY.2000,4:40-43.
    [21]http://www.rolls-royce.com.
    [22]冀路明,汪庆周.二十一世纪的Azipod吊舱式电力推进系统.船舶工程,2002,02(2):61-64
    [23]Anon. Popular pods still striving for perfection. Marine propulsion. International,2001 (5):26-27.
    [24]Chris French. Direct torque control of permanent magnet drives, IEEE Trans,1996, 32 (5):1080-1088.
    [25]高海波,高孝洪,陈辉,等.吊舱式电力推进装置的发展及应用.武汉理工大学学报,200630(1):77-80.
    [26]ABB Technical Guide No.1 EN 26.04 2002.
    [27]SIEMENS Shipboard Operation Firmly Under Control with Siemens Automation Systems, 2003.
    [28]SIEMENS The SSP Propulsor An Ingenious Podded Drive System,2003.
    [29]SIEMENS SIMAR DRIVE Advanced Diesel-electric Propulsion Systems,2003.
    [30]SIEMENS SIMOS IMAC 55 Integrated Monitoring, Alarm and Control System for Ships, 2003.
    [31]http://www.abb.com/marine
    [32]张敏,候馨光.船舶电力推进的新发展.机电设备,2001,01(1):17-20.
    [33]Depenblock M. Direct self-control(DSC) of inverter-fed induction machine. IEEE Trans.Power Electron,1988,3(4):420-429.
    [34]Takahashi L, Noguehi T. A new quick-response and high-efficiency control strategy of an induction motor. IEEE Trans. on Industry Application,1989,22(5):820-827.
    [35]李中帅,马凤伟,张士雄.基于十二边形磁链的直接转矩控制系统设计.电子测量技术,2008,31(4):183-186.
    [36]Isao Takahashi, Toshihiko Noguchi. Take a Look Back upon the Past Decade of Direct Torque Control[J]. IECON'97,1997, (2):546-551.
    [37]Chis M, Jayaram S, Rajashekara K. Neural Network-based Efficiency Optimization of EV Drive. Electrical and Computer Engineering,1997, (2):454-461.
    [38]邓启文,尹力明,佘龙华,等.直接转矩控制的发展与展望.微特电机,2002,02(1):36-38.
    [39]李夙.异步电动机直接转矩控制.机械工业出版社,1999.
    [40]Li xin, Tang lin in. A Novel Driect Torque Control Scheme for Interior Permanet Magent Syschronnus Machine Drive System With Low Ripper in Troque and Flux, and Fixed Switching Frequency. IEEE Transaction on industry application,2002, IE-19(2):346-354.
    [41]胡奇峰.基于DSP永磁同步电动机直接转矩控制系统研究.电力电子技术,2003,38(1):16-18.
    [42]Zhang Limin,Rahman M F,Hu Yuwen, et al. Analysis of direct torque control in permanent magnet synchronous motor drives [J]. IEEE Trans on Power Electronics,1997, 13(5):528-536.
    [43]袁登科,陶生桂,康劲松.一种改善低速转矩脉动的直接转矩控制系统.铁道学报,2005,27(2):45-46.
    [44]Isao Takahashi, et al. A New Quick-Response and High Efficiency Control Strategy of an Inductor Motor [J].IEEE Trans On IA,1986,22(5):820-827.
    [45]Thomas G. Habetler, et al. Direct Torque Control of Induction Machines Using Space Vector Modulation [J]. IEEE Trans On IA,1992,28(5):1045-1052.
    [46]胡卫华,奚国华,喻寿益,等.一种改善直接转矩控制低速性能的DSVM改进策略[J].电气传动,2007,37(9):11-14.
    [47]张岳,王凤翔.直接转矩控制技术研究综述.微电机,2007,40(9):72-76.
    [48]李正熙,王占扩,杨立永.永磁同步电动机直接转矩控制策略综述.变频器世界,2006,11(11):37-41.
    [49]赵越岭,王艳秋,王英丽.无速度传感器直接转矩控制系统的转速估算方法综述.辽宁工学院学报.2003,23(6):13-16.
    [50]王钦若,杜玉晓.交流电机直接转矩控制技术研究综述.机电工程技术,2005,34(11):13-16.
    [51]林琪,李智强.我国直接转矩控制技术低速性能研究综述.科技信息,2008,29(29):7-8.
    [52]严青,万淑芸,张晓光,等.国外信息直接转矩控制理论及方法综述.电气传动,1995,5(5):55-58.
    [53]RAHMAN M F, ZHONG L, HQUEME, et al. A direct torque controlled interior Permanent magnet synchronous motor drive without a speed sensor [J]. IEEE Transactions on Energy Conversion,2003,18(1):17-22.
    [54]TIAN C, LI H P, HU YW. A novel scheme of direct torque ontrol in the permanent magnet synchronous motor[J] IEEE Power Electronics in Transportation,2002, (10): 47-52.
    [55]RAHMAN M F, ZHONG L. Comparison of torque responses of the interior Permanent magnet motor under PWM current and direet torque controls[A]. IECON'99 Proceedings [C]IEEE,3,1999:1464-1470.
    [56]M. Paeas, J. Weber. Predictive direct torque control for the PM synchronous machine. IEEE Trans. Ind. Eleetron.,2005,52(5):1350-1356.
    [57]Z. Xu, M. F. Rahman. Avariable structure torque and flux controller for a DTC IPM synchronous motor drive" in Conf. Rec. IEEE 35th Annual Power Electronics Specialists Conference(PESC 04),2004,1:445-450.
    [58]Lazhar Ben-brahmi, Susumu Tadakuma Alper Akdag. Speed Control of Induction Motor without Rational Transducers[J]. IEEE tran. On IA 1999,35(4):844-849.
    [59]冷承业,郁建平CMAC神经网络控制在直接转矩控制系统中的应用[J].电气技术与自动化,2004,(12):78-79.
    [60]高晗璎,余华军,黄淑娟.基于无速度传感器的永磁同步电动机直接转矩控制技术的研究黑.龙江水专学报,200936(2):85-88
    [61]M. F. Rahman, M. E. IIaque. A Sensorless Speed Estimator for the Direct Torque Control of an Interior Permanent Magnet Synchronous Motor Drive [J].IEEE Power Electronics, Machine and Driver,2002.16-18.
    [62]French C,Acarnley P. Control of Permanent Magnet Motor Drives Using a New Position Estimation Technique[J]. IEEE Trans. Ind.1996,32(5):1089-1097.
    [63]齐放,邓智泉,仇志坚,等.基于MRAS的永磁同步电机无速度传感器[J].电工技术学报,2007,(4):53-58.
    [64]黄志武,桂卫华,年晓红.一种新型的基于观测器的无速度传感器感应电动机定子电阻辨识方案电工技术学报,2006,21(12):13-20.
    [65]Jehudi Maes, M elkebeek Jan A. Speed sensorless direct torque control of induction motors using an adaptive flux observer [J]. IEEE Tran saction on Industry Applications, 2000,36(3):778-785.
    [66]Hinkkanen M, Luomi J. Stabilization of regenerat ing-mode operation in sensorless induction motor drives by full-order flux observer design[J]. IEEE Transaction on Industry Applications,2004,51(6):1318-1328.
    [67]Cristian Lascu, Ion Boldea, Frede Blaabjerg. A modified direct torque control for induction motor sensorless drive[J]. IEEE Transaction on Industry Applications.2000,36(1):122-130.
    [68]雷丹,孙艳霞,袁爱进,等.基于磁链和转速观测器的无速度传感器DTC系统[J].微特电机,2006,(1):36-38.
    [69]孙宗海.一种新型无速度传感器直接转矩控制方案[J],武汉工业大学学报,1999.21(5):41-45.
    [70]Silverio Bolognania, Roberto Oboe, et al. Sensorless Full-Digital PMSM Drive With EKF Estimation of Speed ang Rotor Position, IEEE Trans, on IA,1999,46(1):184-191.
    [71]郎宝华,刘卫国.基于卡尔曼滤波器的永磁同步电动机定子磁链观测研究.微电机20074(11):11-14.
    [72]徐进,王念春,程明.直接转矩控制的感应电机转矩和磁链加权最优控制[J].大电机技术,2006,(1):32-35.
    [73]季画,陈宝林,胡育文PMSM直接转矩控制调速系统的研究现状与发展前景,电气传动自 动化2004,26(4):10-11.
    [74]田淳.无位置传感器同步电机直接转矩控制理论研究与实践:(博士学位论文).南京:南京航空航天大学,2001.
    [75]Zhong L, Rahman MF, Hu YW, Lim KW. Analysis of Direct Torque Control in Permanent Magnet Synchronous motor Drives. IEEE Trans on PE.1997,12(3):528-535.
    [76]Hu Yuwen, TianChun, Yong Zhiqing. Direct Torque System and Sensorless Technique of Permanent Magnet Synchronous Motor Chinese Journal of Aeronautics 2003,6(2): 97-102.
    [77]李正熙,王占扩,杨立永.永磁同步电动机直接转矩控制策略综述.变频器世界,2006,11(6):37-41.
    [78]Conlin Schauder. Adaptive Speed Identification for Vector Control of Induction Motors without Rotational Transducers. IEEE Trans. Ind. Applicat.,1992,28(5) 376-381.
    [79]J. Luukko,0. Pyrh nen, M. Niemel a. Limitation of the load angle in a direct torque controlled synchronous machjne drive. IEEE Trans. Idl, electron,2004,51 (4):793-798.
    [80]李静,程小华.永磁同步电机的发展趋势.防爆电机,2009,44(5):1-4.
    [81]王庆春.永磁材料与永磁电机的发展和展望.1994-2009China Academic Journal Electronic Publishing House.:5-16.
    [82]朱俊.稀土永磁电机的应用现状及其发展趋势.中国重型装备,2008,4(4):38-42.
    [83]王秀和.永磁电机.北京:中国电力出版社,2007.
    [84]刘瑞芳.基于电磁场数值计算的永磁电机性能分析方法研究:(博士学位论文).南京:东南大学,2002.
    [85]赵清.中型高效永磁同步电动机设计关键技术研究:(博士学位论文).沈阳:沈阳工业大学,2006.
    [86]http://www.ic-ceca.org.cn/Article/201006/20100609133417_30009.html
    [87]闵琳,权利,莫会成.永磁材料和永磁电机.电气技术,2006,7(7):14-16.
    [88]唐任远.现代永磁电机理论与设计.北京:机械工业出版社,1997.
    [89]李钟明,刘卫国,刘景林,等.稀土永磁电机国防工业出版社,北京:2000.
    [90]http://bbs.simol.cn/archiver/tid-8877.html
    [91]http://www.cre-ol.com/soft/yingyong/xtyy2. htm
    [92]Sun Dan, Fang WeiZhong, He YiKang. Study on theDirect Torque Control of Permanent Magnet Synchro-nous Motors Drivers. ICEMS 2001. Proceedings of 35thlnternational conference,2001,1:571-574.
    [93]Rahman M F, Zhong L. A Direct Torque Controller for Permanent Magnet Synchronous Motor Drivers.ICEMS 1997, IEEE International,1997:TD/2.1-TD1/2.3.
    [94]Zhong L, Rahmam M F. A Direct Controller for Permanent Magnet Synchronous Motor Drivers. IEEE Trans. on Energy Conversion,1999,14(3):637-642.
    [95]Zhong L,Rahmam M F. Analysis of Direct Torque Control in Permanent Magnet Synchronous Motor Drivers. IEEE Trans, on Power Electronics,1997,12(3):528-536.
    [96]郭国才,石艳编译.U31潜艇PERMASYN永磁推进电动机系统.船电技术,2004,3(1):1-6.
    [97]王勇.吊舱式电力推进的发展原因及历程.青岛远洋船员学院学报,2005,26(1):41-43.
    [98]聂鹏瑜,张维竞,刘卓.吊舱式电力推进的现状及应用前景.造船技术,2003,252(2):3-5.
    [99]黄世卓,樊印海.船舶吊舱式电力推进系统.现代船机维修技术,2005:237-239.
    [100]高海波,高孝洪,陈辉.吊舱式电力推进装置的发展及应用.武汉理工大学学报,2006,30(1):77-79.
    [101]冀路明,汪庆周.二十一世纪的Azipod吊舱式电力推进系统.船舶工程,2002,2(2):61-64.
    [102]叶国泉,沈林涛.吊舱式电力推进装置的首次成功应用.船舶,2007,6(6):43-47.
    [103]Jan Fredrik Hansen, Alf Kare Adnanes, Thorl Fossen. Mathematical Modeling of Diesel Electric Propulsion Systems for Marine Vessels. Mathematical and Computer Modeling of Dynamical Systems.2001,7(1):1-33.
    [104]Sun D, W Fang, Y He. Study on the direet torque control of permanent magnet synehronous motor drives. Proeeeding soft he Fifth International Confereneeon Electrieal Machines and Systems.Beijing, China,2001:571-574.
    [105]姚玮,金阳,殷雄.采用离散空间电压矢量调制方法的异步电机直接转矩控制.浙江工业大学学报,2002,30(1):17-19.
    [106]Habetler T G, Profumo F, Pastorelli M, et al. Direct torque control of induction machine using space vector modulation. IEEE Trans Ind Applicat,1992,28:1045-1053.
    [107]Depenbrok M. Direct self-control (DSC) of inverter-fed induction machine. IEEE Trans Power Electron,1988, (3):420-429.
    [108]Hori Y. A novel induct ion machine flux observer and its application at high performance AC drive system. Celaya:IFAC,1987:363-368.
    [109]Kubota H, Matsuse K, Nakane T. New adaptive flux observer of induction motor for wide speed range motor drives. Califomia:16th Annual Conference of IEEE Industrial Electronics Society:Anthony Pietrzykoski,1990:921-926.
    [110]Deng Zhiquan, Yan Yangguang. Research on the adaptive stator flux observer of direct torque control(DTC) for induction motor. Chinese Journal of Aeronautics, 1999,20(2):130-132.
    [111]Chen F, Dunnigan M W. Sliding-mode torque and flux control of an induction machine[J]. IEE Proceedings-Electric Power Applications 2003,150(2):227-236.
    [112]Soltani J, Arab Markadeh G R. A current-based output feedback mode control for speed sensorless induction machine drive using adaptive sliding mode flux observer. Singapore:The Fifth International Conference on Power Electronics and Drive Systems,2003.
    [113]Kulawski G J, BrdysM A. Adaptive control of non-linear plants using neural networks-application to a flux control in AC drive system. Beijing:International Conference on Control,1994.
    [114]HewW P, TamjisM R, Saddique S M. An adaptive neural network for the estimation of torque and air gap flux signals in the direct field oriented control of an induction motor. Korea:Seventh International Conference on Electrical Machines and Drives, 1995.
    [115]Xu Junfeng, Xu Yinglei, Xu Jianping, et al. A new control method for permanent magnet synchronous machines with observer. Aachen Germany:35th IEEE Power Electronics Specialists Conference,2004.
    [116]冯江华.基于定子磁链自适应观测的永磁同步电机直接转矩控制系统.中国电机工程学报,2006,26(12):122-127.
    [117]刘中伟,李玉忍.基于定子磁链自适应预测的PMSM直接转矩控制研究.微电机,2008,41(11):47-50.
    [118]查焱,芮延年,孟淮玉,杜海军.永磁同步电机直接转矩控制的磁链观测研究.江苏电器,2008,5(5):10-12.
    [119]黄志武,桂卫华,年晓红,等.一种新型的基于观测器的无速度传感器感应电动机定子电阻辨识方案.电工技术学报,2006,21(12):13-20.
    [120]王玲芝.一种基于磁链误差PI估计器的永磁同步电动机直接转矩控制方法研究.微电机,2008,41(6):66-69.
    [121]M.F.Rahman, L.Zhong, K. W. Lim. Adirect torque-controlled interior permanent magnet synchronous motor drive incorporating filed weakening. IEEE Trans. Ind. Applieat.,1998,34(6):1246-1253.
    [122]A. Muntean, M. Radulescu, A. Miraoui. Wide-speed operation of direct torque controlled interior permanent-magnet Synchronous motors, in Conf.Proc.16th Interational Corference on Electrical Machines(ICEM'04),2004,865-867.
    [123]J.Faiz, S.H. Mohseni-Zonoozi. Anovel technique for estimation and control of stator flux of a salient-pole PMSM in DTC method based on MTPF, IEEE Trans. Ind. Electron.,2003,50(2),262-271.
    [124]J. Habibi, S. Vaez-Zadeh. Efficieney-optimizing direct torque control of permanent magnet synchronous machines. In Conf. Rec. IEEE 36"'Annual Power Electronics Specialist Conference(PESC 05),2005:759-764.
    [125]L.Li, X.Wang, H.Sun. A variable-voltage direct torque control based on DSP in pm synchronous motor drive. In Conf. Proc. IEEE RegionlO Conference on Computers. Communications, Control and Power Engineering(TENCON'02),2002,3:2065-2068.
    [126]http://www.ourdev.cn/bbs/bbs_content.jsp?bbs_sn=906862&bbs_page_no=24&bbs_i d=9999
    [127]顾振宇,刘鲁源,杜振辉.DS18B20接口的C语言程序设计.单片机与嵌入式系统应用,2002,7(7):13-15.
    [128]江思敏TMS320LF240xDSP硬件开发教程.北京:机械工业出版社,2003.
    [129]章云,谢丽萍.DSP控制器及其应用.北京:机械工业出版社:2001.
    [130]清源科技编著TMS320LF240XDSP应用程序设计教程.北京:机械工业出版社,2003.
    [131]孙辉.数字化直接转矩控制系统的研究:(硕士学位论文).贵州:贵州大学,2007.
    [132]吴峻,潘孟春,李圣怡.直接转矩控制系统低速性能的分析与控制.电气传动,2001,5(5):13-15.
    [125]严青,邓忠华.直接转矩控制系统低速性能分析_转矩观测器问题.电工技术学报,1996,11(3):21-26.
    [134]Reay DS etal. Neural Networks Used for Torque Ripple Minimisation from A Switched Reluctance Motor. Proc. EPE'93,1993,6:1-6.
    [135]尚重阳.无速度传感器直接转矩控制:(硕士学位论文).西安:西北工业大学,2007.
    [136]张爱玲,王震宇,杨文杰.直接转矩控制系统中减小转矩脉动方案的比较.电机与控制学报,2008,12(5):566-570.
    [137]樊丽平,董长宏,王英.直接转矩控制在异步电动机低速段的改善和仿真.大连交通大学学报,2007,28(3):54-58.
    [138]宋晓燕,王彦辉,张晓鹏.永磁同步电机直接转矩控制系统低速性能研究.科技创新导报,2008, NO.17:118.
    [139]石伟峰,王淅娜,王义东,杨继红.一种改进的直接转矩控制在舰炮拖动系统中的应用研究.海军航空工程学院学报,2008,23(1):98-100.
    [140]曹承志,魏光华,张彦超,鲁木平.基于小波神经网络的定子电阻参数辨识的研究.信息与控制,2004,12(6):745-749.
    [141]王德明,刘国海.直接转矩控制系统定子电阻的神经网络辨识.江苏理工大学学报(自然科学版),2000,11(6):73-76.
    [142]Nahid-Mobarakeh, B. Meibody-Tabar, F. Sargos, F. M. Meehanieal sensorless control of PMSM with online estimation of stator resistance. IEEE Transactions on Industry Applieations. March-April 2004:457-471.
    [143]LI Y D. Direct torque control of induction motors for low speed drives considering discrete effects of control and dead— time of inverters. in Confrec on Industry Applications,1997(1):781-788.
    [144]KABOI 1 S, ZOI QHADRE M R, ROYE D, et al. Design and implementation of a predictive controller for reducing the torque ripple in direct torque control based induction motor drives.2004 IEEE 35th Power Electronics Specialists Conference. Aachen, Germany, June 20-25.2004:476-481.
    [145]DOMENICO C, GIOVANNI S, ANGEI O r. Implementation of a direct torque control algorithm for induction motors based on discrete space vector modulation. IEEE Transaction on Power electronics,2000,15(4):769-777.
    [146]KENNY B H, LORENZ R D. Stator and rotor flux based deadbeat direct torque control of induction machines. IAS Annual Meeting, Chicago, Illinois,2001:133-139.
    [147]ANSHUMAN T, ASHWIN M. K, SANJIB K P. Torque ripple analysis and dynamic performance of a space vector modulation based control method for AC. drives. IEEE Transactions on Power Electronics,2005,20(2):485-492.
    [148]CRISTIAN I, ION B, FREDE B. A modified direct torque control for induction motor sensor less drive. IEEE transactions on industry applications,2000,36(1): 122-130.
    [149]Tan z, Li Y, Li M. A direct torque control of induction motor based on three-level inverter.Proc IEEE PESC,2001:1435.
    [150]Martins C, Roboam X, Meynard T A, Caryalho A S. Switching frequency imposition and ripple reduction in DTC drives by using a multilevel converter. IEEE Trims Power Electron,2002,17(2):286.
    [151]张春梅,刘贺平,马保柱,等.一种减少永磁同步电机转矩脉动方法.北京科技大 学学报,2007,29(1):86-89.
    [152]贾洪平,贺益康.永磁同步电机直接转矩控制中零矢量的作用研究.电气传动,2006,36(4):13-16.
    [153]Li Lianbing, SunHexu, WangXiaojun, etal. A high performanee direct torque control base on DSP in Permanentmagnet synehronous motor drive. ICA2002, Shanghai,2002, 2:1622-1625.
    [154]李敏,陈其工,江明.基于零矢量插入的矢量细分的PMSM直接转矩控制研究.安徽工程科技学院学报,2009,24(1):76-79.
    [155]Zhong L, Rahman M F, Hu W Y, et al. Analysis of Direct Torque Control in Permanent Synchronous Motor Drives. IEEE Trans.on P.E.,1997,12 (3):528-535.
    [156]赵宏革,朱景伟,樊印海.直接转矩控制系统零电压矢量调节作用研究,大连海事大学学报,2010,36(2):71-75.
    [157]成行洁.含零矢量作用的永磁同步电机直接转矩控制研究.南通大学学报(自然科学版),2006,5(2):63-67.
    [158]张猛,肖曦,李永东.基于区域电压矢量表的永磁同步电机直接转矩预测控制.清华大学学报(自然科学版),2008,48(1):1-4.
    [159]李华德.交流调速控制系统.北京:电子工业出版社,2003.
    [160]胡卫华,奚国华,喻寿益,桂卫华.一种改善直接转矩控制低速性能的DSVM改进策略.电气传动,2007,37(9):11-14.
    [161]宋晓燕,王彦辉,张晓鹏.永磁同步电机直接转矩控制系统低速性能研究.科技创新导报,2008, NO.17:118.
    [162]林琪,李智强.我国直接转矩控制技术低速性能研究综述.科技信息,2008,29:7-8.
    [163]石伟峰,王淅娜,王义东,杨继红.一种改进的直接转矩控制在舰炮拖动系统中的应用研究.海军航空工程学院学报,2008,23(1):98-100.
    [164]曹承志,魏光华,张彦超,鲁木平.基于小波神经网络的定子电阻参数辨识的研究.信息与控制,2004,12(6):745-749.
    [165]王德明,刘国海.直接转矩控制系统定子电阻的神经网络辨识.江苏理工大学学报(自然科学版),2000,11(6):73-76.
    [166]Nahid — Mobarakeh, B. Meibody — Tabar, F.;Sargos, F. M. Meehanieal sensorless control of PMSM with online estimation of stator resistance. IEEE Transactions on Industry Applieations. March-APril2004:457-471.
    [167]贾洪平,孙丹,贺益康.基于滑模变结构的永磁同步电机直接转矩控制.中国电机工程学报,2006,26(20):134-138.
    [168]张爱玲,杨文杰,韦文武.感应电动机直接转矩控制低速性能的改善.微特电机,2007(8):52-54.
    [169]樊丽平,董长宏,王英.直接转矩控制在异步电动机低速段的改善和仿真.大连交通大学学报,2007,28(3):54-58.
    [170]Zhao Hongge, Zhu Jingwei, Fan Yinhai. Study of Direct Torque Control strategy based on regional interpolation of zero voltage vector in a permanent magnet synchronous motor [J].IEEE International Conference on Electrical and Control Engineering (ICECE 2010),2010,6:5617-5620.
    [171]Zhao Hongge, Fan Yinhai, Zhu Jingwei. Investigation of stator flux linkage and torque predictive algorithms in a motor direct torque control system. IEEE International Conference on Electrical and Control Engineering (ICECE 2010),2010,6: 5293-5295.
    [172]郎宝华,刘卫国.基于卡尔曼滤波器的永磁同步电动机定子磁链观测研究.微电机,2007,40(11):11-13.
    [173]M. Pacas, J.Weber. Predietive direct torque control for the PM synchronous machine。IEEE Trans. Ind. Electron.,2005,52(5):1350-1356.
    [174]Zhao Hongge, Zhu Jingwei, Fan Yinhai, Zhang Xiaochen. Study of Direct Torque Control Technique on High-capacity Motor Drives. The International Conference on Electrical Engineering and Automatic Control 2010 (IEEE International Conference on Electrical Engineering and Automatic) 2010.11:496-499.
    [175]赵宏革.α角对大容量直接转矩控制系统磁链调节效果的影响.大连海事大学学报,2011
    [176]Zhao Hongge, Zhu Jingwei, Fan Yinhai, Zhang Xiaochen. Study on 12-Sector Control Based Torque Ripple Reduction in DTC System. The International Conference on Electrical Engineering and Automatic Control 2010 (IEEE International Conference on Electrical Engineering and Automatic) 2010.11:508-511.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700