用户名: 密码: 验证码:
纤维增强Cu-C复合材料制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cu-C材料是目前最具应用前景的电力机车受电弓滑板用材料之一,本文研究了Cu与C之间的润湿原理,利用Mo元素有效改善了Cu与C之间的润湿性;并对冷压烧结法制备纤维增强Cu-C复合材料的工艺过程及其对性能的影响进行了研究;通过带电摩擦试验对Cu-C复合材料带电摩擦磨损机理进行了初步探讨。
     选择Mo元素有效改善了两元素之间的润湿性。用溶胶-凝胶法制备出表面层为α-Mo_2C-Mo的石墨粉体及纤维,之后采用化学镀和电镀的方法在石墨和纤维上镀上了色泽光亮的铜镀层,最后以冷压烧结法制备出不同工艺参数条件下的Cu-C复合材料
     研究了各种工艺参数(烧结温度,保温时间,纤维含量)对复合材料的组织及性能的影响,结果表明:烧结温度为1153K,保温时间为1.5h时,材料组织中铜相和石墨相弥散分布,镀铜纤维的加入对材料的微观组织影响不明显。随烧结温度升高、保温时间延长以及纤维含量增加,材料密度逐渐降低,硬度值和冲击韧性值先增加后降低;材料电阻率随着保温时间和纤维含量的增加逐渐增加,而随着烧结温度的升高先降低后升高;复合材料摩擦系数和磨损率随烧结温度的升高,都是先降低后升高,当温度在1153K时,摩擦系数和磨损率达到最低。随保温时间的增加,复合材料摩擦系数和磨损率在不同摩擦速度下的变化趋势几乎相同,在保温1.5h时耐磨损性能最好;随着碳纤维体积分数增加,不同摩擦速度下摩擦系数呈单调减小的趋势,且有趋于稳定的趋势,磨损率整体呈减小趋势,当纤维含量在3%时,磨损率最低。在理论分析与试验研究的基础上确定了比较合理的各种工艺参数:烧结温度为1153K,保温时间为1.5h,纤维含量为3%。
     初步探讨了复合材料带电摩擦磨损机理。结果表明,摩擦磨损过程中出现的磨屑主要是铜屑、铜颗粒和石墨颗粒,磨屑的主要成分是Cu、Cu_2O和C。在整个材料磨损过程中磨损形式主要为粘着磨损,摩擦一段时间后,剥层磨损和磨粒磨损开始出现,在整个磨损过程中都伴随着氧化磨损。
Cu-C composite is one of the most potential materials for pantograph slide plate, which is an important component of pantograph system in locomotive. The principle of wettability between Cu and C was investigated in this paper. The element of Mo was selected to improve the wettability between Cu and C. The fabrication process of cold compression sintering fiber reinforced Cu-C composite and its effect on the composite property were studied. The wear and friction mechanism of Cu-C composite was investigated initially by electriferous friction test.
    Mo was chosen to improve the wettability effectively. The α-Mo_2C-Mo coating was coated on the surface of graphite particle and carbon fiber by the sol-gel method, and then the Cu coating was also coated on the surface by chemical and electrical coating method. Cu-C composite was fabricated by cold compression sintering method under different processing parameter.
    The effect of different processing parameters (sintering temperature, soaking time, content of carbon fiber) on the property was studied. The microstructure of composite is uniform when the sintering temperature is 1153K and the soaking time is 1.5h, the effect of the joint of carbon fiber on composite microstructure is not obvious. With the increasing of sintering temperature, soaking time and fiber content, the density of composite decrease gradually. The Vickers hardness and impact toughness increase at first and then reduce. The electrical resistivity gradually increases along with increasing both the soaking time and fiber content, but reduces at first and then increases with the increasing of sintering temperature. The wear rate and friction coefficient of composite materials decrease at first and then increase with the increasing of sintering temperature. When the sintering temperature is 1153K, the friction coefficient and the wear rate are the lowest. With the increasing of the soaking time, the wear rate and friction coefficient have the nearly same change trend at four different speeds, the optimal wear resistance is acquired at 1.5h. With the increasing of carbon fiber content, friction coefficient reduces monotonously at different speed, and then become stable gradually. The wear rate of all reduces. The wear rate is the lowest when the fiber content is 3%. On the base of theory research and experimental investigation obtain the appropriate processing parameter values: sintering
引文
[1].迟春阳.电力机车滑板材料的发展.炭素,1999,(4):41~43
    [2].于正平,张弘,吴鸿标等.高速电气化铁路接触网-受电弓系统的研究.中国铁道科学, 1999,20(1):59~72
    [3].胡建红.铜基受电弓滑板成分优化及组织性能研究.2004,昆明理工大学
    [4].潘连明,张国荣,钱中良等.电力机车受电弓滑板.机车车辆工艺,2001,(3):1~4
    [5].梁若静.日本电力机车受电弓滑板的发展及浸渍金属碳滑板的开发.机车电传动,1994, (5):45~47
    [6].乔树风.电力机车受电弓滑板.中国专利,CN1078434A.1993-11-17
    [7].高振华.电力机车受电弓滑板固体润滑板条及工艺方法.中国专利,CN1122757A.1996-5-22
    [8].金国衡,张之明.钢铝导线于铜导线混架区段滑板选用的探讨.机车电传动,1998,(1): 9~10
    [9].王青山.浅析我国干线电力机车受电弓滑板的发展趋势.机车电传动,1992,(1):5~7
    [10]. Bu Yan, Xiang Zhongxia. Wear transitions of C/Cu composite materials. Chinese Journal Of Mechanical Engineering. 1994, 7 (2): 103~107
    [11].刘志远,罗平,顾祥煦.电力机车受电弓滑板及其制造方法.中国专利,CN1041136A, 1990.4-11
    [12].李德福,张进良.电力机车受电弓用碳滑板.中国专利,CN2167888Y,1994
    [13].锁兰,盛光启.电力机车受电弓滑板浸金属碳素滑板.中国专利,CN1041136A, 1990-4-11
    [14].余明,张宝生,屈树岭.电力机车用新型碳基滑板材料的研制.机械工程材料,1995, 19(2):32~37
    [15].鹤木孝典[日]等.受电弓滑板用碳/金属纤维复合材料.国外机车车辆工艺,1994,(6): 11~13
    [16].宝山钢铁(集团)公司.碳-碳复合材料受电弓滑板.中国专利:CN1178745A,1998-04-15
    [17].潘连明,张国荣,钱中良等.电力机车受电弓滑板.机车车辆工艺,2001,6(3):1~4
    [18]. Bowden F P, Tabor D. The friction and lubrication of solids, part 2. Oxford: the Clarendon Press, 1964
    [19].温室铸.摩擦学原理.北京:清华大学出版社,2002
    [20].陈志刚,陈晓旭,刘军.Al2O3基陶瓷摩阻材料的摩擦磨损特性.摩擦学学报,1997, 17(3):267~271
    [21].韩绍昌,徐仲榆.碳/铜复合材料研究进展.机械工程材料,1999,23(6):6~8,38
    [22].马尔钦柯 EA.金属表面摩擦破坏实质.何世禹译.北京:国防工业出版社,1990
    [23]. Zhai Hongxiang, Huang Zhenying. Instabilities of sliding friction governed by asperity interference mechanisms. Wear, 2004, 257 (3-4):414~422
    [24]. He D H, Manory Rafael R. A novel electrical contact material with improved self-lubrication for railway current collectors. Wear, 2001, 249: 626~36
    [25]. Kestursatya M, Kim J K, Rohatgi P K. Wear performance of copper-graphite composite and a leaded copper alloy. Mater Sci Eng, 2003, A339: 150~155
    [26]. Kestursatya M, Kim J K, Rohatgi P K. Friction and wear behavior of a centrifugally cast lead-free copper alloy containing graphite particles. Metall Mater Trans, 2001, 32A (8): 2115~2125
    [27]. Kim J K, Kestursatya M, Rohatgi P K. Tribologieal properties of centrifugally cast copper alloy-graphite particle composite. Metall Mater Trans, 2000, 31A (4): 1253~1293
    [28].许少凡,李政,王文芳等.镀铜石墨粉含量对铜—镀铜石墨复合材料组织与性能的影响.热加工艺,2003,1:18~19,59
    [29].王文芳,许少凡,凤仪等.碳-铜基复合材料机械摩擦磨损性能研究.金属热处理,2000, 4:19~21
    [30].金永平,郭斌,郑艾龙等.铜基受电弓滑板试件电阻率和磨损率性能研究.哈尔滨工业大学学报,2003,35(4):441~446
    [31].浩宏奇,丁华东,李雅文等.石墨含量对铜基材料摩擦磨损性能的影响.中国有色金属学报,1997,7(3):120~123
    [32].松山晋作(日).受电弓受流摩擦学.电力牵引快报,1997,(1):52~60
    [33].李娜,张弘,于正平.受电弓滑板-接触导线摩擦磨损机理与特性分析.中国铁道科学,1995,17(4):63~68
    [34].丁华东,浩宏奇,金志浩等.石墨含量对铜基滑板烧结膨胀的影响.中国有色金属学报, 1996,6(3):106~110
    [35].王文芳,许少凡,应美芳等.用镀铜石墨粉制备铜.石墨复合材料.机械工程材料,1999, 23(2):41~43
    [36]. U.S.Patent.5045281,1991
    [37].庹新林,王伯羲.碳纤维表面镀铜的研究.北京理工大学学报,1999,19(5):642~645
    [38].王文芳,许少凡,风仪等.碳-铜基复合材料机械摩擦磨损性能研究.金属热处理,2000, (4):19~21
    [39].高强,吴渝英,张国定等.碳纤维对铜-石墨复合材料性能的影响.中国有色金属学报, 2000,10(增刊1):97~101
    [40].张国定.金属基复合材料界面问题.材料研究学报,1997,11(12):649~657
    [41].崔春翔,吴人洁,王浩伟.金属基复合材料界面特征与力学性能.宇航材料工艺,1997, (1):1~6
    [42].王玉林,范大楠,刘兆年等.合金元素对C/Cu复合材料界面结合特性及性能影响的研究.复合材料学报,1993,10 (2):113~120
    [43].韩绍昌,李学谦,徐仲榆.铬对改善铜与炭石墨材料润湿性的作用.湖南大学学报,1998, 25(5):30~33
    [44]. J. Korab, E Stefanik, S. Kavecky, et al. Thermal expansion of cross-ply and woven carbon fibre-copper matrix composites. Composites, Part A: 2002, 33:133~136
    [45].张钦钊.石墨粒度及其表面化学镀铜对铜-石墨复合材料性能的影响.福州大学,2004
    [46].李政.碳纤维镀铜石墨-铜复合材料组织与性能研究.合肥工业大学,2004
    [47].甘永学,陈汴琨,吴云书等.碳纤维增强铜基复合材料摩擦与磨损行为的研究.金属科学与工艺,1989,2(6):13~20
    [48].杨君友.颗粒复合材料颗粒相/基体相界面结合强度.材料导报,1993,5:73~75
    [49]. Kosolapova T Y. Handbook of High Temperature Compounds: Properties, Production, Applications. London Hemisphere Publishing Corporation, 1990, 681~724
    [50].郭铁峰.金刚石表面金属化方法.金刚石与磨料磨具工程,1997,102(6):3~6
    [51].胡锐.真空浸渗电触头用C/Cu复合材料的研究.西安:西北工业大学材料学院,2000
    [52].胡锐.一种提高碳/铜界面结合特性的碳化物涂层及其工艺.中国发明专利,申请号021l4427.3,公开号CN1435503A
    [53]. Tatsuo Oku, Akira Kurumada. Effects of titanium impregnation on the thermal conductivity of carbon/copper composite materials. Journal of Nuclear Materials. 1998, (257): 59~66
    [54].胡锐,李金山,李进学等.Mo_2c+Mo涂层对C/Cu复合材料界面及浸渗的影响.中国有色金属学报,2001,11(2):172~176
    [55].赵晓宏.连续碳纤维增强铜基复合材料的制备、组织及性能研究.天津:河北工业大学, 2002
    [56].许少凡,王文芳,应美芳等.碳纤维/中铜-石墨复合材料的组织与性能.热加工工艺, 1999,(1):45~46
    [57]. Beech. R. N. copper-graphite materials in industrial Carbon and Graphite. London: Soc Chem Ind, 1958, 448~462
    [58].曾德麟.粉末冶金原理.北京:冶金工业出版社,1982,302~304
    [59].丁华东,李雅文,浩宏奇等.铜石墨材料抗弯强度与孔隙的关系.中国有色金属学报, 1996,6(4):123~126
    [60].束德林.金属力学性能.北京:机械工业出版设,1987。
    [61].高强,吴渝英,翟宁等.铜.石墨材料导电性能研究.机械工程材料,2002,26(9):34~36.
    [62]. Kehchi Kuniya. IEEE transactions on composite. Hybrids and Manufacturing Technology, 1983, b (4), 467~472
    [63].高强,吴渝英,洪駸等.短碳纤维对铜-石墨复合材料冲击值的影响.上海交通大学学报, 2002,36(1):36~38
    [64].高强,吴渝英,张国定等.碳纤维对铜-石墨复合材料性能的影响.中国有色金属学报, 2000,10(S1):97~101
    [65]. Prasad S V, Rohatgi P K. Tribological properties of Al alloy particle composite. Journal of Metals, 1987, 39 (11): 22~26
    [66].温诗铸.摩擦学原理.北京:清华大学出版社,1990
    [67]. Gan Yongxue, Chen Biankun, Yi Pei. Tribologieal behavior of carbon fiber reinforced copper matrix composites. Proceedings of the 7th ICCM, Beijing: International Academic Publishers,1989, 4: 13~16.
    [68].风仪,史晶蕊,许少凡等.碳纤维-铜复合材料磨损性能研究.合肥工业大学学报,1995, 18(2):94~98
    [69]. Moustafa S F, El-Barry S A, Sanad A M, et al. Friction and wear of copper-graphite composites make with Cu-coated and uncoated graphite powders. Wear, 2002, 253 (7-8): 699~710
    [70].马尔钦柯 EA.金属表面摩擦破坏实质.何世禹译.北京:国防工业出版社,1990
    [71]. He D H, Manory Rafael R. A novel electrical contact material with improved self-lubrication for railway current collectors. Wear, 2001, 249:626~636
    [72].金永平,郭斌,郑艾龙等.铜基受电弓滑板试件电阻率和磨损率性能研究.哈尔滨工业大学学报,2003,35(4):441~446
    [73].日本碳素材料学会编.电机用电刷及其使用方法.汪云华译.北京:机械工业出版社,1982

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700