用户名: 密码: 验证码:
自由曲面加工轨迹规划方法及解释器关键技术的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着装备制造业的不断发展和市场需求的多样化,数控技术进入了前所未有的高速发展阶段。数控技术集计算机,机械,自动化等多项技术于一体,广泛应用于航空航天,汽车,模具等行业。近年来,随着科技的进步和市场需求的扩大,对大型复杂曲面工件的数控加工需求日益迫切。大型复杂曲面工件具有曲率变化剧烈的自由曲面表面,增加了曲面信息提取和分析的难度,并对数控加工提出了更高的要求,使得自由曲面的刀具轨迹规划技术成为数控加工的关键技术之一。自由曲面刀具轨迹规划的目的是得到更高的加工精度,更快的加工速度和更好的工件质量。
     在现代数控系统中,数控机床无法直接根据数控代码进行加工,必须通过解释器对数控程序进行解释执行,提取相关数据并转化为相应的加工命令来控制机床进行实际工件的加工。所以说,解释器是数控系统的核心模块之一,其解释效率和解释效果对整个数控系统的高效、精确、安全运行有直接影响。
     针对于此,本文在面向高速加工、高精加工和高表面光洁度加工的自由曲面刀具轨迹规划方法以及数控系统解释器等方面进行深入研究,并取得了以下研究成果:
     (1)针对刀具轨迹加工精度不足的问题,研究构建一种面向高精度加工的等残余刀具轨迹规划方法,该方法针对精加工及部分工件对加工精度的特殊要求,采用精度优先的加工策略。采用等残余高度法和往复式的走刀方式,得到的刀具轨迹满足加工误差和最大残余高度等约束条件,具有很高的精度。针对当前曲面凹凸性判断过于复杂的问题,提出了一种快速的曲面凹凸性判断方法。在刀具轨迹规划过程中,解决了因偏置刀具轨迹生成点的数量与当前轨迹相同,对当前刀具轨迹过度依赖和加工精度不足的问题。
     (2)针对刀具轨迹加工速度不足的问题,研究构建一种面向高速加工的螺旋刀具轨迹规划方法,该方法针对粗加工及部分工件对加工效率的特殊要求,采用效率优先的加工策略。该方法生成的所有刀具轨迹点都在自由曲面上,使曲面信息能够得到最大化的保真,有利于得到更加精确的加工曲面;在刀具轨迹规划过程中运用了相应的刀具轨迹平滑技术,对所有刀具轨迹进行平滑处理,可以得到更加平滑的加工表面,同时也有效增大了单条刀具轨迹长度,更好的保证了加工表面的质量;在刀具轨迹规划过程中对自相交现象进行消除,有效提高了加工速度和工件的表面质量。
     (3)针对刀具轨迹加工表面光洁度不足的问题,研究构建一种面向高表面光洁度加工的平滑刀具轨迹规划方法,该方法针对高表面质量加工和部分工件对加工表面光洁度的特殊要求,采用表面光洁度优先的加工策略。初始轨迹上的每一个刀具切触点都是使刀具姿态角变化率最小的点,可以保证得到的初始刀具轨迹是最光滑的。此外,对偏置刀具轨迹执行平滑算法,保持了相邻轨迹间的一致性,从而改善了由于执行等残余高度法导致的相邻轨迹间的不规则,以生成光顺的刀具加工轨迹,进而得到更平滑的加工表面。最后,考虑并解决了由于刀具轨迹平滑算法的执行而导致的自由曲面边界未被覆盖的问题。
     (4)针对高性能数控系统对解释器不断增加的需求,在分析数控代码格式的基础上,详细介绍了解释器的基本原理,功能及其与相关模块的调用关系,提出了解释器的结构模型,将整个解释器分为词法分析模块,语法分析模块,加工命令存储结构,加工命令转化模块和错误处理模块五个部分,并详细阐述了各个模块的构建方法。结合自顶向下分析方法,用EBNF来描述了数控代码的文法规则,并对原有文法规则进行修改,消除了数控代码文法的二义性。
With the development of the equipment manufacturing industry and the diversification of market demand, the CNC technology went into an unprecedented rapid development. With the integration of computer technology, machinery technology and automation technology, the CNC technology is widely used in the aerospace, automotive, mold and other industries. In recent years, with the advancement of technology and the expansion of market demand, the demand for CNC machining of large and complex curved surfaces urgent increasingly. Large and complex curved parts having a curvature change free curved surface, it increasing the difficulty of surface information extraction and analysis, and put forward higher requirements to CNC machining, so that the sculptured surface of the tool path planning techniques is becoming one of the key technologies of CNC machining. The purposes of sculptured surface tool path planning is higher machining accuracy, faster processing speeds and better quality of the workpiece.
     In modern numerical control system, CNC machine can not processing directly from the NC code, the interpreter must be used on the NC program interpretarion. The interpreter can extract the relevant data into the corresponding processing command to control the machine for the actual machining of the workpiece. So, the interpreter is one of the core modules of the CNC system, and the efficiency and effectiveness of the interpreter have a direct impact to entire numerical control system.
     Above all, this paper make a depth study on the sculptured surface tool path planning, interpretater of numerical control system and other aspects, and obtained the following research:
     (1) With the problem of insufficient accuracy of tool path, a scallop-height high-precision tool path planning method is proposed. The method is for the special requirements of the finishing machining, which use the precision machining strategy. The method uses a reciprocating path pattern, the generated tool path with high precision can meet the constraints of the processing error and maximum residual height. With the problem of the judgment of concave and convex, we propose a fast method for the judgment of surface. In the process of tool path planning, the number of points on offset toolpath and bias tool path is the same, it cause the over-reliance on the current tool path, this problem and the problem of lack of precision is solved.
     (2) With the problem of insufficient speed of tool path, a high-speed spiral tool path planning method is proposed. The method is for the roughing and the special requirements of some workpiece's efficiency machining. All the Generated tool path points is on the sculptured surface, which can make the surface information maximize fidelity and is conducive to get more precise machining surface. The use of the tool path smoothing techniques on the tool path planning process can make thetool path length is effectively increases which lead to the smoother surface finishing. Meanwhile, on the tool path planning process, the phenomenon of self-intersection is eliminated which can improve the processing speed and the surface quality.
     (3) With the problem of insufficient surface smoothness of tool path, a high surface smoothness tool path planning method is proposed. The method use surface quality priority processing strategies is for the high surface quality machining and the special requirements of some workpiece's surface quality. Every cutter contact point on the initial tool path has the minimum tool attitude angle rate changes, which can ensure the generated tool path is smooth. Meanwhile, the smoothing algorithm for the bias tool path can maintain the consistency between the adjacent tool path, which can improve the irregularities between adjacent tool path and lead to smooth tool path. Finally, the problem is consider and solved:the sculptured surface boundary are not covered because of the implementation of the toolpath smoothing algorithm.
     (4) With the increasing demand for high-performance CNC interpreter, on the basis of the analysis of NC code format, the basic principles of the interpreter, function and the call module is described in detail. A interpreter structure model is proposed, the entire interpreter is divided into five parts:lexical analysis module, syntax analysis module, processing command storage structure, processing commands module and error handling module, and each module construction method is detaily descripted. With the combination of top-down analysis method, we use EBNF to describe the the NC code grammar rules, and modify the original grammar rules, eliminating the ambiguity of the NC code grammar.
引文
[1]孟富森,蒋忠理.数控技术与CAM应用[M].重庆大学出版社,2003.
    [2]张福润,严育才,数控技术[M].清华大学出版社,2009.
    [3]杨长祺.复杂曲面多轴加工的高精度,高效率数控编程系统研究[J].重庆:重庆大学博士学位论文,2004.
    [4]朱翔,孙家广.Loop细分曲面数控加工刀具轨迹的生成[J].清华大学学报:自然科学版,2003,43(4):521-524.
    [5]D.C.H. Yang, Z. Han. Interference detection and optimal tool selection in 3-axis NC machining of free-form surfaces[J]. Computer-Aided Design,1999,31(5):303-315.
    [6]吴光琳,倪基民.曲面实时插补无十涉刀轨的生成方法[J].机械工程学报,2001,37(5):93-96.
    [7]Z. Han, D.C.H. Yang. Iso-phote based tool-path generation for machining free-form surfaces[J]. Journal of Manufacturing science and engineering,1999,121(4):656-665.
    [8]谢叻,胡建华.裁剪NURBS组合曲面精加工方法[J].中国机械工程,1999,10(7):742-744.
    [9]H.Y. Xu, H.Y. Tam, J.J. Zhang. Isophote interpolation[J]. Computer-Aided Design,2003. 35(14):1337-1344.
    [10]Z. Han, D.C.H. Yang, J. Chuang. Isophote-based ruled surface approximation of free-form surfaces and its application in NC machining[J]. International Journal of Production Research, 2001,39(9):1911-1930.
    [11]Zhong-wei Yin, Shou-wei Jiang. Iso-phote based adaptive surface fitting to digitized points and its applications in region-based tool path generation[J], slicing and surface triangulation. Computers in Industry,2004,55(1):15-28.
    [12]吴福忠.基于包络面构建的等残留高度刀具路径规划[J].农业机械学报,2009(1):217-221.
    [13]陈良骥,程俊伟,王永章.环形刀五轴数控加工刀具路径生成算法[J].机械工程学报,2008.44(3):205-212.
    [14]Z.C. Chen, D. Song. A Practical Approach to Generating Accurate Iso-Cusped Tool Paths for Three-Axis CNC Milling of Sculptured Surface Parts[J]. Journal of Manufacturing Processes, 2006,8(1):29-38.
    [15]Z.C. Chen, G.W. Vickers, Zuo-min Dong. A New Principle of CNC Tool Path Planning for Three-Axis Sculptured Part Machining—A Steepest-Ascending Tool Path[J]. Journal of Manufacturing Science and Engineering,2004,126(3):515-524.
    [16]陈晓兵,廖文和,吴海兵,孙全平,陈前亮.三角网格表面等残留高度刀轨生成算法[J].计算机辅助设计与图形学学报,2009,21(12):1800-1804.
    [17]His-Yung Feng, Hui-wen Li. Constant scal lop-height tool path generation for three-axis sculptured surface machining[J]. Computer-Aided Design,2002,34(9):647-654.
    [18]Z.C. Chen, Qiang Fu. A practical approach to generating steepest ascent tool-paths for three-axis finish milling of compound NURBS surfaces[J]. Computer-Aided Design,2007, 39(11):964-975.
    [19]杨长棋,秦大同,石万凯.自由曲面五轴等残余高度高精度加工的路径规划[J].计算机 辅助设计与图形学学报,2003,15(5):621-625.
    [20]Z.C. Chen, Zuo-min Dong, G.W. Vickers. Automated surface subdivision and tool path generation for-axis CNC machining of sculptured parts[J]. Computers in Industry,2003, 50(3):319-331.
    [21]S.H. Yang, S.G. Lee. CNC tool-path planning for high-speed high-resolution machining using a new tool-path calculation algorithm[J]. The International Journal of Advanced Manufacturin,2002,20(5):326-333.
    [22]Duncan J P, Mair S G. The anti-interference features of polyhedral machining[J]. Advances in Computer-Aided Manufacture,1977:181-195.
    [23]梁伟文.Loop细分曲面的数控粗加工刀具路径生成方法[J].深圳职业技术学院学报,2007,43(4):521-524.
    [24]Hwang J S, Chang T C. Three-axis machining of compound surfaces using flat and filleted endmills[J]. Computer-Aided Design,2008,30(8):641-647.
    [25]徐后强,罗宏志.一种三轴曲面NC加工干涉检查的新方法[J].华中科技大学学报(自然科学版,2001,29(3).
    [26]Choi B K, Jun C S. Ball-end cutter interference avoidance in NC machining of sculptured surfaces[J]. Computer-Aided Design,2009,21(6):371-378.
    [27]Z.C. Chen, Qiang Fu. A practical approach to generating steepest ascent tool-path for three-axis finish milling of compound NURBS surfaces[J]. Computer-Aided Design,2007, 39(11):964-974.
    [28]王玉国,周来水,安鲁陵.型腔铣削加工光滑螺旋刀轨生成算法[J].航空学报,2008.29(1):216-220.
    [29]T. Kim, S.E. Sarma. Toolpath generation along directions of maximum kinematic performance:a first cut at machine-optimal paths[J]. Computer-Aided Design,2002,34(6): 453-468.
    [30]B.H. Kim, B.K. Choi. Machining efficiency comparison direction-parallel tool path with contour-parallel tool path[J]. Computer-Aided Design,2002,34(2):89-95.
    [31]E. Lee. Contour offset approach to spiral toolpath generation with constant scallop height[J]. Computer-Aided Design,2003,35(6):511-518.
    [32]徐金亭,刘伟军,邱晓杰,夏仁波.自由曲面加工中的等参数螺旋轨迹生成方法[J].机械工程学报,2010,46(3):148-151,157.
    [33]M. Held, C. Spielberger. A smooth spiral tool path for high speed machining of 2D pockets[J]. Computer-Aided Design,2009,41(7):539-550.
    [34]Bezier P. The mathematical basis of the UNISURF CAD system[M]. Butterworth-Heinemann, 1986.
    [35]B6zier P. Numerical control; mathematics and applications[M]. John Wiley & Sons,1972.
    [36]Gordon W J, Riesenfeld R F. B-spline curves and surfaces[J]. Computer Aided Geometric Design,1974:95-126.
    [37]De Boor C. On calculating with B-splines[J]. Journal of Approximation Theory,1972,6(1): 50-62.
    [38]Versprille K J. Computer-aided design applications of the rational B-spline approximation form[J].1975.
    [39]施法中.计算机辅助几何设计与非均匀有理B样条:CAGD & NURBS[M].北京航空航天大学出版社,1994.
    [40]Piegl L A, Tiller W. The NURBS book[M]. Springer Verlag,1997.
    [41]Piegl L. On NURBS:a survey[J]. IEEE Computer Graphics and Applications,1991,11(1): 55-71.
    [42]Piegl L, Tiller W. Curve and surface constructions using rational B-splines[J]. Computer-Aided Design,1987,19(9):485-498.
    [43]Vergeest J S M. CAD surface data exchange using STEP[J]. Computer-Aided Design,1991, 23(4):269-281.
    [44]李双喜.CAGD曲线与曲面[M].北京:科学出版社,2006.
    [45]袁奇荪.计算几何造型学基础[M].北京:航空工业出版社,1987.
    [46]赵丽.复杂自由曲面数控规划及其数据管理技术研究[D].天津大学,2009.
    [47]叶佩青,陈涛,汪劲松.复杂曲面五坐标数控加工刀具轨迹的规划算法[J].机械科学与技术,2004,23(8):883-886.
    [48]王太勇,张志强,王涛,等.复杂参数曲面高精度刀具轨迹规划算法木[J].机械工程学报,2007,43(2).
    [49]霍颖.基于等残留高度法的五轴NC加工刀位轨迹规划[D][D].西北工业大学,2005.
    [50]Zezhong C. Chen, Zuomin Dong, Geoffrey W. Vickers, Automated surface subdivision and tool path generation for -axis CNC machining of sculptured parts, Computers in Industry, 2003,5:319-331
    [51]Sonthi R, Kunjur G, Gadh R. Shape feature determination usiang the curvature region representation[C]//Proceedings of the fourth ACM symposium on Solid modeling and applications. ACM,1997:285-296.
    [52]孙玉娥,林浒.面向高速加工的等残余螺旋轨迹生成算法。计算机辅助设计与图形学学报(录用待刊)
    [53]Choi B K, Kim D H, Jerard R B. C-space approach to tool-path generation for die and mould machining[J]. Computer-Aided Design,1997,29(9):657-669.
    [54]Wang W, Li Y, Ma Y. Towards a Feature-based Agent-driven NC Tool Path Generation to Support Design and Process Changes[J].2013.
    [55]李长河,蔡光起,丁玉成,等.超高速磨削相关技术与工业应用[J].中国科技论文在线,2008,3(8):618-624.
    [56]Lee E. Contour offset approach to spiral toolpath generation with constant scallop heightfJ]. Computer-Aided Design,2003,35(6):511-518.
    [57]Li L L, Zhang Y F, Li H Y, et al. Generating tool-path with smooth posture change for five-axis sculptured surface machining based on cutter's accessibility map[J]. The International Journal of Advanced Manufacturing Technology,2011,53(5-8):699-709.
    [58]Li L L, Zhang Y F. Cutter selection for 5-axis milling of sculptured surfaces based on accessibility analysis[J]. International journal of production research,2006,44(16): 3303-3323.
    [59]Li L L, Zhang Y F. An integrated approach towards process planning for 5-axis milling of sculptured surfaces based on cutter accessibility map[J]. Computer-Aided Design & Applications,2006,3(1-4):249-258.
    [60]Li L L, Zhang Y F. Cutter Accessibility Map and Its Application for 5-axis Milling Tool-path Generation[J].武汉理工大学学报,2006,28(z2).
    [61]Duncan J P, Mair S G. The anti-interference features of polyhedral machining[J]. Advances in Computer-Aided Manufacture,1977:181-195.
    [62]Choi B K, Jun C S. Ball-end cutter interference avoidance in NC machining of sculptured surfaces[J]. Computer-Aided Design,1989,21(6):371-378.
    [63]Hwang J S, Chang T C. Three-axis machining of compound surfaces using flat and filleted endmills[J]. Computer-Aided Design,1998,30(8):641-647.
    [64]陆际联.平头铣刀加工曲面的无干涉路径规划[J]. chinese journal of mechanical engineering,1998,34(1).
    [65]Chen T, Shi Z. A tool path generation strategy for three-axis ball-end milling of free-form surfaces[J]. Journal of materials processing technology,2008,208(1):259-263.
    [66]杨勇生,王冷干,王珉.数控加工无干涉刀具轨迹生成的偏置算法[J].中国图象图形学报:A辑,1998,3(7):596-600.
    [67]Tang K, Cheng C C, Dayan Y. Offsetting surface boundaries and 3-axis gouge-free surface machining[J]. Computer-Aided Design,1995,27(12):915-927.
    [68]Chiou C J, Lee Y S. A shape-generating approach for multi-axis machining< i> G-buffer models[J]. Computer-Aided Design,1999,31(12):761-776.
    [69]王哲,王知行,钟诗胜.刀具扫描体生成新算法及在数控加工仿真中的应用[J].机械工程学报,2001,37(1):28-31.
    [70]Roth D, Bedi S, Ismail F, et al. Surface swept by a toroidal cutter during 5-axis machining[J]. Computer-Aided Design,2001,33(1):57-63.
    [71]彭群生.多轴数控加工中刀具包络面的计算[J].计算机辅助设计与图形学学报,2000,12(8):609-613.
    [72]喻道远,段正澄.运用点涉法原理确定平头立铣刀三轴联动数控加工轨迹[J].机械工业自动化,1994,16(2):7-11.
    [73]杨方飞,阎楚良,林洪义.五轴数控加工叶片无干涉刀位轨迹的计算[J].农业机械学报,2003,34(2):97-100.
    [74]Yang D C H, Han Z. Interference detection and optimal tool selection in 3-axis NC machining of free-form surfaces[J]. Computer-Aided Design,1999,31(5):303-315.
    [75]李立杰,王珉.空间自由曲面五坐标数控加工无干涉刀位轨迹生成算法[J].航空工艺技术,1999,3.
    [76]杨吉新,刘杰,陈定方.一种高效实用的有限元模型消隐方法[J].武汉理工大学学报,2002,24(8):60-62.
    [77]詹梅,刘郁丽.适用于三维有限元网格显示的逐步消隐法[J].西北工业大学学报,1998,16(004):641-644.
    [78]李郝林.数控加工自由曲面时刀具干涉的判别[J].工具技术,2002,36(7):13-15.
    [79]Yoon J H. Tool tip gouging avoidance and optimal tool positioning for 5-axis sculptured surface machining[J]. International Journal of Production Research,2003,41(10): 2125-2142.
    [80]毛志江.基于实体表面投影法精加工中的干涉处理[J].煤矿机械,2003,9:037.
    [81]赵文珍,张新建.基于最小有向距离原理的无干涉刀位轨迹计算[J].机械工程师,2007,10:013.
    [82]杨勇生.五轴数控加工中刀具干涉处理的特征投影法[J].工程图学学报,2003,24(1):15-22.
    [83]Jensen C G, Red W E, Pi J. Tool selection for five-axis curvature matched machining[J]. Computer-Aided Design,2002,34(3):251-266.
    [84]Ding S, Mannan M A, Poo A N. Oriented bounding box and octree based global interference detection in 5-axis machining of free-form surfaces[J]. Computer-Aided Design,2004, 36(13):1281-1294.
    [85]钟建琳,米思南.曲面加工中避免全局刀具十涉的方法[J].华中理工大学学报,1998,26(012):19-21.
    [86]Lee Y S, Chang T C.2-phase approach to global tool interference avoidance in 5-axis machining[J]. Computer-Aided Design,1995,27(10):715-729.
    [87]吴明华,余勇翔.采用空间分割技术的八叉树十涉检验算法[J].计算机学报,1997,20(9):849-854.
    [88]Saito T, Takahashi T. NC machining with G-buffer method[C]//ACM SIGGRAPH Computer Graphics. ACM,1991,25(4):207-216.
    [89]Ilushin O, Elber G, Halperin D, et al. Precise global collision detection in multi-axis NC-machining[J]. Computer-Aided Design,2005,37(9):909-920.
    [90]Wein R, Ilushin O, Elber G, et al. Continuous path verification in multi-axis nc-machining[J]. International Journal of Computational Geometry & Applications,2005,15(04):351-377.
    [91]Wang Q H, Li J R, Gong H Q. Graphics-assisted cutter orientation correction for collision-free five-axis machining[J]. International journal of production research,2007,45(13): 2875-2894.
    [92]Guthe M, Balazs A, Klein R. GPU-based trimming and tessellation of NURBS and T-Spline surfaces[C]//ACM Transactions on Graphics (TOG). ACM,2005,24(3):1016-1023.
    [93]Wang Q H, Li J R, Zhou R R. Graphics-assisted approach to rapid collision detection for multi-axis machining[J]. The International Journal of Advanced Manufacturing Technology, 2006,30(9-10):853-863.
    [94]彭芳瑜,苏永春,邹孝明,等.大型螺旋桨五轴加工中基于方向包围盒层次树的全局干涉碰撞检测[J].中国机械工程,2007,18(3):304-307.
    [95]Ho S, Sarma S, Adachi Y. Real-time interference analysis between a tool and an environment[J]. Computer-Aided Design,2001,33(13):935-947.
    [96]Gottschalk S, Lin M C, Manocha D. OBBTree:a hierarchical structure for rapid interference detection[C]//Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM,1996:171-180.
    [97]Jung J Y, Ahluwalia R S. NC tool path generation for 5-axis machining of free formed surfaces[J]. Journal of Intelligent Manufacturing,2005,16(1):115-127.
    [98]Zhou L, Lin Y J. An effective global gouge detection in tool-path planning for freeform surface machining[J]. The International Journal of Advanced Manufacturing Technology, 2001,18(7):461-473.
    [99]蔡永林,席光,樊宏周,等.曲面5轴加工中全局干涉检查与刀位修正[J].机械工程学报,2002,38(9):131-135.
    [100]Ren F, Sun Y, Guo D. Combined reparameterization-based spiral toolpath generation for five-axis sculptured surface machining[J]. The international journal of advanced manufacturing technology,2009,40(7-8):760-768.
    [101]张承瑞,单诚,王恒.2002.数控G代码解释器的设计与实现[J].山东大学学报(工学版),(6):565-569.
    [102]姚习武,朱志红,田文超.1999.Windows平台下数控代码解释系统的研究与实践[J].机械设计与制造工程,28(3):24-26.
    [103]胡志祖.2009.基于VC的数控G代码解释器的设计与实现[J].中国重型装备, 1(5):38-42.
    [104]王琦魁,李伟,陈友东等.2009.新型的数控译码模块结构的研究和实现[J].北京航空航天大学学报,35(1):122-125.
    [105]甘明,袁正萍,林桂清.2009.基于WinCE嵌入式数控系统NC代码解释器的设计[J].组合机床与自动化加工技术,7(3):63-66.
    [106]Xu X W, He Q. Striving for a total integration of CAD, CAPP, CAM and CNC[J]. Robotics and Computer-Integrated Manufacturing,2004,20(2):101-109.
    [107]徐建国,张友良,汪惠芬等.2008.通用数控程序解析方法研究[J].计算机集成制造系统,14(10):2011-2017.
    [108]陈建萍,杨汉祥.2008.基于嵌入式Linux的程控仪器SCPI解释器的实现方法研究[J].赣南师范学院学报,1(3):88-92.
    [109]REN S, QIN X, Bai J. Design and Realization of NC Code Interpreter[J]. MIE of China, 2007,5:014.
    [110]游华云,叶佩青,杨开明.2007.多数控代码解释器共存的设计和应用[J].计算机工程与应用,43(12):1-2,111.
    [111]沙智华,张生芳,葛研军等.2003.通用数控代码编译系统研究与实现[J].中国机械工程,14(9):763-766.
    [112]Liyun X, Lin G, Kun C, et al. Multiple CNC Code Interpreter Based on Lex & Yacc [J][J]. Electromachining & Mould,2009,3:012.
    [113]伍抗逆,李斌,陈吉红.2006.面向开放式数控系统平台的NC代码解释器开发[J].中国机械工程,17(2):168-171.
    [114]Chengrui Z, Cheng S, Heng W. DESIGN AND REALIZATION OF G CODE INTERPRETER FOR CNC SYSTEM [J]. Journal of Shandong University of Technology, 2002,6:016.
    [115]李建克,田锡天,杜娟.2006.STEP- NC程序解释器的研究与开发[J].机床与液压,16(6):214-217.
    [116]赵章荣,隋晓梅,周刚.2008.STEP- NC数控解释器的实现[J].机械设计与制造,10(3):146-149.
    [117]吴霞,王军,孙军.2010.基于STEP- NC的XML解释器的研究[J].组合机床与自动化加工技术,9(5):20-22.
    [118]Suh S H, Cho J H, Hong H D. On the architecture of intelligent STEP-compliant CNC[J]. International Journal of Computer Integrated Manufacturing,2002,15(2):168-177.
    [119]王媛,单友志,张星辉.2008.基于STEP- NC的数控编程研究[J].天津理工大学学报,24(5):67-71.
    [120]蔡坤,周来水,张得礼.2009.基于STEP- NC的数控铣削系统解释器的研究[J].机械工程与自动化,7(3):54-58.
    [121]肖田元,韩向利,王新龙.1998.通用NC代码翻译技术[J].系统仿真学报,10(5):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700