用户名: 密码: 验证码:
颗粒增强钢基复合材料的消失模液锻制备技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为解决颗粒增强钢基复合材料制备过程中颗粒分布不均匀和界面结合弱化两大技术问题,本文提出了一种颗粒增强钢基复合材料制备新工艺——消失模液锻工艺。该工艺利用消失模(泡沫载体)携带增强颗粒,在载体消失过程实现增强颗粒的添加,利用钢液充型包裹捕捉作用实现增强颗粒均匀混入钢液,然后在压力作用下凝固成形,最终得到钢基体内部含有均匀分布的抗磨颗粒、组织细密、界面结合良好的颗粒增强复合材料
     实验研究了增强颗粒均匀分布于钢基体的制备工艺条件。采用颗粒平均分散系数表征和评价增强颗粒在钢基体的分布状态,并通过图像分析软件和Matlab统计软件计算各工艺条件下的平均分散系数。平均分散系数越小,颗粒分布越均匀。以TiC增强ZG55SiMn为例,通过正交实验得到TiC颗粒均匀分布的最优工艺为:液锻比压80MPa、冷却速度24.5K.s"1、充型速度107.6mm.s-1、颗粒体积分数10%。在此工艺条件下成形TiC/ZG55SiMn复合车轮制件,通过室温拉伸实验、耐磨性能实验和硬度测试实验对复合材料进行性能测试。实验结果为:TiC/ZG55SiMn复合材料的抗拉强度为525-560MPa,与未经TiC颗粒增强的钢基体抗拉强度相比有所下降,但硬度达到HRC58.1,较未经TiC颗粒增强的提高了60%-70%;单位长度的磨损量为3.57×10-9Kg.m-1,仅为未经TiC颗粒增强的20%~25%;比模量为6.84MPa.m3.Kg-1,较未经TiC颗粒增强的提高了5%。
     研究了附带增强颗粒泡沫载体气化消失行为,建立了金属模腔加压充填条件下载体消失产生的气隙压力和气流速度的计算公式;研究了增强颗粒与钢液的作用行为,提出了增强颗粒进入钢液的条件、颗粒在钢液不团聚条件和颗粒最终被凝固界面捕获而均匀分布在钢基体的条件;研究了制备工艺参数对颗粒分布和界面结合的影响规律。
     研究了在TiC颗粒均匀分布最优的工艺参数条件下,不同的冷却速度(2K.s-1、6K.s-1、15.8K.s-1、24.5K.s-1)、不同的颗粒体积分数(2%、5%、10%、15%)和不同的液锻比压(40MPa、60MPa、80MPa、100MPa)对TiC颗粒分布的影响规律。采用光学显微镜(OM)和扫描电镜(SEM)观察TiC颗粒在钢基体中的分布情况。实验结果表明TiC颗粒易沿着充型方向发生团聚,后充满部位的TiC颗粒浓度比先充满的大。TiC颗粒随冷却速度增大分布越均匀;当颗粒体积分数小于10%时,TiC颗粒随颗粒体积分数增大分布越均匀,但当颗粒体积分数大于10%以后,TiC颗粒随颗粒体积分数增大而变得不均匀;随液锻比压增大TiC颗粒分布越均匀,当液锻比压大于100Mpa以后,随液锻比压变化TiC颗分布变化不明显。
     通过扫描电镜观察拉伸试样断口处和磨损实验试样表面TiC颗粒的剥落情况,研究不同液锻比压对界面结合的影响作用。实验结果表明在较低的液锻比压条件下,界面结合不好,界面附近存在微孔,TiC颗粒与钢基体脱离或被拔出,保持着圆整的颗粒状。说明,在较低的应力下裂纹即可沿着界面脱离方向扩展,最后连接在一起造成材料的脆性断裂。随着液锻比压的增大,界面结合良好,其断裂机制是TiC颗粒碎化,形成裂纹,然后沿着界面处扩展,最后引起界面撕裂。裂纹扩展过程需要在钢基体中产生大量的局部塑性变形并消耗大量的应变能,界面有足够的强度,复合材料可承受更大的外加载荷。
     通过电子显微探针(EPMA)和X射线衍射分析(XRD),研究Ni包覆TiC颗粒对界面的影响作用。实验结果表明,经8%Ni包覆的TiC颗粒与钢基体的界面区域主要物相为Fe3Ni2,界面影响区域厚度范围约为0.5-1.5μm,界面结合不是简单的机械镶嵌而是发生了一定化学反应的冶金结合。Ni的加入促进钢液合金元素向TiC颗粒相周围的扩散,增大TiC颗粒表面能,降低颗粒与钢熔体的润湿角,最终形成Fe-Fe3Ni2-TiC阶梯式连续界面,改善了界面润湿性和结合强度,性能得到改善。
To resolve the two key technique issues of particle uneven distribution and weak interface bonding during the fabrication of particle reinforced steel matrix composites (PRSMCS), a novel technology named Lost Foam Liquid Forging(LFLF) was proposed in this paper. The technology makes particles getting into molten steel equably come true by the interaction of foam carrier with molten steel, then solidified under applied pressure, and finally obtains the PRSMCS with the uniform distribution of particle, compact structure and excellent interface bonding.
     This paper researched the preparation process of PRSMCS with uniform distribution of reinforced particle. Distribution of particle in steel matrix was characterized with the mean dispersion coefficient, which was gained by use of image analysis software and Matlab statistical software. The smaller of mean dispersion coefficient, the more equably distribution of particle in steel matrix. The orthogonal experiment for preparing composite of TiC/ZG55SiMn was carried out. When the specific pressure is at80MPa, cooling velocity at24.5K.s-1, filling velocity at107.6mm.s-1and TiC particle volume fraction at10%, the most uniform distribution of TiC particle in steel matrix was gained. Specimens were sampled from the composite of TiC/ZG55SiMn fabricated by the above optimal technical parameters, and to be subjected to tensile test, wear test and hardness test successively. The experimental results show that tensile strength of TiC/ZG55SiMn is525-560MPa, which is smaller than that of steel matrix without TiC particle reinforced; Hardness of TiC/ZG55SiMn is58.1HRC, which is improved by60%~70%compared with that without TiC particle reinforced; wearing capacity of unit length is3.57X1O-9Kg.m-1, which is only20%-25%of that without TiC particle reinforced; specific modulus is6.84MPa.m3.Kg-1, which is improved by5%compared with that without TiC particle reinforced.
     The gasification behaviors of foam carrier with particle-reinforcement was studied in LFLF, and the computational formula of airflow pressure and airflow velocity in metal cavity were established; The interaction behavior of particle with molten steel was studied, the conditions for particle getting into molten steel, distributing equably in molten steel, and being captured by solidification interface were discussed; In addition, the influence rules of technical parameters on particle distribution and interface bonding were also investigated.
     Effects of different cooling velocity(2K.s-1,6K.s-1,15.8K.s-1,24.5K.s-1), different particle volume fraction(2%,5%,10%,15%), and different specific pressure(40MPa,60MPa,80MPa,100MPa) on TiC particle distribution were analyzed in the case of the above optimal technical parameters for fabricating TiC/ZG55SiMn. Distribution of TiC particle in steel matrix was investigated by optical microscope(OM) and scanning electron microscope(SEM). The experimental results show that it's easy to make TiC particle aggregation in the direction of mold filling of molten steel, and the concentration of TiC particle in the subsequent full of part is greater than that in the first full of part. TiC particle distributes more equably with the increase of cooling velocity; when particle volume fraction is lower than10%, TiC particle distributes more equably with the increase of particle volume fraction, but the situation is opposite when particle volume fraction exceeds10%. TiC particle distributes more equably with the increase of specific pressure, but the change trend is not obvious when specific pressure exceeds100Mpa.
     Effect of different specific pressure on interface bonding was analyzed by means of observing fracture morphology of tensile sample and surface appearance of wearing sample by SEM. The experimental results show that on the condition of low specific pressure, there are micro-pores on the interface, and TiC particles on the fracture which is separated or pulled out from steel matrix. It proves that the unbound region of interface leads to cracks, then grow up and hold together, which causes brittle fracture of composite, so the interface bonding is poor on the condition of low specific pressure. With the increase of specific pressure, cracks come from TiC particle fragmentation but not interface, and there are lots of strain energy will be consumed during the crack propagation process, which causes local plastic deformation in steel matrix. So it's achievable for excellent interface bonding as specific pressure increases and composite can bear more applied load.
     Effect of TiC particle coated with8%Ni on interface bonding was analyzed by means of EPMA and XRD. The experimental results show that the main phase on the interface between TiC particle coated with8%Ni and steel matrix is Fe3Ni2, the combination of interface is not simply mechanical setting but metallurgical bonding with a certain of reactions. The addition of Ni accelerates diffusion of alloying element from steel matrix to TiC particle, increases the surface energy of TiC particle, reduces the wetting angle of TiC particle between steel matrix, and forms the continuous interface in the form of Fe-Fe3Ni2-TiC, so the wettability and bonding strength of interface were enhanced, and the mechanical performance was improved accordingly.
引文
[1]张国赏,魏世忠,韩明儒,邢建东,高义民.颗粒增强钢铁基复合材料.北京:科学出版社.2013
    [2]Gao, Y., Zhang, F. et al. Erosive wear resistance of particle reinforced stainless steel composites. Journal of Xi'an Jiaotong University.2001.35(7):727-730
    [3]Srivatsan,T.S.et al. Tensile fracture behavior of particulate-reinforced steel-based metal matrix composites. American Society of Mechanical Engineers. Materials Division (Publication) MD. 1995.69(1):695-718
    [4]Zhang Guoshang, Gao Yimin; Xing Jiandong. Interfacial characteristics of tungsten carbide particle reinforced Hadfield steel matrix composite. Rare Metal Materials and Engineering. 2005.34(9):167-70.
    [5]Bayraktar, E., Ayari, F., Katundi, D., Chevalier, J.-P., Bonnet, F.. Weldability and toughness evaluation of ceramic reinforced steel matrix composites (TiB2-RSMC). Advanced Materials Research.2011.264-265:475-483.
    [6]Guo, Changqing. Fabrication & microstructure of tib2+tic duplex particulates reinforced carbon steel matrix surface composite. Key Engineering Materials.2014.575-576:198-202
    [7]Xing Zhiguo, Lu Zhenlin, Zhou Yongxin, Liu Jian. An investigation on erosion wear characteristics of SiC particle reinforced steel matrix surface composite. Materials Science Forum.2009.620-622:323-326
    [8]Xu Zhenming, Li Li. Wear behavior of austenite steel matrix composite reinforced by in situ granular eutectics in impact abrasion. Materials Science & Engineering A (Structural Materials: Properties, Microstructure and Processing).2006.428(1-2):256-261
    [9]J.Hashim等著,何建军编译.铸造金属基复合材料中的颗粒分布.国外金属加工.2005.26(1):24-30
    [10]周永欣,赵西城,吕振林.SiC粒子与钢铸渗复合界面特征分析.兵器材料科学与工程.2007.30(3):24-28
    [11]Wang Jing, Fu Sijing, Jiang Shuyong, Cheng Hong. Study on titanium carbide particles reinforced high manganese steel composite. Advanced Materials Research.2012. 557-559:232-235
    [12]Akhtar, F. Microstructure evolution and wear properties of in situ synthesized TiB2 and TiC reinforced steel matrix composites. Journal of Alloys and Compounds.2008.459(1-2):491-497
    [13]Mortension A, Jin I.. Solidification processing of metal matrix composites.International Materials Reviews.1992.37(3):101-128
    [14]Latanish R M. corrosion science corrosion engineering and advanced technologies. Corrosion Science.1995.51(4):270-283
    [15]Fedrizzi, A., Pellizzari, M., Zadra, M., Marin, E.. Microstructural study and densification analysis of hot work tool steel matrix composites reinforced with TiB2 particles. Materials Characterization.2013.86:69-79
    [16]Chawla, K. K.. Foams, fibers, and composites:Where do we stand?.MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING.2012.557(SI):2-9
    [17]张卫国,刘林,赵新宝等.定向凝固高温合金的研究进展.铸造.2009.58(1):1-6
    [18]Llorca, J.. Fatigue of particle-and whisker-reinforced metal-matrix composites. Progress in Materials Science.2002.47(3):283-353
    [19]Parashivamurthy, K.I., Sampathkumaran, P., Seetharamu, S., Chandrasekharaiah, M.N.. Microstructure and mechanical properties of in-situ TiC dispersed steel matrix composite. Materials Science and Technology Conference and Exhibition.2007.4:2075-2090
    [20]Gupta Pallav, Kumar Devendra, Parkash Om. Structural and mechanical behaviour of 5% A12O3-reinforced Fe metal matrix composites (MMCs) produced by powder metallurgy (P/M) route. BULLETIN OF MATERIALS SCIENCE.2013.36(5):859-868
    [21]Zhang Peng, Zeng Shaolian, Zhang Zhiguo. Study on dry friction and wear resistance of a WC-Co particle reinforced iron matrix composite material. CHINA FOUNDRY.2013.10(3):135-140
    [22]Yang Haoyu,Du Xiaodong,Wang Jianfeng. Microstructure and Properties of WC Particle Reinforced Steel Matrix Composites Prepared by Gas Tungsten Arc Welding. Special Casting & Nonferrous Alloys.2010.30(9):856-861
    [23]Yang Yafeng, Wang Huiyuan, Liang Yunhong, Zhao Ruyi, Jiang Qichuan. Effect of C particle size on the porous formation of TiC particulate locally reinforced steel matrix composites via the SHS reaction of Ni-Ti-C system during casting. Materials Science & Engineering A.2008. 474(1-2):355-362
    [24]Moghaddam, E. G., Karimzadeh, N., Varahram, N.. Impact-abrasion wear characteristics of in-situ VC-reinforced austenitic steel matrix composite. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING 2013.585:422-429
    [25]D.H. Bacon, L. Edwards, J.E. Moffatt, M.E. Fitzpatrick. Synchrotron X-ray diffraction measurements of internal stresses during loading of steel-based metal matrix composites reinforced with TiB2 particles. Acta Materialia.2011.59:3373-3383.
    [26]Ashok Kumar Srivastava, Karabi Das. The abrasive wear resistance of TiC and (Ti,W)C-reinforced Fe-17Mn austenitic steel matrix composites. Tribology International.2010. 43:944-950
    [27]M. Sheikhzadeh, S. Sanjabi. Structural characterization of stainless steel/TiC nanocomposites produced by high-energy ball-milling method at different milling times. Materials and Design. 2012.39:366-372.
    [28]Bourithis, L.,Milonas, Ath. et al. Plasma transferred arc surface alloying of a construction steel to produce a metal matrix composite tool steel with TiC as reinforcing particles. Surface and Coatings Technology.2003.165(3):286-295
    [29]Do Nascimento AM,et al. Wear resistance of WCp/Duplex Stainless Steel metal matrix composite layers prepared by laser melt injection. SURFACE & COATINGS TECHNOLOGY.2008.202(19):4758-4765
    [30]G. Ka ptay, Interfacial aspects to produce particulate reinforced metal matrix composites. session 2:Processing of metal matrix composite.1.2001:71-99
    [31]Ya-feng Yang, Hui-yuan Wang, Yun-hong Liang, Ru-yi Zhao, Qi-chuan Jiang. Fabrication of steel matrix composites locally reinforced with different ratios of TiC/TiB2 particulates using SHS reactions of Ni-Ti-B4C and Ni-Ti-B4C-C systems during casting. Materials Science and Engineering A.445-446 (2007) 398-404
    [32]鲜勇,王一三,丁义超,王静(V,Nb)C增强铁基复合材料的原位合成及微观组织研究.钢铁钒钛.2012.33(6):43-47
    [33]赵显鹏,耿建林,龚光辉,李黎明.电磁感应合成TiC增强铁基复合材料的研究.材料导报.2010.24(ZL):493-495.
    [34]王静,伏思静,丁义超.(Ti,W)c颗粒增强铁基表面复合材料微观组织的研究.材料热处理技术.2012.41(6):76-78
    [35]高琳,郭志猛,程军,赵利军,杜鹏.真空消失模铸渗制备TiC/FeCr增强钢基表面复合材料.粉末冶金工业.2013.23(3):43-47.
    [36]严有为等.原位TiC颗粒增强铸造钢基复合材料制备工艺.种铸造及有色合金.2002.5(1):19-21
    [37]张锦志等.低合金耐磨钢的研究与应用进展.金属加工(热加工).2009.15(1):29-31
    [38]仝健民.耐磨钢研究进展.水利电力机械.2003.25(2):29-32
    [39]张汉铀.多元低合金耐磨钢锤头的研制.金属矿山.2000.23(8):57-58
    [40]马彦忱.颗粒增强金属基复合材料.江苏冶金.2004.32(1):54-57
    [41]宁海霞,WC颗粒增强钢基复合材料的制备及耐磨性研究.铸造技术.2009.30(4):503-505
    [42]Zhang, Liying, Tian, Haige.et al. New composite:spray-deposited M2 high speed steel reinforced by WC particles. Journal of University of Science and Technology Beijing:Mineral Metallurgy Materials (Eng Ed).1997.4 (3):14-17
    [43]Aiguo Liu, Mianhuan Guo, Minhai Zhao, Changbai Wang. Microstructures and wear resistance of large WC particles reinforced surface metal matrix composites produced by plasma melt injection. Surface & Coatings Technology.201 (2007) 7978-7982.
    [44]刘旋,李祖来等.真空实型铸渗法制备自生TiC颗粒增强钢基表面复合材料的组织研究.铸造.2009.58(4):341-343
    [45]张勇等.粉末冶金原位合成(Ti, W)C增强铁基复合材料.机械工程材料.2008.32(1):40-43
    [46]Wang, H.Y. et al. Reactive infiltration synthesis of TiB2-TiC particulates reinforced steel matrix composites. Journal of Alloys and Compounds.2005.391(1-2):55-59
    [47]Zifei Ni, Yangshan Sun, Feng Xue, Jian Zhou, Jing Bai. Evaluation of electroslag remelting in TiC particle reinforced 304 stainless steel. Materials Science and Engineering A 528 (2011) 5664-5669
    [48]S.W. Hu, Y.G Zhao, Z. Wang, Y.G. Li, Q.C. Jiang. Fabrication of in situ TiC locally reinforced manganese steel matrix composite via combustion synthesis during casting. Materials and Design 44 (2013) 340-345
    [49]宾仕博,邢书明,鲍培玮.颗粒增强钢基复合材料的研究进展.特种铸造及有色合金2011年会专刊:190-193
    [50]贺娟,刘俊友,刘杰.TiC-高锰钢结硬质合金显微组织分析.热加工工艺,2009.38(18):71-73
    [51]赖丽,王一三等.碳化钒颗粒增强钢结硬质合金的研究.工具技术.2007.41(12):25-28
    [52]Guo Shang Zhang, Yi Min Gao, Jian Dong Xing, Shi Zhong Wei, Ji Wen Li, Liu Jie Xu. The Effects of Nickel-Plating on Al2O3 Particles Reinforced Steel Matrix Composites. Applied Mechanics and Materials.117-119:777-781
    [53]于化顺.金属基复合材料及其制备技术.北京:化学工业出版社.2006
    [54]孙晓永,翟文霞.外加颗粒增强钢基复合材料的研究.热加工工艺.2007.36(17):19-23
    [55]蔡美,王双成等.硬质合金/钢双金属复合材料的组织与性能研究.硬质合金.2008.25(4):203-207
    [56]曾绍连,李卫等.碳化钨增强钢铁基耐磨复合材料的研究和应用.特种铸造及有色合金.2007.27(6):441-442
    [57]高明星,郭长庆等.WC颗粒增强高锰钢基表面复合材料组织和硬度的研究.内蒙古科技大学学报.2008.27(4):311-315
    [58]祁小群,李秀兵等.WC颗粒增强高铬铸铁基表面复合材料喷射口衬板的研制.铸造技术. 2002.23(5):282-284,
    [59]周永欣,赵西城等.消失模铸渗法制备SiC颗粒增强钢基表面复合材料.机械工程材料.2007.31(5):33-35
    [60]熊容廷,原位合成VC颗粒增强铁基复合材料的微观组织与性能[学位论文].华中科技大学.2005
    [61]Chengsong Cui, Schulz, A., Uhlenwinkel, V., Zoch, H.-W.. Spray-formed stainless steel matrix composites with co-injected carbide particles. Metallurgical and Materials Transactions A (Physical Metallurgy and Materials Science).2011.42(8):2442-2455
    [62]Jiang Qi-chuan, Yang Ya-feng, Wang Hui-yuan, Liang Yun-hong, Zhao Ru-yi. Fabrication of steel matrix composites locally reinforced with different ratios of TiC/TiB2 particulates using SHS reactions of Ni-Ti-B4C and Ni-Ti-B4C-C systems during casting. Materials Science & Engineering A.2007.445-446:398-404
    [63]Erauskin JI.et al. Reinforcement of Austenitic Manganese Steel with (TiMo) Carbide Particles Previously Synthesized by SHS. ISIJ INTERNATIONAL.2009.49(4):582-586
    [64]刘小平,伏思静.原位合成TiC颗粒增强铁基复合材料的组织和性能.机械工程材料.2008.32(5):41-44
    [65]程凤军,王一三等.原位内生碳化钒颗粒增强铁基表面复合材料的研究.铸造技术.2005.6(5):377-380
    [66]M.Li, S. Ghosh, O. Richmond, H. Weiland, T.N. Rouns. Three dimensional characterization and modeling of particle reinforced metal matrix composites:part I Quantitative description of microstructural morphology. Materials Science and Engineering A.1999.265:153-173
    [67]P.J. Wray, O. Richmond, H.L. Morrison, Metallography 16(1983) 39.
    [68]W.A. Spitzig, J.F. Kelly, O. Richmond, Metallography 18 (1985)235.
    [69]J.J. Lewandowski, C. Liu, W.H. Hunt, Mater. Sci. Eng. A 107(1989) 241.
    [70]樊建中,桑吉梅,张永忠,张奎,张少明,石力开.铝基复合材料增强体颗粒分布均匀性的研究.1998.34(11):1200-1204
    [71]R.K. Everett, J.H. Chu, J. Comp. Mater.27 (1992) 1128.
    [72]马建国,叶劲,尤显卿,刘宝.离心铸造WC/钢复合材料显微组织.材料热处理学报.2009.30(6)65-69.
    [73]Alman, D.E., Dogan, O.N.. TiC-reinforced 304L-stainless steel-matrix composites via reactive sintering, Powder Metallurgy Alloys and Particulate Materials for Industrial Applications. Proceedings of Symposia held at TMS Fall Meeting.2000.179-88.St. Louis. MO. USA.
    [74]Li, Zu-Lai,Jiang, Ye-Hua, et al. Structure homogeneity of in-situ TiC particles reinforced steel-based composite materials Structure homogeneity of in-situ TiC particles reinforced steel-based composite materials. Cailiao Rechuli Xuebao/Transactions of Materials and Heat Treatment.2010.31 (4):1-5
    [75]吴钱林,孙扬善等.CeO2对原位TiC弥散强化钢组织和性能的影响.中国稀土学报.2008.26(1):92-95
    [76]Gul,H.,Kilic,F.et al. Characteristics of electro-co-deposited Ni-Al2O3 nano-particle reinforced metal matrix composite (MMC) coatings.2009. Wear.267(5-8):976-990
    [77]Zhang Guoshang, Gao Yimin, Xing Jiandong, Wei Shizhong, Li Jiwen, Xu Liujie.Interfacial Characteristics of WC Particles Reinforced Hadfield Steel Matrix Composites.Materials Science Forum.2010.654-656:2708-11
    [78]王玲,赵浩峰.金属基复合材料及其浸渗制备的理论与实践.北京:冶金工业出版社.2005
    [79]杨庆生.复合材料习惯结构力学与设计.中国铁道出版社.北京:2000
    [80]杨序纲.复合材料界面.化学工业出版社.北京:2010
    [81]H.Y. Wang, L. Huang, Q.C. Jiang. In situ synthesis of TiB2-TiC particulates locally reinforced medium carbon steel-matrix composites via the SHS reaction of Ni-Ti-B4C system during casting. Materials Science and Engineering A.2005.407:98-104
    [82]Chen Hong, Gu Dongdong, Dai Donghua, Andres Gasser, Andreas Weisheit, Ingomar Kelbassa, Zhong Minlin, Reinhart Poprawe. Laser metal deposition of TiC/Inconel 718 composites with tailored interfacial microstructures. Optics &LaserTechnology.2013.54:98-109
    [83]Qu Shiyao, Wang Xinhong, Zhang Min, Zou Zengda. Microstructure and wear properties of Fe-TiC surface composite coating by laser cladding. J Mater Sci.2008.43:1546-1551
    [84]Shan Quan, Li Zulai, Jiang Yehua. Effect of Ni Addition on Microstructure of Matrix in Casting Tungsten Carbide Particle Reinforced Composite. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY.2013.29(8):720-724
    [85]Q.C.Jiang, F.Zhao, H.Y.Wang, Z.Q. Zhang. In situ TiC-reinforced steel composite fabricated via self-propagating high-temperature synthesis of Ni-Ti-C system. Materials Letters 59 (2005) 2043-2047.
    [86]隋育栋,蒋业华,李祖来,周荣,山泉.Ni对WC/钢基表面复合材料组织和界面的影响.特种铸造及有色金属合金.2011.31(6):565-567.
    [87]Shan Quan, Li Zulai, Jiang Yehua, Zhou Rong, Sui Yudong, Chen Zhihui. Effect of Co addition on microstructure of matrix in tungsten carbide surface reinforced composite. Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research.2012.26(5):551-556
    [88]韩孟岩,陈维平等.Ni诱导无压浸渗法制备不锈钢/A1203陶瓷复合材料.特色铸造及有色金属.2010.30(8):753-757
    [89]程瑶,郭长庆,程军.Ti-Fe粉对颗粒增强45钢基表面复合材料复合层质量及组织的影 响.2010.29(1):23-28.
    [90]罗守靖,陈炳光,齐丕骧.液态模锻与挤压铸造技术.北京:化学工业出版社,2006
    [91]邢书明,鲍培玮.金属液态模锻.北京.国防工业出版社.2011
    [92]吴树森.材料加工冶金传输原理.北京:机械工业出版社.2001
    [93]Stefanescu D M, Dhindaw B K, Kacar S A, et al. Behavior of Ceramic Particles at the Solid/liquid Metal Interface in Metal Matrix Composites. Metallurgical and Materials Transactions A.1988.19 (11):2847-55.
    [94]罗守靖.复合材料液态挤压.北京.冶金工业出版社.2002
    [95]王零森.特种陶瓷.湖南:中南大学出版社,2005
    [96]姚淑卿.挤压铸造专用涂料研究[学位论文].北京交通大学.2010
    [97]谢国宏,厉松春,王务献,吴人洁.颗粒增强金属基复合材料中颗粒分布均匀性的定量金相分析方法.理化检验-物理分册.1995.31(1):36-38
    [98]Bin Shibo, Xing Shuming, and Bao Peiwei. Study on Distribution of TiC Particles in Molten Steel under Electromagnetic Stirring Condition. Advanced Materials Research.2011.299-300: 38-42
    [99]A.E. Karantzalis, A. Lekatou, E. Georgatis, T. Tsiligiannis, and H. Mavros. Solidification Observations of Dendritic Cast Al Alloys Reinforced with TiC Particles. Journal of Materials Engineering and Performance.2010.19(9):1268-1275
    [100]Bin LI, Qingyan XU, Xudong LI and Baicheng LIU. Numerical Simulation of Microstructure of Al-Si/SiCp Composites during Stir Casting Process with Particle Pushing Model. ISIJ International.2006.46 (2):241-249
    [101]李晓,李萍,薛克敏,王成,章凯.高压扭转法对SiCp-Al基复合材料颗粒分布的影响.材料工程.2012(2):50-54
    [102]Ekici R, Kemal Apalak M, Yildinm M, et al. Effects of random particle dispersion and size on the indentation behavior of SiC particle reinforced metal matrix composites. Materials and Design.2010.31:2818-2833.
    [103]李宏林.钢基Fe/A1201梯度涂层复合材料的研究[学位论文],济南大学.2006
    [104]曹洪吉.增强颗粒在离心场下迁移规律及复合材料磨损性能研究[学位论文],河南科技大学.2005
    [105]BIN Shibo, XING Shuming, TIAN Longmei, ZHAO Ning, LI Nan. Influence of technieal Parameters on strength and ductility of AlSi9Cu3 alloys in squeeze casting. Transactions of Nonferrous Metals Society of China,2013. (23):977-982
    [106]Arda Cetin, Ali Kalkanli. Effect of solidification rate on spatial distribution of SiC particles in A356 alloy composites. Journal of materials processing technology.2008.205:1-8
    [107]张宏伟.机械搅拌制备SiCp/Al-Mg复合材料及其凝固行为的研究[学位论文].哈尔滨工业大学.2011
    [108]黄福祥,张炯明,王新华等.夹杂物在钢液凝固前沿行为的原位动态观察.钢铁研究学报.2008.20(5):14-19
    [109]A. E. Karantzali, A. Lekatou, E. Georgatis, H. Mavros. Solidification behaviour of ceramic particle reinforced Al-alloy Matrices. Journal of Material Science.2010.45:2165-2173
    [110]李斌,许庆彦,李旭东,柳百成用颗粒推移模型模拟Al-Si/SiCp复合材料微观组织.金属学报.2005.41(12):1303-1308
    [111]吴文渊,李静海等.颗粒一流体两相流中颗粒团聚物存在的临界条件.工程热物理学报.1992.13(3):324-328
    [112]刘福田,黄巍玲,李文虎,张英才,李兆前.金属陶瓷覆层一钢基体界面结合状态的研究.材料科学与工艺.2005.13(5):452-456
    [113]叶诚,杜晓东,李连颖,宋自力,杨皓宇.稀土对WC颗粒增强铁基体复合涂层组织结构的影响.中国稀土学报.2012.30(1):102-107
    [114]王传廷,马立群,尹明勇,刘真云,丁毅,张华,陈育贵.SiCp氧化处理对SiCp/Al复合材料润湿性和界面结合的影响.种铸造及有色合金.2010.30(11):1061-1065
    [115]张璟伟.挤压铸造法制备Ti2AlC颗粒增强铝基复合材料的组织及性能研究[学位论文].哈尔滨工业大学.2012
    [116]韦小凤,王日初,冯艳,朱学卫.六方氮化硼(hBN)表面镀镍对Ni-Cr/hBN固体自润滑材料性能的影响.2011.16(5):665-670
    [117]杜春宽,尹延国,刘煜,郑治祥.镀镍石墨粉表面球化及与铜合金基体界面结合的研究.机械工程材料.2007.31(4):25-29
    [118]Xiyun Yang, Xitao Duan and Haiwei Yuan. Electrodeposition of iron-enriched nanocrystalline Fe-Ni alloy foil from chloride-sulfate solutions. Anti-Corrosion Methods and Materials. 2012.59 (1):18-22
    [119]焦明华,尹延国,俞建卫,解挺等.石墨表面金属化对铜基复合材料摩擦学性能的影响.中国有色金属学报.2007.17(10):1637-1643
    [120]袁有录,曾大新,袁三红.消失模铸造中泡沫热解气体逸出的数值分析.铸造.2009.58(4):349-352.
    [121]Mehdi Hejazi M, Divandari M, et al. Effect of copper insert on the microstructure of gray iron produced via lost foam casting. Materials and Design.2009 (30):1085-1092.
    [122]李锋军,沈厚发,柳百成,等.消失模铸造液态金属充型速度的试验研究.材料科学与工艺.2003.11(3):225-229.
    [123]李锋军.消失模铸造充型与凝固过程的试验研究及数值模拟[学位论文],清华大学.2003
    [124]董秀琦,朱丽娟.消失模铸造实用技术.北京:机械工业出版社.2005.
    [125]魏尊杰,李天晓等.消失模铸造气隙尺寸及压力数值计算.哈尔滨工业大学学报.1995.27(4):126-130.
    [126]Mirbagheri S M H, Varahram N, Davami P.3D computer simulation of melt flow and heat transfer in the lost foam casting process. International Journal for Numerical Methods in Engineering.2003.58(5):723-748.
    [127]Ali Charchi,Mostafa Rezaei,Siyamak Hossainpour, et al. Numerical simulation of heat transfer and fluid flow of molten metal in MMA-St copolymer lost foam casting process.Journal of Materials Processing Technology.2010.210(14):2071-2080
    [128]Pravin Kannan, Joseph J Biernacki,Donald P Visco Jr. A review of physical and kinetic models of thermal degradation of expanded polystyrene foam and their application to the lost foam casting process. Journal of Analytical and Applied Pyrolysis.2007(8):162-171
    [129]Khodai M, Parvinb N. Pressure measurement and some observation in lost foam casting. Journal of materials processing technology.2008.206:1-6.
    [130]赵恒义,宝音,王建民.消失模铸造充型过程气隙压力的研究.特种铸造及有色合金.2003(4):43-45.
    [131]Liu X J, Bhavnani S H, Overfelt R A. Simulation of EPS foam decomposition in the lost foam casting process. Journal of Materials Processing Technology.2007.182(26)
    [132]Caulk D A. Foam melting model for lost foam casting of aluminum. International Journal of Heat and Mass Transfer.2006.49(13/14):2124-2136
    [133]林建忠,阮晓东,陈邦国等.流体力学.北京:清华大学出版社.2005.
    [134]车得福,李会雄.多相流及其应用.西安:西安交通大学出版社.2007.
    [135]赵祖德.复合材料固-液成形理论与工艺.北京:冶金工业出版社.2008:27-32.
    [136]刘海峰,刘耀辉,于思荣.原位合成VC颗粒增强钢基复合材料组织及其形成机理.复合材料学报.2001.18(4):58-63
    [137]Liu C Y, Wang Q. Evaluation of mechanical properties of 1060-A1 reinforced with WC particles via warm accumulative roll bonding process. Materials & Design.2012.43:367-372
    [138]Hashim J, Looney L, Hashmi M.S.J.. Particle distribution in cast metal matrix composites-Part Ⅰ. Journal of Materials Processing Technology.2002.123:251-257.
    [139]陆慧林,刘文铁,赵广播.管内稠密气固两相流数值模拟计算:颗粒动力学方法.化工学报.2000.51(1):31-37.
    [140]周云,陈晓平,梁财,等.高压密相气力输送垂直弯管阻力特性.化工学报.2009.60(3):580-584.
    [141]宾仕博,邢书明,郭莉军,鲍培玮,郭洪钢.TiC增强颗粒进入钢液的条件判据.复合材 料学报.2013.30(6):1 14-120.
    [142]Mahmut D. Mat, Kemal Aldas. Experimental and numerical investigation of effect of particle size on particle distribution in particulate metal matrix composites. Applied Mathematics and Computation.177 (2006) 300-307
    [143]Kemal Aldas, Mahmut D.Mat. Experimental and theoretical analysis of particle distribution in particulate metal matrix composites. Journal of Materials Processing Technology.160 (2005) 289-295
    [144]X.J.Wang, K.B. Nie, et al.Effect of extrusion temperatures on microstructure and mechanical properties of SiCp/Mg-Zn-Ca composite. Journal of Alloys and Compounds.532 (2012) 78-85
    [145]傅旭东,王光谦,董曾南.低浓度固液两相流理论分析与管流数值计算.中国科学(E辑).2001.31(6):556-565
    [146]F.Gevrin, O.Masbernat, O.Simonin. Granular pressure and particle velocity fluctuations prediction in liquid fluidized beds. Chemical Engineering Science.63 (2008) 2450-2464
    [147]李丹勋,王兴奎等.流速梯度对悬浮颗粒脉动强度的影响.泥沙研究.2000(3):30-35
    [148]QIANG ZHANG, MENGPING ZHANG, et al. Modeling, Numerical Methods, and Simulation for Particle-Fluid Two-Phase Flow Problems. Computers and Mathematics with Applications. 47 (2004) 1437-1462
    [149]王聪慧,谭庆昌.稠密固液循环流化床内流体湍流脉动对颗粒分散的影响.高校化学工程学报.2010.24(6):943-948
    [150]谢国宏.颗粒增强金属基复合材料凝固过程中的颗粒推移效应.宇航材料工艺.1998(2):44-46.
    [151]李斌,许庆彦,李旭东,柳百成.搅拌铸造SiCP/Al-7.0%Si复合材料的三维微观组织模拟.金属学报.2006.42(8):875-881
    [152]李斌,许庆彦,李旭东,柳百成用颗粒推移模型模拟Al-Si/SiCP复合材料微观组织.金属学报.2005.41(12):1303-1308
    [153]M. Kolbe, X.R. Liu, T. Volkmann, R. Rostel, P.K. Galenko, G Eggeler, B. Wei, D.M. Herlach. Interaction of solid ceramic particles with a dendritic solidification front. Materials Science and Engineering A.2004.375-377:524-527
    [154]I.G Watson, M.F. Forster, P.D. Lee, R.J. Dashwood, R.W. Hamilton, A. Chirazi. Investigation of the clustering behaviour of titanium diboride particles in aluminium. Composites:Part A. 2005.36:1177-1187
    [155]ZubkovA.M., Sov. Phys. Crystallogr..1973.18(2):239
    [156]胡汉起.金属凝固原理.北京:机械工业出版社.2000
    [157]Surappa M.K., Rohatgi P.K., Metall. Trans.,1981.12B:327
    [158]孙旭炜,曾苏民,陈志谦,程南璞,甘秉太.制备工艺对铝基复合材料增强体颗粒分布均匀性的影响.材料工程.2006.(9):27-30
    [159]陈维平,杨少锋,韩孟岩.陶瓷/铁基合金复合材料的研究进展.中国有色金属学报.2010.20(2):257-264
    [160]Zhang Peng, Li Fuguo. Effects of Particle Clustering on the Flow Behavior of SiC Particle Reinforced Al Metal Matrix Composites. Rare Metal Materials and Engineering.2010. 39(9):1525-1531
    [161]Omenyi S.N., Neuman A.W., J.Appl. Phys.,1976.47(9):3956
    [162]宋风祥,氧化铝颗粒表层镀镍及在铁基表面复合材料中的应用[学位论文].昆明理工大学.2003
    [163]Uhlman D.R., Chalmers B., Jackson K.A., J.Appl. Phys.,1964.35:2986
    [164]Shangguan D, Ahuja S, Stefanescu D M. An Analytical Model for the Interaction Between an Insoluble Particle and an Advancing Solid/liquid Interface. Metallurgical Transactions A.1992. 23 (2):669-80
    [165]Eliana M.Agaliotis, Carlos E.Schvezov, Mario R.Rosenberger, Alicia E.Ares. A numerical model study of the effect of interface shape on particle pushing. Journal of Crystal Growth. 2012.354:49-56
    [166]E. Agaliotis, M. R. Rosenberger, A. E. Ares and C. E. Schvezo. Modeling the interaction of convex solidifying interfaces with spherical particles. RSC Advances.2012.(2):12000-12006
    [167]Sen S, Juretzko F, Stefanescu D M, et al. In Situ Observations of Interaction Between Particulate Agglomerates and an Advancing Planar Solid/liquid Interface:Microgravity experiments. Journal of Crystal Growth.1999.204 (1):238-242
    [168]Youssef Y M, Dashwood R J, Lee P D. Effect of Clustering on Particle Pushing and Solidification Behaviour in TiB2 Reinforced Aluminium PMMCs. Compos Part A.2005.36: 747-763
    [169]Bealy M E, Thomas BG. Prediction of Dendrite Arm Spacing for Low Alloy Steel Casting Process. Metallurgical and Material Transactions B.1996.27(8) 1689.
    [170]Ohta H, Suito H. Dispersion Behavior of MgO, ZrO2, Al203, CaO-A12O3 and MnO-SiO2 Deoxidation Particles During Solidification of Fe-10%Ni Alloy. ISIJ International.2006. 46(1):22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700