用户名: 密码: 验证码:
双元颗粒增强铝基复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然现阶段Al基复合材料性能较常规材料有一定的优势,但鉴于其制备成本一直居高不下,使得它难以从航空航天等应用领域走向民用。因此急需开发一种工艺简单,成本低廉,性能优良的新型Al基复合材料
     本文采用稀土固态混合法和稀土液相包裹法制备含稀土α-Al2O3/Al基复合材料,研究了采用这两种不同方法加入稀土元素对α-Al2O3/Al基复合材料组织性能的影响,探讨不同的稀土含量对α-Al2O3/Al基复合材料组织性能的影响。研究结果表明,液相包裹法制备的铝基复合材料较固态混合法制备的铝基复合材料的硬度、耐磨性能高,添加适量的稀土铈对α-Al2O3/Al基复合材料组织性能起到较好的改善作用。随后以此为基础,着重研究了以下两个方面内容:
     第一,以廉价的α-Al2O3和γ- Al2O3作为增强体,采用粉末冶金法成功的制备出α-Al2O3+γ-Al2O3/Al基复合材料;当加入适量的α- Al2O3(50%)和适量的γ- Al2O3(50%)时,α- Al2O3和γ- Al2O3均匀的分布在基体中,并且α- Al2O3和γ- Al2O3很好的啮合在一起。其硬度值和耐磨性能也有很明显的提高。在此基础上建立了一种新的增强模型,即双元颗粒增强模型。
     第二,用稀土包裹α-Al2O3颗粒,制备出改性过后的增强体。此增强体与γ- Al2O3增强体、铝基体球磨烧结后制备出一种组织性能较好的铝基复合材料。适量稀土(0.5%)可在一定程度上改善α- Al2O3增强体与铝基体的界面结合,从而改善了双元增强铝基复合材料的组织和各方面的力学性能。
Though the properties of Al matrix composites are better than other common materials, their cost is high. It is hard to be used in application areas ranging from aerospace to civil industries. It is urgently needed to fabricate the Al matrix composites with low-cost and excellent properties using simple process.
     Solid-mixing method and liquid-packing method to fabricate theα-Al2O3/Al matrix composites are used in this study. Effects on microstructures and properties of theα-Al2O3/Al matrix composites are studied by two different methods of adding the RE. The effect of different RE contents on microstructures and properties of theα-Al2O3/Al matrix composites are discussed. The results indicated that the hardness and the wear resistance of particle reinforced aluminum matrix composites made by liquid-packing method are higher than that manufactured by solid-mixing method. The composites with proper RE Ce adding can improve the microstructures and properties of theα-Al2O3/Al matrix composites. Based on this observation, two key problems are investigated further in this paper.
     Firstly, the low-costα-Al2O3 andγ- Al2O3 particulate fillers are used as reinforcementsα-Al2O3+γ-Al2O3/Al matrix composites are fabricated successfully by powder metallurgy. When an adequate amount of the mixture of 50%α- Al2O3 and 50%γ- Al2O3 fillers are added into composites,α-Al2O3 andγ- Al2O3 particles are distributed uniformly in the matrix andα-Al2O3 andγ- Al2O3 grains are in mesh well. The hardness and the wear resistance of particle reinforced aluminum matrix composites are increased obviously. Base on this result, a new model for analyzing particle reinforcement mechanism ie. Double phase reinforce model, is suggested.
     Secondly, the reinforcements ofα-Al2O3 particles with surface covered by Re are fabricated. Using this surface modified reinforcement together withγ- Al2O3 particles and Al matrix, Al matrix composites with good microstructures and properties are successfully fabricated. The addition of proper amount of RE (0.5%) can improve the interfacial bonding betweenα-Al2O3 reinforcement and Al matrix, which can improve structures and mechanical properties of double phase reinforced Al matrix composites.
引文
[1]黄伯云,肖鹏,陈康华.复合材料研究新进展[J].金属世界,2007,2(1):46.
    [2]何京生.纯水、超纯水与饮用纯净水[J].四川地质学报,1999,19(3):233-240.
    [3]吴人洁.金属基复合材料的现状与展望[J].金属学报,1997,33(1):79-84.
    [4]张效宁.金属基复合材料研究进展[J].云南冶金,2006,35(5):53-55.
    [5]李树尘,陈长勇,许基清.材料工艺学[M].北京化学工业出版社,2000,33.
    [6]史玉娟.原位反应制备A12O3颗粒增强铝基复合材料的研究[J].辽宁东北大学学报,2005,32(5):23-24.
    [7]魏群,邹艳梅.城市节水工程[M].北京中国建材工业出版社,2006:53.
    [8]董群,陈礼清,赵明久,等.镁基复合材料制备技术、性能及应用发展情况[J].材料导报,2004,4(18):84-87.
    [9]吴人洁.金属基复合材料的发展现状与应用前景[A],第十三届国际复合材料学术会议.
    [10]朱和祥.铝基复合材料[J].汽车工业与材料,1993,11(8):30.
    [11]崔岩.碳化硅颗粒增强铝基复合材料的航空航天应用[J].材料工程,2002,14(6): 3-6.
    [12]马建平.SiCp/A1复合材料光机结构件及光学反射镜的制造研究[J].航天工艺,2000,2:1-4.
    [13]黄泽文.金属基复合材料的大规模生产和商品化发展[J].材料导报(增刊),1996, 11(6):18-25.
    [14]周祖福.复合材料学[M].武汉:武汉理工大学出版社,2004.
    [15]周曦亚.复合材料[M].北京:化学工业出版社,2005.
    [16]吴人洁.金属基复合材料的发展现状与应用前景[A],第十三届国际复合材料学术会议.
    [17]吴利英,高建军.金属基复合材料的发展及应用[J],化工新型材料,2002,10:32-35.
    [18] Elias son J,Sandstorms R,Applications of aluminum matrix composites [J],Key Engineer - ing Materials,1995,(104-107):3-35.
    [19] Lioyd D J. Particle reinforced aluminum and magnesium matrix composites [J].Internatio -nal Materials Reviews, 1994, 39(1):1-23.
    [20] Liu Y B, Lim S C, Lu L. Recent development in the fabrication of metal matrix-particulate composites using powder metallurgy technique [J].Mater Sci,1994, 29:1999.
    [21] Warren H, Hunt Jr, Aluminum Metal matrix composites today [J].Materials Science Forum, 2003, (331-337):71-84.
    [22]王斌,易丹青,李洪武,等.半固态积压亚微米SiCp/2014复合材料的组织性能研究[J].热加工工艺,2005,10(7):26-28.
    [23]刘政,刘小梅.国外铝基复合材料的开发与应用[J].轻合金加工技术,1999,22(1):7-l1.
    [24]桂满昌,王殿斌,张洪,等.颗粒增强铝基复合材料的制备与应用[J].材料导报,1996,(3):65-71.
    [25]曹令俊.复合材料在汽车工业中的应用及发展趋势.汽车工艺与材料[J],2000,12:31-33.
    [26]朱和祥.铝基复合材料.汽车工业与材料[J],1993,(8):30.
    [27]崔岩.碳化硅颗粒增强铝基复合材料的航空航天应用[J] .材料工程,2002,(6): 3-6.
    [28]马建平等.SiCp/A1复合材料光机结构件及光学反射镜的制造研究[J] .航天工艺,2000,(2):1-4.
    [29]黄泽文.金属基复合材料的大规模生产和商品化发展[J].材料导报(增刊),1996,39(2:18-25.
    [30]李洪武.亚微米颗粒增强铝基复合材料的制备、组织与性能研究[D] .中南大学,2004.
    [31] Lioyd D J.Particle reinforced aluminum and magnesium matrix composites[J]. Inter.Mater.Rev,l994,39(1):1.
    [32] Shiono T,Noda K.Fabrication of Ceramic Composites Consisting of Powders with Diferent Specific Gravity by the Slip-casting Technique[J].J.Mater Sci,l997,32:2665.
    [33] Watanabe Yoshimi.Nakamura Taurus.Microstructure and weal resistance of hybrid Al-(Al3Ti+Al3Ni)FGMs fabricated by a centrifugal method[J].Intermeta- llics,2001,(9):33.
    [34]杨滨等.原位反应TiC颗粒对喷射沉积Al-20Si-5Fe合金微观组织的影响[J].北京科技大学学报,2001,23(1):24-27.
    [35]黄赞军.原位A12O3颗粒强化铝基复合材料的研究[J].金属学报,2002,38(6):568-574.
    [36] Fan Tongxiang,ShiZhongliang,ZhangDi,The intelfacial reaction characteristics in SiC /Al composite above liquidus during remelting[J]. Materials Science Engineering,A2557 (1998):281-286.
    [37]樊建中,姚忠凯.碳化硅增强铝基复合材料界面研究进展[J] .稀有金属,1997,21(2): 134-137.
    [38] Wang RM,SurappaMK,TaoCH,LiCZ,YanMC .Microstructure and interface structure studies of SiC-reinforced Al(6061)metal-matrix composites.Materials Science and Engineering,A254(1998):219-226.
    [39] Nutt S R. Interfaces in Metal-Matrix Composites [M]. Edited by AK Dhingra. SG Fishm- an,1986:157.
    [40] HASHIM J, LOONEY L, HASHMI M S J. The wettability of SiC particles by molten alum- inum alloy [J]. J. Materials Processing Technology,2001,119:324-328.
    [41] URENA A, etal. Oxidation treatments for SiC particles used as reinforcement in aluminum matrix composites [J]. Composites Science and Technology, 2004, 64: 1843-1854.
    [42] LAURENT V, CHATAIN D, EUSTATHOPOLOUS N. Wettability of SiO2 and oxidized SiC by aluminum [J]. Mater Sci Eng A,1991,135:89-94.
    [43] HASHIM J, LOONEY L, HASHMI M S J. The wettability of SiC particles by molten alimi- num alloy [J]. Materials Processing Technology, 2001, 119: 324-328.
    [44] AGARWALAV, DIXITD. Fabrication of aluminum base composite by foundry technique [J]. Trans. Jpn. Inst. Met, 1981, 22: 521-526.
    [45] HENRIKSEN B R, JOHNSEN T E. Influence of microstructure of fiber/matrix interface on mechanical properties of Al/SiC composites [J]. Mater. Sci.Technol, 1990, 6: 857-861.
    [46] BANERJI A. etal. Role of wettability in the preparation of metal-matrix composites[J]. Met- al. Tech, 1984, 38:656-661.
    [47]刘向东,王莹.Ce及Mg对SiCp/Al复合材料界面润湿性的影响[J].铸造技术, 2004, 25 (1) : 58-61.
    [48]李建平.可重熔回收SiCp/Al复合材料研究[D].上海:上海交通大学博士论文, 1997
    [49] ZHOUW, XUZM. Casting of Si Crein forced metal matrix composites [J].Mater Process Technology, 1997, 63: 358-363.
    [50] HASHIM J, LOONEY L, HASHMI M S J. The wettability of SiC particles by molten aluminum alloy [J].Materials Processing Technology, 2001, 119: 324-328.
    [51]王俊,周尧和.用高能超声制备金属基复合材料的现状与发展[J].铸造, 1997, (12):40-42.
    [52]陈名海,刘宁,许育东.金属/陶瓷润湿性的研究现状[J].硬质合金,2002,4(19):200-205.
    [53]崔春翔,吴人杰,王浩伟.稀土元素的热力学特性及在金属基复合材料中的应用[J].稀有金属材料与工程,1997,3(26):53-58.
    [54]于志强,武高辉,姜龙涛等.Y2O3表面改性A12O3p增强6061AI复合材料组织与性能[J].复合材料学报,2003,5(20):23-25.
    [55]李戈扬,中江秀雄,羽根哲哉等.铝液在Al2O3上润湿性的改善[J].材料工程,2004,(4):11-13.
    [56]邹正光,李金莲等.高能球磨在复合材料制备中的应用[J].桂林工学院学报,2002, (22):2.
    [57]谭训彦,王昕.Al2O3的晶体结构与价电子结构[J].中国有色金属报,2002,12(1):18- 23.
    [58]益小苏.先进复合材料技术研究与发展[M].国防工艺出版社,2006:5.
    [59]付高峰,姜澜,刘吉等.反应自生氧化铝颗粒增强铝基复合材料[J].中国有色金属学报,2006,16(5):853-858.
    [60] M. Van Den. Burg, etal. Al-SiC interface structure studied by HREM[J]. Acta Metal. Mater, 1992, 40(S):281-287.
    [61]于化顺,闵光辉,陈熙琛.固体粒子进入熔体的条件及影响因素[J].中国有色金属学报,2004,16(5):253-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700