用户名: 密码: 验证码:
铜—铬机械合金化及石墨/(铜—铬)复合材料组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨/铜复合材料,不仅导电性与导热性优异,而且具有良好的抗电弧侵蚀和抗磨损能力以及较高的强度,是一种具有广泛应用前景的新型材料,尤其是在电接触材料领域得到广泛的应用。石墨与铜完全不浸润,在使用粉末冶金方法制备的复合材料当中,两者也只是机械互锁结合,其界面强度低,严重影响了复合材料的性能。因此,如何在保持较高电导率水平的前提下,大幅度地提高强度、硬度和耐磨性的问题已成为铜基复合材料研究与开发的重要问题。
     有研究发现,铬可减小铜和石墨的润湿角,并且铜铬合金往往具有较高强度,因此本文通过组分优化设计,采用机械合金化技术制备Cu-Cr过饱和固溶体合金粉末,并结合粉末冶金方法制备采用基体合金化方法强化基体的石墨/铜-铬复合材料,以开发高性能铜基自润滑复合材料为目标,为拓展新型铜基复合材料的应用领域提供技术保障。本文的研究主要包括以下几个方面的内容:
     (1)采用机械合金化技术制备了Cu-5wt%Cr复合粉体,利用XRD分析了Cu-5wt%Cr复合粉体机械合金化过程。结果表明:随着球磨时间的增加,晶粒不断细化,Cu-5wt%Cr复合粉末衍射峰不断宽化,衍射强度逐渐下降;当球磨60h时,Cr已完全固溶在Cu晶格中。
     (2)采用粉末冶金方法制备了石墨/铜复合材料,探讨了制备工艺对复合材料致密性的影响。结果表明:在复合材料压制过程中,随着Cu-5wt%Cr复合粉体含量的增加,冷压难度增大。压制前对Cu-5wt%Cr复合粉体进行400℃退火处理可部分降低冷压难度,要保证材料的密度,同时还需在一定的范围内增加压制压力,由此制备出的石墨/铜-铬复合材料具有较高的密度,Cu-5%wtCr复合粉末的强化效果能得以保留。
     (3)分析了基体合金化对石墨/铜复合材料性能的影响,结果表明:随着Cr含量增多,石墨/铜复合材料硬度提高,抗弯强度先增大后减小,导电性能下降。其原因是在冷压工艺下,随着Cu-5wt%Cr复合粉末含量的增加,复合材料难以达到较高密度,从而造成抗弯强度和导电性的损失。当复合材料中Cr含量小于1%时,复合粉末则能有效地增强基体,而使得电阻率只有小幅度的增加。
     (4)探讨了基体合金化对(7.5%)C/Cu-Cr复合材料摩擦磨损性能的影响。结果表明:随着Cr含量的增加,复合材料摩擦系数增加;当基体中Cr含量小于2.0%时,复合材料具有较高的强度和合适的硬度,摩擦副之间能够形成良好的复合固体润滑膜,有效地降低了磨损量,特别是当Cr含量为1.0%时,复合材料耐磨性最好;当Cr含量超过2.0%时,复合材料强度降低,硬度增加,磨损机制以磨粒磨损为主,Cr含量愈高,磨损量愈大。
Graphite/copper matrix composites,novel kind of advanced material, are considered to have great potential application due to its combinations of excellent conductivity, thermal conductivity, good erosion resistance to electricity arc as well as excellent wear resistance and are broadly used as the electric contacts and brush materials. While the interface between the carbon and the copper matrix exists in the form of mechanical bonding in composites manufactured by powder metallurgy method, which has the low bonding strength and often has a serious impact on the performance of Graphite/copper matrix composite materials, the improvement of strength, hardness and wear resistance has become a important problem for the research and development of graphite/copper composite materials.
     Research has found that the contact angle between copper and graphite can be reduced by chromium and that copper-chromium alloy often has a higher strength than copper. Therefore in this paper we use mechanical alloying technology to pre- pare Cu-Cr supersaturated solid solution alloy powder by optimizing component design. The powder metallurgy method is also used to manufacture C/(Cu-Cr) com- posites. All of these work aims at developing high-performance copper matrix self-lubricating composite materials and lays a technique foundation for the develo- pment of novel composites. The work includes the following aspects:
     (1) In this paper mechanical alloying method was used to prepare Cu-5wt%Cr alloy powder. The XRD was adopted to analyze the mechanical alloying process of Cu-5wt%Cr.The result shows that: with the increase of ball-milling time, the particle and grain of Cu-5wt%Cr powder refine gradually, the X-ray diffraction peaks of both copper and chromium become broader and their intensity decrease. Cu-Cr super saturation solid solution was obtained by 60h milling.
     (2) Powder metallurgy method was used to manufacture C/(Cu-Cr) composites and the influence of manufacture process on the properties of copper matrix graphite composites is discussed. The results showed that: In the process of repression, with the content of Cu-5wt% Cr composite powders in the composite material increasing, the difficulty of cold repression is increasing. Annealing treatment at 400℃before repression can effectively alleviate the difficulty. To ensure the density of materials, the suppress force must be increased at the same time.Thus the prepared C / (Cu-Cr) composite materials have a high density and the strengthening effect of Cu-5wt% Cr composite powders can be preserved.
     (3) In this paper the influence of matrix-alloying on the properties of graphite /copper matrix composites was studied in this paper. The results show that with the content of Cr increasing, the hardness of graphite/copper composites improves and flexural strength increases first and then decreases, while the conductive performance reduces. The reason is that: At cold repression process, with the content of Cu-5wt% Cr composite powders increasing, it is difficult to achieve higher density of composite and so the bending strength and electrical conductivity are lost.But When the content of Cr in the composite material is less than 1%, the composite powder can effectively strengthen the matrix, only causing a small resistivity increasing.
     (4) The impacts of Cu-Cr mechanical alloying on the friction and wear performance of C / (Cu-Cr) composite materials are discussed. The results show that: With the increasing of Cr content, the friction coefficient of composite materials increase; when the content of Cr in composite materials is less than 2.0%, the composite material has higher strength and a suitable hardness and a good composite solid lubricating film can be formed, which can effectively reduce the amount of wear and tear. Especially when the content of Cr is 1.0%, the composite materials have the best friction and wear properties; When the content of Cr is more than 2.0%, the strength of composite material reduces and the hardness increases, Abrasive wear is the main wear mechanism. And the higher content of Cr, the greater wear volume.
引文
[1] Bloyce A,Morton PH,Bell T.Surface Engineering of Titanium and Titanium Alloys[J].Metals Handbook,1994,(5):835.
    [2]张静平,梅炳初,朱教群等.铜基复合材料研究[J].稀有金属报,2006,25 (10):1-4.
    [3] Yang Chao Cong(杨朝聪).高强度导电铜合金的研究与进展[J]. Yunnan Metallurgy (云南冶金),2000(12):7-12.
    [4]张红霞,胡树兵,涂江平.颗粒增强铜基复合材料的研究进展[J].材料科学与艺,2005,13(4):357-360.
    [5]湛永钟.非连续增强铜基复合材料的研究现状[J].材料开发与应用, 2005, 20 (4):41-45.
    [6]高闰丰,梅炳初,朱教群等.弥散强化铜基复合材料的研究现状与展望[J].稀有金属快报,2005,24(8):1-6.
    [7]刘德宝,崔春翔.氮化物陶瓷颗粒增强铜基复合材料的干摩擦磨损性能研究[J].摩擦学学报,2006,26(1):54-58.
    [8]强颖怀,王晓虹,冯培忠. SiCp增强金属基复合材料的研究进展[J].轻金属, 2003,(7): 49-51.
    [9]徐金城,李晓龙,夏龙等.短碳纤维增强铜基复合材料的制备及其性能的研究[J].兰州大学学报(自然科学版),2004,40(4):28-32.
    [10]罗贤,杨延清,王含英等.铜基复合材料的研究现状[J].材料导报,2006,20(8):76-79.
    [11] [日本] Da Hai He等.改进自润滑的集电器电接触材料[J].国外机车车辆工艺,2002, (5):21-29.
    [12]袁青,李虎,童文俊等.铜石墨复合材料改性研究进展[J].材料导报, 2004,18(11):47-49.
    [13]李艳,肖清贵.镀铜石墨粉的制备研究[J].表面技术,2006,35(1):60-62.
    [14]许少凡,李政,王文芳等.镀铜石墨粉含量对铜-镀铜石墨复合材料组织与性能的影响[J].热加工工艺,2003,(1):18-19.
    [15]王零森,杨兵等.基体成分对铜基摩擦材料性能的影响[J].中南工业大学报, 1996,27(2):194-195.
    [16] Zhang Y Z, Zhang G D. Graphite and SiC Particles reinforced copper composite and its tribological characteristic[J].Mater SciLett,2003, 22:1087.
    [17]许少凡,金牛,王成福.二硫化钼对铜-石墨复合材料组织与性能的影响[J].矿冶工程,2003,23(3):54-56.
    [18]许少凡,李政,何远程等.碳纤维对镀铜石墨-铜基复合材料组织与性能的影响[J].矿冶工程,2005,25(1):62-64.
    [19]李政,许少凡.碳纤维对镀铜石-铜基复合材料性能的影响[J].热加工工艺, 2004,(4): 41-43.
    [20]许少凡,顾斌,李政等.镀铜碳纤维-镀铜石墨-铜基复合材料的制备与性能研究[J].兵器材料科学与工程,2006,29(5):1-3.
    [21]张发云,闫洪,周天瑞等.金属基复合材料制备工艺的研究进展[J].锻炼技术, 2006, (6): 100-104.
    [22]李祖德,李松林,赵慕岳. 20世纪中、后期的粉末冶金新技术和新材料(1)—新工艺开发的回顾[J].粉末冶金材料科学与工程,2006, 11 (5): 253-260.
    [23]吴人洁.金属基复合材料的发展现状与应用前景[J].第十三届国际复合材料学术会议专辑,2001,(3):19-22.
    [24]胡春文,鲁世强,贺跃辉等.CuCr触头材料的制备方法[J].国外金属加工, 2004,25(2): 58-63.
    [25]王成福,应美芳,范文宁等.烧结工艺对碳纤维增强银、铜复合材料物理性能的影响[J].复合材料学报,1992, 9 (1):19-21.
    [26]凤仪,应美芳,王成福.碳纤维不同分布的碳纤维-铜复合材料的电导率[J].复合材料学报,1998,15(4):26-32.
    [27]张宏奇,丁华东,李稚文等.工艺因素对铜石墨烧结材料性能的影响[J].西安交通大学学报,1997,31(3):120.
    [28]王文芳,许少凡,凤仪,王成福.碳-铜基复合材料机械摩擦磨损性能研究[J].金属热处理,2000(4):19-21.
    [29]许少凡,王成福,碳纤维-铅青铜复合材料轴瓦的制造与应用[J].机械工程材料, 1992 , 16(2):49-52.
    [30] Hull D. An introduction to composite materials[M]. Cambridge: Cambridge University Press, 1981,46.
    [31]刘先曙.电接触材料的研究和应用[M].北京:国防工业出版社,1979.
    [32]日本碳素材料学会.电机用电刷及其使用方法[M].北京:机械工业出版社,1982.
    [33]宋正芳.电机电刷的应用与维护[M].黑龙江科学技术出版社,1984.
    [34]法国罗兰碳素公司.电机用电刷的样本[M],1973,4.
    [35]美国联合碳化物公司.电机用电刷的样本[M],1989,11.
    [36]英国摩根碳素公司.电机用电刷的产品样本[M],1989,11.
    [37]冯永翔.国外浸金属石墨电刷的基本情况[J],电碳,1999,1,1-3.
    [38]刘志远,工程用浸青铜石墨材料[J],机械工程材料,1991,4-13.
    [39]王新,李平,岳慧颖.电刷的技术特性及其影响因素[J] .炭素,2001,(2):17-21.
    [40]虞觉奇,易文质,陈邦迪等.二元合金状态图集[M].上海:上海科学技术出版社,1987.
    [41]崔晓龙,齐民,王来.Cu-Cr难互溶系机械合金化中氧化控制及介稳相形成[J].大连理工大学学报,2001,(41)2: 181-186.
    [42] D.L. Zhang. Processing of advanced materials using high-energy mechanical milling. Progress in Materials Science 49 (2004) 537-560.
    [43]陈振华,陈鼎.机械合金化与固液反应球磨[M].北京:化学工业出版社,2006:53.
    [44]杨元政.纳米晶Fe及Fe基合金的形成与结构[D].中国科学院固体物理研究所硕士论文.合肥,1994.
    [45] B.S.Murty and S.Ranganathan. Novel material synthesis by mechanical alloying / milling.Int.Mater.Rev.1998, 43(3):1-14
    [46] D. Maurice, T.H. courtney. Modeling of mechanical alloying: part I. deformation coalescence, and bdand fragmentation mechanisms. Metal. Mater. Trans. 1994, 25A(1): 147-158
    [47]王德宝.高性能耐磨铜基复合材料的制备与性能研究[D].合肥工业大学博士学位论文,2008.
    [48] E. Ma, M. Atzmon. Phase transformations induced by mechanical alloying in binary systems. Materials Chemistry and Physics 39 (1995) 249-267.
    [49]王世中,臧鑫士.现代材料研究方法[M].北京,北京航天航空大学出版社, 1991.
    [50]肖平安. Laves相TiCr2微粒增强Ti基合金的制备及其组织、性能和力学行为的研究[D].中南大学博士论文,长沙,2002.
    [51] Lu K. Nano Mater, 1993, 17(2): 3-12.
    [52] C. Suryanarayana. Mechanical alloying and milling. Progress in Materials Science 46 (2001) 1-184.
    [53]宋余九.金属的晶界与强度[M].西安,西安交通大学出版社, 1988.
    [54]韩绍昌,李学谦,徐仲榆.铬对改善铜与炭石墨材料润湿性的作用[J].长沙:湖南大学学报,1998,10:30-33.
    [55]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1982.
    [56]赵忠,丁仁亮,周而康.金属材料及热处理[M].北京:机械工业出版社,2003.
    [57]王盘鑫.粉末冶金学[M].北京:冶金工业出版社,1997.
    [58]李勇.氧化铝颗粒弥散强化铜基复合材料的研究[D].华中科技大学硕士学位论文. 2005.
    [59]吴怡芳,冯勇,李金山等.高能球磨Mg/B复合粉体的反应烧结致密行为[J].稀有金属材料与工程,2006,35(10):1673-1676.
    [60]方正春.Cu-Cr高导电率合金的熔铸技术[J].特种铸造及有色合金,1996,(5):39.
    [61]黄振山.稀土铜铬合金的试制[J].江苏冶金,1999,(4):13.
    [62]张瑞丰,沈宁福.快速凝固高强高导铜合金的研究现状及展望[J].材料科学工程,2000,18(4):140.
    [63]马凤仓,倪峰,杨涤心. Cu-Cr合金制备方法研究现状[J].材料开发与应用,2002,17(3):35.
    [64]赵忠,丁仁亮,周而康.金属材料及热处理[M].北京:机械工业出版社,2003.
    [65] Szablewsk J, Kuznicka B . Electrical Properties of RS Cu-Cr Alloys, Materials Science and Technology,1991,7:407-409.
    [66]张瑞丰,沈宁福.快速凝固高强高导Cu-Cr合金的性能[J].中国有色金属学报,2001,11 (1):105-109.
    [67] Weber L, Dorn J, Mortensen A. On the electrical conductivity of metal matrix composites containing high volume fractions of non-conducting inclusions. Acta Materialia, 2003, 51: 3199-3211.
    [68] Chang Shouyi, Chen Chifang, Lin Sujien. Electrical resistivity of metal composites. Acta Materialia,2003,51:6191-6197.
    [69]曲在纲,黄月初.粉末冶金摩擦材料[M].北京:冶金工业出版社,2005.
    [70]束德林.金属力学性能[M].北京:机械工业出版社,1997.
    [71] K.-H.哈比希.材料的磨损与硬度[M].北京:机械工业出版社,1987.
    [72] Bowden, F P. ; Tabor. D. The friction and lubrication of solids. PartⅡOxford Clarendon Press(1964).
    [73] Burwell,J.T.; Strang,C.D. On the empirical law of adhesive wear. J. Appl.Phys.23S. 18-28 (1952).
    [74] Archard, J.F. Contact and rubbing of flat surfaces. J. Appl.Phys.24S. 981-988(1953).
    [75] Holm, R. Electric Contacts. Theory and Springer Verlag (1958).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700