用户名: 密码: 验证码:
AIN/Cu-Cr-Zr复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜和铜合金是传统的高导电(热)材料,但由于强度和硬度不足,其应用范围受到很大的限制。随着机械、电子以及航空航天工业的迅猛发展,迫切要求开发不仅具有良好导电性、而且具有较高强度和硬度,较低热膨胀系数的功能材料。
     本文以开发高强度高导电铜基复合材料为目标,通过成分和工艺优化,采用机械合金化(MA)、冷压成形和复压复烧等复合强化工艺制备出了满足性能要求的Cu-Cr-Zr基复合材料。寻求最佳的材料制备工艺,满足对材料高强度、高导电性的性能要求。通过SEM,XRD、TEM和其它实验检测仪器对粉末的机械合金化过程,复合材料的微观组织特征以及机械、物理性能进行了系统研究,为拓展新型高性能铜基复合材料的应用领域打下坚实基础。
     本文采用机械合金化工艺使在固态和液态下完全互不相溶的Cu-Zr合金系形成过饱和固溶体,产生严重的晶格畸变,显著细化晶粒。用冷压-烧结-复压-复烧工艺对Cu-Zr合金粉末致密化过程进行研究,系统探讨了Zr的含量、压制-烧结工艺对复合材料相对密度、相对电导率、强度、抗弯强度的影响。将Cu-Zr复合材料和Cu-Cr-Zr复合材料性能做一对比,在Cr含量相同的条件下,Zr的加入可以显著改善材料的硬度。少量稀土元素La的加入,使相对电导率有所提高。加入陶瓷颗粒AlN后,硬度明显提高。加入表面未处理纳米AlN颗粒,由于表面能高很容易团聚,分散不均匀,并且与铜基体材料界面结合不紧密,有明显的间隙存在。采用化学镀工艺对AlN颗粒表面镀Cu,以改善Cu-AlN界面状况。结果表明:AlN颗粒表面经化学镀处理后能提高复合材料界面结合强度,在基体和增强颗粒之间可以有效传递载荷,使复合材料的相对密度、相对电导率、硬度、抗弯强度均有所提高。
     本文采用机械合金化工艺制备了Cu-Zr复合粉末,开发了相应的成形工艺,并与Cu-Cr-Zr、Cu-Cr-Zr-La、Cu-Cr-Zr-La- Al_2O_3、Cu-Cr-Zr-La-AlN加以对比,寻求最佳工艺参数。同时采用AlN颗粒增强Cu基复合材料,通过化学镀工艺对AlN颗粒进行表面处理,对Cu/AlN复合材料进行界面优化,探索其对复合材料性能的作用。本论文的研究结果对研制开发新型铜基复合材料有着重要的理论和现实意义。
Copper and copper alloys are the traditional high-conductivity materials, but its application is greatly restricted because of lack of strength and hardness performance. The development of electronic, mechanical, aeronautic and aerospace industries is in great demand of developing functional materials with high electrical conductivity, thermal conductivity and excellent mechanical properties, low coefficient of thermal expansion.
     In this thesis, to develop copper matrix composites with high electrical conductivity, high strength and hardness, the components of the composite and the preparation technique were designed. Cu(-Zr) matrix composites were fabricated by mechanical alloying (MA) plus cold pressure forming and repressing and resintering process to find the best fabrication process to meet the high- strength,high-conductivity properties. The mechanical alloying process of powder and the composites microstructure, mechanical, physics properties were systematically observed and analyzed by means of SEM, XRD, TEM, and other test instruments. All of these works lay a solid foundation for developing the utilization area of novel advanced copper matrix composites.
     Cu (-Zr) supersaturated solid solutions were prepared by mechanical alloying, whereas such a binary system is known to be immiscible in solid and liquid state. The crystalline of Cu-Zr alloy powders were significantly refined and lattice strain had serious lattice distortion during MA process.
     Densification Process of Cu-Zr alloy powders was studies by means of cold pressing-sintering-repressing-reinterring method. The influence of different composition Cu-Zr composite on the relative density, conductivity, bending strength and hardness was discussed systematically.
     Compare with the Cu-Zr composite,the hardness of the Cu-Cr-Zr composite was improved because of the smaller of Cr phase and Zr precipitated phases. The addition of a small number of rare earth element-La increased the composite conductivity and the hardness.
     The hardness was improved obviously after adding ceramic particles AlN. The un-surface treatment of nano-particles AlN was easily reunited due to higher surface energy. The interface between nano-particles and the copper-based material did not close and existed clear gaps.
     AlN particles were coated Cu by electro-less deposition to modify Cu-AlN interfaces. The results indicate that the interface of composites was compact. The interfacial bonding strength was improved and the loads can be transferred effectively between matrix and AlN by the surface modification with Cu. Therefore, the relative densities, conductivity, bending strength and hardness properties of composites are improved.
     In this paper, Cu-Zr composite powder was prepared by mechanical alloying process. Cu-Zr composites were formed by cold pressure forming and repressing and resintering method and were compared with Cu-Cr-Zr, Cu-Cr-Zr-La, and Cu-Cr-Zr-La-Al_2O_3 and Cu-Cr-Zr-La-AlN composites to find the best process parameters. The Cu-matrix composites were reinforced by AlN particles. AlN particles were coated Cu by electro-less deposition to modify Cu-AlN interfaces. It is of great significances in theory and practice to develop the new type of copper matrix composites.
引文
[1]闵光辉,宋立,于化顺,等.高强度导电铜基复合材料[J].功能材料,1997,28 (4):342-355.
    [2]杨春秀,郭富安,慕思国,等.引线框架用Cu-Cr-Zr合金的研究现状[J].金属功能材料,2006,13(3):24-28.
    [3] D.Coupard, M.C. Castro, J.Coleto, et al. Wear behavior of copper matrix composites [J]. Key Engineering Materials,1997,(127-131): 1009-1016.
    [4]吴渝英,张国定,洪骏. C/Cu复合材料在电刷中的应用[J].机械工程材料, 1995,19(1):25-27.
    [5]曾汉民主编.高技术新材料要览[M].中国科学技术出版社,1993:110。
    [6]美国金属学会.金属手册[M].北京:机械工业出版社,1994.
    [7] D. Raabe, K. Miyake, H. Takahara. Processing, microstructure and properties of ternary high-strength Cu-Cr-Ag in situ composites[J]. Mater Sci Eng, 2000, A291: 186-197.
    [8]刘平,康布熙,曹兴国.快速凝固Cu-Cr合金时效析出的共格强化效应[J].金属学报,1999,35(6):561-564.
    [9] J.B.Correia, H.A.Davies, C.M.Sellars. Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloys [J]. Acta Mater.1997,45(1): 177-190.
    [10]赵冬梅,董企铭,刘平等.高强高导铜合金合金化机理[J].中国有色金属报,2001,11(S2):21-24.
    [11]田莳,李秀臣,刘正堂.金属物理性能[M].北京:北京航空工业出版社,1994.
    [12]孙世清,毛磊,刘宗茂,等.高强高导铜基复合材料[J].河北科技大学学报,2000,52(1):19-22.
    [13] Keiichi Kuniya,Hideo Arakawa,Tsuneyuki,et,al. Development of copper- carbon fiber composite for electrodes of powder semiconductor devices. IEEE, Transactionson Components[C], Hybrids and Manufacturing Technology, 1983, b(4):467-472.
    [14]贺福,王茂章.碳纤维及其复合材料[M].北京:科学出版社,1995.
    [15] I.Ahmad,J.M.Barranco. Strengthening of copper with tantalum(continuous) filaments[J]. Metallurgical Transactions,1970,1(14): 989-995.
    [16] K.Ichikawa, M.Achikita. Electric conductivity and mechanical properties of carbide dispersion-strangthened copper prepared by compocasting[J]. Materials Transations, 1993,34(8):718-724.
    [17]《重有色金属加工手册》编写组.重有色金属材料加工手册(第一分册)[M]北京:冶金工业出版社,1979.
    [18]张运.武建军.铜铝合金的内氧化[J].材料科学与工艺.1999,7(2):91-95.
    [19]周国洪,李华伦.铜铝合金的氧化分析[J].西北工业大学学报,2002,20(2): 176-179.
    [20]于艳梅,杨根仓,李华伦.内氧化制备Cu- Al2O3复合材料新工艺的研究[J].粉末冶金技术,2000,18(4):252-256.
    [21]贾燕民,丁秉钧.制备弥散强化铜的新工艺[J].稀有金属材料与工程, 2000,29(2):141-143.
    [22] S Kexing, X Jiandong, D Qiming,et al.Internal oxidation of dilute Cu-Al alloy powers with oxidant of Cu2O[J].Material Science and Engineering, 2004,A308:117-122.
    [23] S Kexing, X Jiandong, T Baohong,et al.Kinetic equation based on non-steady-state diffusion of oxygen in solid copper[J]. Trans Nonferrous Met Soc China,2005, 15(3):589-593.
    [24]李红霞,田保红,宋克兴,等.低铝含量Cu-Al合金的表面弥散强化及其性能[J].材料热处理学报,2005,26(2):94-99.
    [25]李红霞,田保红,宋克兴,等.内氧化法制备Al2O3/Cu复合材料[J].兵器材料科学与工程,2004,27(5):64-68.
    [26]张玉龙.先进复合材料制造技术手册[M].北京:机械工业出版社,2003.
    [27]朱心昆,林秋实,陈铁力,等.机械合金化的研究及进展[J].粉末冶金技术, 1999, 17(4):291-296.
    [28]周本濂.材料制备中的非平衡过程[J].材料研究学报,1997,11(6):576.
    [29]黄培云主编.粉末冶金原理[M].北京:粉末冶金出版社,2004.
    [30] D.L. Zhang. Processing of advanced materials using high-energy mechanical milling[J]. Progress in Materials Science ,2004, 49 (3-4) :537-560
    [31] C. Suryanarayana. Mechanical alloying and milling[J]. Progress in Materials Science , 2001 ,46(1-2): 1-184.
    [32] V. V.Savin, V.A. Chayka, R.V. Kostenko.Formation of metastable phase equilibrium and amorphisation in Al26Zr74 alloy by gas atomization and by further mechanical alloying[J]. International Journal of Hydrogen Energy, 1999,24(2-3):115-117.
    [33] Y Wang, B Ding. The Preparation and the properties of microcrystalline and nanocrystalline CuCr contact materials[J]. IEEE Transactions on Components and Packaging Technology,1999,22(3):467-472.
    [34] P Le Brun, L Froyen, L Delaey. Modelling of the mechanical alloying process in a planetary ball mill: comparison between theory and in-situ observations [J].Materials Science & Engineering A: Structural Materials.1993, 161(1):75-82.
    [35] M Magini, A Iasonna. Energy transfer in mechanical: overview [J]. Materials Transactions, JIM. 1995,36(2):123-133.
    [36] D. R. Maurice, T. H. Courtney. Physics of mechanical alloying. A first report [J]. Metallurgical Transactions A. 1990,21:289-303.
    [37] C.C. Koch. Research on metastable structures using high energy ball milling at North Carolina State university: overview[J]. Mater.Trans.JIM,1995,36(2):85-95.
    [38] J.S. Benjamin, M. J. Bomford. Dispersion strengthened aluminum made by mechanical alloying [J]. Metallurgical and Materials Transactions A,1977, 8:1301-1305.
    [39] S.Ezzs, M.J. Koczac.美国粉末冶金代表团来华访问报告文集[C]. 1988,125-142.
    [40]柳光祖,田耘,单秉权.氧化物弥散强化高温合金[J].粉末冶金技术,2001, (01):20-23.
    [41] K. Okazaki, S.Kawanishi, K.Isonishi. Formation of nanophase niobium aiuminide by mechanical alloying [J]. Mater Trans JIM,1993,34(1):43 -48.
    [42] F. H. Froes, C. Suryanarayana, K. Russell, et al. Synthesis of intermetalics by mechanical alloying.Materials Science and Engineering-A, 1995, (191-192), 612 -623.
    [43]张家敏,史庆南,蒋平,等.机械合金化Cu-35%Pb粉体特性研究[J].昆明理工大学学报,2000,25(2):38-41.
    [44]于洋,胡连喜,线恒泽,等.机械球磨制备纳米晶Ni-30%Fe固溶体的研究[J].粉末冶金技术,2004,22(6):328-332.
    [45] U. Mizutani, C.H. Lee. Mechanical alloyin ion Cu-V and Cu-Ta systems characterized by positive heat of mixing: overview[J].Mater Trans JIM, 1995,36(2):210-217.
    [46]郑福前,谢明,刘建良,等.Ag-10Ni合金的机械合金化[J].贵金属,1998, 19(4) :1-3.
    [47]陈文革,丁秉钧,张晖.机械合金化制备的纳米晶W-Cu电触头材料[J].中国有色金属学报. 2002,12(6):1224-1228.
    [48] E. Botcharovaa, M. Heilmaier, J. Freudenberger, et al. Super saturated solid solution of niobium in copper by mechanical alloying [J]. Journal of Alloys and Compounds, 2003,(351):119-125.
    [49] D.G.Morris, M.A.Morris. High strenghth Cu-Zr alloys prepared by MA techniques [J]. Materials Science and Engineering A, 1992(158):111-117.
    [50] D.Raabe,K.Miyake,H. Takahara. Processing, microstructure,and properties of ternary high-strength Cu–Cr–Ag in situ composites[J]. Materials Science andEngineering A, 2000,291(1-2): 186-197.
    [51] B.L. Shen, T. Itoi, T. Yamasaki, et al. Indentation creep of nanocrystalline Cu-TiC alloys prepared by mechanical alloying [J]. Scripta mater,2000,42(9): 893-898.
    [52]熊拥军,邓至谦,凌兴珠,等. TiB2颗粒增强铜基复合材料的研究[J].中南工业大学学报,2001,32(3):294-297.
    [53]张瑾瑾,王志法,张霞,等.机械合金化制备SiC弥散强化铜基复合材料[J].湖南有色金属,2005,21(1):23-26.
    [54]中国机械工程学会焊接学会.电阻焊理论与实践[M].北京:机械工业出版社, 1994.
    [55]李美霞,杨涛,郭志猛.电阻焊电极用铜合金材料的研究进展[J].河北工业科技, 2007,25(02):116-118.
    [56] K.L. Chatterjee, W. Waddell. Electrode wear during spot welding of coated steel [J]. Welding and Metal Fabrication,1996,64(3) :110-114.
    [57] R. Holliday, J.D. Parker, N.T .Williams. Electrode deformation when spot Welding Coated Steels[J]. Welding in the World,1995,35(3) : 160-164.
    [58] S.M.Darwish, A.Al-Samhan. Thermal stresses developed in weld-bonded joints[J]. Journal of Materials Processing Technology, 2004,(153-154): 971- 977.
    [59]郜建新,宋克兴,田保红,等.内氧化法制备Al2O3 /Cu点焊电极的装机试验[J].特种铸造及有色合金,2006,6(8): 509-511.
    [60]中国机械工程学会主编,焊接手册:焊接方法与设备[M].北京,机械工业出版社,1992.
    [61]美国金属学会主编,金属手册第九版第二卷有色金属[M].北京,机械工业出版社,1994.4:360-582.
    [62]崔晓龙,齐民,王来.Cu-Cr难互溶系机械合金化中氧化控制及介稳相形成[J].大连理工大学学报,2001,41(2):181-186.
    [63]陈振华,陈鼎编著.机械合金化与固态反应球磨[M].北京,化学工业出版社, 2005.11:13-59.
    [64]王尔德,刘京雷,刘祖岩.机械合金化诱导固溶度扩展机制研究进展[J].粉末冶金技术,2002:20(2):109-112.
    [65]陈仕奇,曲选辉,黄伯云,等.机械合金化Cu50Cr50合金的致密化和组织分析[J].矿冶工程,2000,20(1):59-61.
    [66]李世波,谢建新,陈姝等.机械合金化W-Cu固溶体的形成机理[J].材料科学与工艺,2006,14(4):424-427.
    [67] T. Venugopal, K. Prasad Rao, B.S. Murty. Synthesis of copper–aluminananocomposite by reactive milling [J]. Materials Science and Engineering A.2005,393(1-2):382-386.
    [68]丰振军,杜忠泽,王庆娟.高强高导Cu-Cr-Zr系合金的研究进展[J].材料热处理技术,2008,37(8):86-89.
    [69] J.Szablewski, R.Haimann. Influence of thermo-mechanical treatment on electrical properties of a Cu-Cr alloy[J]. Mater. Sci. Techn. 1985,1(12):1053.
    [70]王世中,臧鑫士.现代材料研究方法[M].北京:北京航天航空大学出版社, 1991.
    [71]范景莲,黄伯云,曲选辉.高能球磨合成W-Ni-Fe纳米复合粉末特性[J].稀有金属材料与工程,2001,30(3):208-211.
    [72]杨元政.纳米晶Fe及Fe基合金的形成与结构[D].中国科学院固体物理研究所硕士论文,合肥:中国科学院固体物理研究所,1994.
    [73] D. Y. Ying,D. L. Zhang.Processing of Cu- Al2O3 metal matrix nano composite materials by using high energy ball milling[J]. Mater Sci Eng A,2000, 286(1): 152-156.
    [74] J.M. Wu, Z.Z Li.Nanostructured composite obtained by mechanically driven reduction of CuO and Al powder mixture[J]. Journal of Alloys and Compounds, 2000,299(1-2):9-16.
    [75]廉育英.密度测量技术[M].北京:机械工业出版社,1982:161.
    [76]王盘鑫.粉末冶金学. [M].北京:冶金工业出版社,1997.
    [77]白常厚,刘关强.高强高导电极材料铜铬锆合金新工艺研究[J].有色矿冶, 2007,23(1):31-38.
    [78]刘平,康布熙,曹兴国,等. Zr和Mg对快速凝固Cu-Cr合金时效析出过程的影响[J].金属热处理学报, 1999,20(02):46-50.
    [79]谢春生,周健,任合,等.稀土铬锆铜合金强化工艺研究[J].金属热处理,2001,6:12-14.
    [80]刘枝文,稀土对铜铬锆合金性能的影响[J].金属热处理,1994,1:24-26.
    [81]刘德宝,崔春翔.TiN颗粒增强铜基复合材料的制备及性能研究[J].稀有金属, 2004.28(5):856-861.
    [82]杨德庄.位错与金属强化机制[M] .哈尔滨:哈尔滨工业大学出版社,1991.
    [83]郭建.合金元素及增强体表面状况对SiCp/Al复合材料界面的影响及其交互作用[D].郑州大学博士论文,郑州:郑州大学.2003.
    [84]韩绍昌,李学谦,徐仲榆.铬对改善铜与炭石墨材料润湿性的作用[J].湖南大学学报,1998,25(5):30-33.
    [85] S.F. Moustafa,Z. Abdel-Hamid,A.M. Abd-Elhay. Copper matrix SiC and Al2O3 particulate composites by powder metallurgy technique[J]. Materials Letters,2002 ,53 (4-5): 244-249.
    [86]宿辉.(SiC)

表面修饰、表征及应用的研究[D].哈尔滨工业大学博士论文,哈尔滨:哈尔滨工业大学,2005.
    [87] D. D.L.Chung. Cement-matrix composites for thermal engineering[J]. Applied Thermal Engineering,2001,21(16):1607-1619.
    [88] R.Asthana,P.K.Rohatgi.On the melt infiltration of plain and nickel-coated reinforcements with aluminium alloys[J]. Journal of Materials Science Letters, 1993,12(6) :442-445.
    [89]汪学铭.应用前景广阔的氮化铝[J].无机盐工业,1997(6):21-23.
    [90] R.Weil. Electroless Plating:Fundamentals & Applications, G. O.Malloy & J. B.Hajdu.Editors,AESF,Florida,1990:121.
    [91]尹延国.铜基石墨自润滑材料及其摩擦学研究[D].合肥工业大学博士论文,合肥:合肥工业大学,2006.
    [92]刘君武,吕珺,王建民,等. SiC粉体化学镀铜工艺研究[J].电镀与涂饰,2005, 24(12):15-18。
    [93]刘德宝,崔春翔,马旭.氮化铝颗粒表面镀铜及其增强铜基复合材料[J].兵器材料科学与工程,2005,28(2),8-11.
    [94]黄奇松.ABS塑料电镀[M].香港:香港万里书店有限公司,1979.
    [95]马智勇.化学镀法制备纳米Co-Al2O3复合粉末的研究[D].浙江:浙江大学材化学院, 2002.
    [96]周荣延.化学镀镍的原理与工艺[M].北京:北京国防工业出版社.1975年第一版: 132- 138.
    [97]王贵青,孙加林,陈敬超.石墨颗粒表面镀铜研究[J].表面技术,2003, 32(1):35-37.
    [98]熊海平.化学镀铜的进展[J].表面技术,2002,31(6):5-6,11.
    [99]赵斌,方晓,毛德.化学镀铜新工艺[J].华东理工大学学报,1997,23(3):367 -371.
    [100]张中宝,许少凡,袁传勇.Ti3SiC2陶瓷颗粒表面超声波化学镀铜[J].金属功能材料,2006,13(6):13-17.
    [101]黄子勋.电镀理论[M].北京:中国农业机械出版社,1982,183-185.
    [102] M.J.Tan,X.Zhang. Powder metal composites: selection and processing[J],Material Science & Engineering. A,1998,224(1):80-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700