用户名: 密码: 验证码:
高铬铁素体耐热钢中氧化物弥散强化相形成机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化物弥散强化(Oxide-Dispersion-Strengthened,ODS)钢因其具有优异的抗辐照性能、良好的高温蠕变性能和高温抗拉强度而被认为是未来核能系统最佳备选结构材料。该新型材料的强化思路是在基体中引入弥散分布的纳米级氧化物粒子,从而在本质上获得优异高温性能的材料,而这些氧化物粒子是通过新的工艺如机械合金化和后续的热压烧结获得的。
     本文系统研究了ODS钢的合成、机制和相变行为,探索了纳米级氧化物颗粒的形成机制与过程,阐明了ODS钢合成过程中的组织演化行为,成功利用机械球磨和热压烧结获得了MgAl_2O_4型Fe-Cr ODS钢,实现低温烧结形成MgAl_2O_4粒子,在JMAK模型基础上澄清了ODS钢的奥氏体相变行为,并以Fe3Al作为Al载体添加Al组元合成Fe-Cr-W-Ti-Y-Al系ODS合金。本工作从理论上和实验方面为ODS钢的开发与应用提供了有力依据。
     研究了Y_2O_3尺寸和结构在机械球磨和后续退火过程中的演化行为。研究表明:在机械球磨过程中,混合粉末的颗粒尺寸和晶粒尺寸随着球磨时间的延长而减小。但随着球磨时间的进一步延长,球磨造成的冷焊和破碎作用达到平衡,混合粉末的颗粒尺寸和晶粒尺寸不再减小。机械球磨过程中,Y_2O_3晶体逐渐被破碎并形成了不规则外形的纳米晶,在随后的退火过程中,Y_2O_3纳米晶发生长大且其外形趋近球形。其变化过程为:完整晶体不完整晶体(长程有序结构破坏)细小晶粒(纳米晶)。
     研究了纳米级Ti-Y复合氧化物颗粒的形成过程和机制。研究表明:纳米级Ti-Y复合氧化物主要以三种形式存在:(a)完全结晶型,该类型粒子的晶体结构与标准物质相同;(b)部分结晶型,该类型粒子并未完全结晶,其边缘存在一定区域的非晶相;(c)非晶分布于粒子内部型,该类型粒子内部分布着少量非晶区域。Ti-Y复合氧化物的这三种存在形式为探索其形成机理与过程提供了有力证据。在机械球磨过程中,Y_2O_3纳米晶和非晶相与基体元素(M: Fe, Cr, Ti)的混合相在强烈塑性变形作用下形成,即在随后的热压烧结过程中,Y_2O_3纳米晶和Ti组元的反应以及自身不稳定的[YMO]_(amorphous)非晶相的晶化行为形成了纳米级Ti-Y复合氧化物颗粒,研究了ODS钢机械球磨和热压烧结过程中的组织形貌演化行为。Fe-Cr-Y系和Fe-Cr-Ti-Y系ODS钢基本组织为微米级等轴铁素体和分布于晶粒中的纳米级氧化物颗粒。两种钢的基体中存在一些未强化区域即无粒子分布区域,这种现象表明,尽管强化相粒子尺寸达到纳米级,但是仍然存在分布不均一的问题。门槛应力值的计算结果(最大值为360MPa)表明细小和密集分布的粒子有利于提高材料强度。不同的区域对应着不同的门槛应力值,这是由于各个区域的纳米级氧化物粒子的尺寸和分布均一性造成的,这可能是门槛应力值不能通过蠕变测试结果获得的原因。成功利用机械球磨和热压烧结获得了MgAl_2O_4型Fe-Cr ODS钢,实现低温烧结形成MgAl_2O_4粒子。研究表明:在机械球磨过程中,强烈的塑性变形没有导致MgO、Al_2O_3发生分解,Mg原子和O原子之间以及Al原子和O原子之间的结合并未被强烈的塑性变形破坏,并且Mg、Al和O原子未溶入Fe-Cr体系。氧化物本身尺寸的减小导致的表面能增大和因Fe晶粒尺寸减小、晶界面积增加导致的晶界能增大是氧化物向非晶转变的驱动力。在后续烧结过程中非晶晶化形成了MgAl_2O_4粒子。MgAl_2O_4强化相粒子形成温度为1173K,该温度远低于传统烧结温度(1873K),即实现低温烧结合成MgAl_2O_4。利用改进了的JMAK模型研究了ODS钢的奥氏体相变行为。基于拟合结果认为,在相同加热速率下,三种材料的奥氏体晶粒生长激活能值几乎没有差别,而Fe-9Cr-0.2Ti-0.3Y_2O_3奥氏体晶粒生长时界面迁移速率相比Fe-9Cr-0.3Y_2O_3和Fe-9Cr较小。这主要是由加热过程中奥氏体晶粒生长受到分布于基体中的粒子阻碍作用造成的。纳米级氧化物粒子通过钉扎阻力阻碍了作为新相的奥氏体界面向母相铁素体的推移,利用Zener公式定量地计算了钉扎阻力,计算结果表明:对于Fe-9Cr合金,基体中不存在纳米级氧化物颗粒,奥氏体界面的推进速度较快,奥氏体化过程在较窄的温度范围内完成。而对于Fe-9Cr-0.3Y_2O_3和Fe-9Cr-0.2Ti-0.3Y_2O_3ODS钢来说,基体中存在着纳米级氧化物颗粒,它们阻碍着奥氏体界面向铁素体界面的推进,钉扎阻力分别为Ppin YO0.78MJ/m~3,23Ppin YTiO3.0MJ/m~3,这与动力学拟合结果中指前因子V2270的减小是相符合的。在Fe-Cr-W-Ti-Y的基础上,以Fe_3Al作为Al载体添加Al组元合成Fe-Cr-W-Ti-Y-Al系ODS合金。研究表明:在热压烧结过程中,Al组元从基体中析出与Y_2O_3发生反应生成了Y-Al-O复合氧化物。Al组元与Ti组元存在竞争关系,在复合氧化物形成过程中,Al组元取代了Ti组元与Y_2O_3发生反应,这主要是由于Al组元相比Ti组元有较高的氧亲和力,因而Al组元更容易与Y_2O_3发生反应。屈服强度计算结果表明计算值和实验值是比较吻合的,并且主要是在0.5和1时的取值是接近的,良好的屈服强度主要源于细晶强化和弥散强化。
Oxide dispersion strengthened (ODS) ferritic steels are believed to be the mostpromising candidates of structural materials for advanced nuclear systems for theirsuperior radiation resistance, excellent high temperature creep and tensile properties.A key strategy for designing high-performance materials is based on the introductionof dispersed nanoscaled oxide particles which are achieved by the new technology ofmechanical milling (MM) and subsequent hot pressing (HP).
     In this thesis, fundamental issues such as elaboration, mechanism and phasetransformation of ODS steel were investigated. The main content of the thesis:formation mechanism of the nanoscaled oxide particles, microstructural evolution ofODS steels during elaboration processes, the elaboration of MgAl_2O_4ODS steel andformation of nanoscaled MgAl_2O_4particles at lower sintering temperature, kinetics ofaustenitisation process in steels and the elaboration of Fe-Cr-W-Ti-Al-Y ODS alloyby the addtion of Fe_3Al as aluminum carrier on the basis of Fe-Cr-W alloy powders..The research provides a base for exploration and application of ODS steel based onexperimental and theoretical investigations.
     Evolution of Y_2O_3during mechanical milling and subsequent annealing wasinvestigated. The particle size and the grain size of the mixed powder decrease in themechanical milling process, they almost do not decrease along with the formation ofdynamic equilibrium between cold-welding and repeated fracture after longer millingtime.The Y_2O_3is gradually fractured and nanocrystals are formed after MM. Growthof Y_2O_3nanocrystals takes place during subsequent annealing due to Ostwaldripening. The formation processes of Y_2O_3nanocrystalline may follow the sequence:ordered phase disordered phase (loss of long-range order) fine-grained(nanocrystalline) phase
     The formation mechanism of nanoscaled Ti-Y bioxide particles was investigated.Three types of nanoscaled oxide particles were observed in HPpedFe-12Cr-0.2Ti-0.3Y_2O_3ODS steel: fully crystallized particles, partially crystallizedparticles and particles with a structure characterized by crystalline domain whereamorphous domains are distributed inside. Nanoscaled Y_2O_3fragments andamorphous phase of[YMO]amorphousare formed after MM. The formation process of mixing of nanoscale fragments Y_2O_3and amorphous phase can be illustrated as:.The formation of Y_2Ti_2O_7crystallineduring subsequent HP process involves reactions between Y_2O_3fragments andtitanium (Ti) and crystallization of[YMO]_(amorphous) and the formation process can beillustrated as:
     Microstructural evolution of ODS steels during elaboration processes wasinvestigated. The HPped steels exibit a full ferritic microstructure and the grains areequiaxed with a micrometric size. The nanoscaled oxide particles are dispersed in thegrains of the HPped steels. Some unreinforced domains without the nanoscale oxideparticles indicate that there still exist inhomogeneous areas through the size of thoseoxide particles reaches nanoscaled. Calculated threshold stress varies at differentdomains randomly selected due to various dispersion states of the nanoscale oxideparticles such as the size and relatively homogeneousness. That may be the reasonwhy the threshold stress cannot be clearly achieved by the results of creep tests. Thecalculated results of threshold stress (360MPa) indicate that the size and dispersion ofthe nanoscaled oxide particles are beneficial to excellent properties of materials.
     MgAl_2O_4ODS steel was successfully elaborated by MM and HP. The MgO andAl_2O_3do not dissolve in Fe-Cr binary system during MM. The combination betweenmagnesium (and aluminum) atoms and oxygen atoms isn’t fractured by severe plasticdeformation.The MgAl_2O_4nanoparticles are formed at relatively lower temperature.The increase in interfacial energy due to the size decrease of the oxides and thechange of volume fraction of grain boundary of Fe crystals are considered to be thedriving force for the amorphization of the oxides during MM. The strengtheningphase of MgAl_2O_4formed due to crystallization of the amorphous phase during HPprocess.
     Phase transformation kinetics from ferrite to austenite in Fe-Cr ODS ferrite steelswas investigated. The kinetics analysis indicates that the nanoscaled oxide particles inreinforced alloys exhibit great influence on the growth process of austenite throughtheir pinning effect on the movement of interface. This pinning effect against themotion of/interface leads to the decrease of the values of pre-exponential factorV0with increase of additive. Moreover, the values of the pinning force exerted by those nanoscaled oxide particles were quantitatively evaluated, which agrees with theretardation phenomenon of austenitisation process according to the modified JMAKmodel. The values of the pinning forcep pinare0.78MJ/m~3and2.99MJ/m~3forFe-9Cr-0.3Y_2O_3alloy and Fe-9Cr-0.2Ti-0.3Y_2O_3alloy, respectively. Compared withunreinforced alloy Fe-9Cr, the value ofp pinincreases with the addition of yttria andtitanium in Fe-9Cr-0.3Y_2O_3alloy and Fe-9Cr-0.2Ti-0.3Y_2O_3alloy. Finer dispersionof nanocaled oxide particles (Y_2Ti_2O_7) in Fe-9Cr-0.2Ti-0.3Y_2O_3than that (Y_2O_3) ofFe-9Cr-0.3Y_2O_3is beneficial to provide more efficient blocks to the motion ofinterface, which is reasonably consistent with the fitted results of the values ofpre-exponential factorV0for the movement of interface/phase by phasetransformation model.
     Fe-Cr-W-Ti-Al-Y ODS alloy was elaborated by the addtion of Fe_3Al as aluminumcarrier on the basis of Fe-Cr-W alloy powders. The formation of Y-Al-O bioxideparticles are composed of two stages:(a) the aluminum component precipitated fromthe matrix and (b) the reaction between the aluminum component and yttria. Thealuminum component substituted the titanium component during the formationprocess of Y-Al-O bioxide particles due to its higher oxygen affinity. Thetransformation of the phase of the dispersion after apperence of the aluminumcomponent probably comes from a competition between the aluminum componentand titanium component. The calculated yield strengths results are in good agree withthe experimental ones when0.5and1, the better results of yield strengthscome from grain refinement strengthening and dispersion strengthening.
引文
[1] S. J. Zinkle, Advanced materials for fusion technology, Fusion Eng. Des,2005,74:31~40
    [2] L. K. Mansur, A. F. Rowcliffe, R. K. Nanstad, S. J. Zinkle, W. R. Corwin, R. E.Stoller, Materials needs for fusion, Generation IV fission reactors and spallationneutron sources-similarities and differences, J. Nucl. Mater,2004,329~333:166~172
    [3] M. Li, Z. J. Zhou, P. He, L. Liao, Y. L. Xu, C. C. Ge, Microstructure andmechanical property of12Cr oxide dispersion strengthened ferritic steel for fusionapplication, Fusion Eng. Des,2010,85:1571~1576
    [4] C. Liu, C. Yu, N. Hashimoto, S. Ohnuki, M. Ando, K. Shiba, S. Jitsukawa,Micro-structure and micro-hardness of ODS steels after ion irradiation, J. Nucl. Mater,2011,417:270~273
    [5] E. E. Bloom, S. J. Zinkle, F. W. Wiffen, Materials to deliver the promise of fusionpower-progress and challenges, J. Nucl. Mater,2004,329~333:12~19
    [6] S. J. Zinkle, N. M. Ghoniem, Operating temperature windows for fusion reactorstructural materials, Fusion Eng. Des,2000,51~52:55~71
    [7] K. L. Murty, I. Charit, Structural materials for Gen-IV nuclear reactors: challengesand opportunities, J. Nucl. Mater,2004,383:189~195
    [8] S. J. Zinkle, J. T. Busby, Structural materials for fission fusion energy, Materialstoday,2009,12:12~19
    [9] A. Kohyama, M. Seki, K. Abe, T. Muroga, H. Matsui, S. Jitsukawa, S. Matsuda,Interaction between fusion materials R&D and other technologies, J. Nucl. Mater,2000,283~287:20~27
    [10] S. J. Zinkle, Fusion materials science: overview of challenges and recent progress,Phys. Plasmas,2005,12:058101
    [11] J. Ribis, M. L. Lescoat, Y. de Carlan, J. M. Costantini, I. Monnet, T. Cozzika, F.Delabrouille, J. Malaplate, Stability of nano-oxides upon heavy ion irradiation of anODS material, J. Nucl. Mater,2011,417:262~265
    [12] M. C. Brandes, L. Kovarik, M. K. Miller, G. S. Daehn, M. J. Mills, Creepbehavior and deformation mechanisms in a nanocluster strengthened ferritic steel,Acta Mater,2012,60:1827~1839
    [13] A. G. Certain, K. G. Field, T. R. Allen, M. K. Miller, J. Bentley, J. T. Busby,Response of nanoclusters in a9Cr ODS steel to1dpa,525°C proton irradiation, J.Nucl. Mater,2010,407:2~9
    [14] M. L. Lescoat, J. Ribis, A. Gentils, O. Ka tasov, Y. de Carlan, A. Legris, In situTEM study of the stability of nano-oxides in ODS steels under ion-irradiation, J. Nucl.Mater,2011, in press
    [15] C. H. Zhang, J. Jang, H. D. Cho, Y. T. Yang, Void swelling in MA956ODS steelirradiated with122MeV Ne-ions at elevated temperatures, J. Nucl. Mater,2009,386~388:457~461
    [16] T. Hayashi, P. M. Sarosi, J. H. Schneibel, M. J. Mills, Creep response anddeformation processes in nanocluster-strengthened ferritic steels, Acta Mater,2008,56:1407~1416
    [17] A. D. Siwy, T. E. Clark, A. T. Motta, Transmission electron microscopy of oxidedevelopment on9Cr ODS steel in supercritical water, J. Nucl. Mater,2009,392:280~285
    [18] A. Steckmeyer, M. Praud, B. Fournier, J. Malaplate, J. Garnier, J. L. Béchade, I.Tournié, A. Tancray, A. Bougault, P. Bonnaillie, Tensile properties and deformationmechanisms of a14Cr ODS ferritic steel, J. Nucl. Mater,2010,405:95~100
    [19] H. Kishimoto, K. Yutani, R. Kasada, A. Kimura, Helium cavity formationresearch on oxide dispersed strengthening (ODS) ferritic steels utilizing dual-ionirradiation facility, Fusion Eng. Des,2006,81:1045~1049
    [20] K. L. Murty, Materials for next-generation nuclear plants: objectives andchallenges, www.tms.org/jom.html,2009,60~61
    [21] H. S. Cho, R. Kasada, A. Kimura, Effects of neutron irradiation on the tensileproperties of high-Cr oxide dispersion strengthened ferritic steels, J. Nucl. Mater,2007,360~370:239~243
    [22] C. Cayron, A. Montani, D. Venet, Y. de Carlan, Identification of new phases inannealed Fe–18CrWTi ODS powders, J. Nucl. Mater,2010,399:219~224
    [23] L. Toualbi, C. Cayron, P. Olier, J. Malaplate, M. Praud, M. H. Mathon, D. Bossu,E. Rouesne, A. Montani, R. Logé, Y. de Carlan, Assessment of a new fabricationroute for Fe–9Cr–1W ODS cladding tubes, J. Nucl. Mater,2012,428:47~53
    [24] E. I. Moses, The national ignition facility and the promise of inertial fusion,19th Topical Meeting on the Technology of Fusion Energy,2010,464130
    [25] E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, R. Al-Ayat, The nationalignition facility: ushering in a new age for high energy density science, Phys. Plasmas2009,16:041006
    [26] D. J. Larson, P. J. Maziasz, I. S. Kim, K. Miyahara, Three-dimensional atomprobe observation of nanoscale titanium-oxygen clustering in an oxide-depersion-strengthed Fe-12Cr-3W-0.4Ti+Y2O3ferritic alloy, Scripta mater,2001,44:359~364
    [27] S. Ukai, S, Mizuta, T. Yoshitake, T. Okuda, M. Fujiwara, S. Hagi, T. Kobayashi,Tube manufacturing and characterization of oxide dispersion strengthened ferriticsteels, J. Nucl. Mater,2000,283~287:702~706
    [28] D. Sakuma, S. Yamashita, K. Oka, S. Ohnuki, L. E. Rehn, E. Wakai, Y2O3nano-particle formation in ODS ferritic steels by Y and O dual ion-implantation, J.Nucl. Mater,2004,329~333:392~396
    [29] N. Holtkamp, The status of the ITER design, Fusion Eng. Des,200984:98~105
    [30] J. D. Sethian, D. G. Colombant, J. L. Giuliani, R. H. Lehmberg, M. C. Myers,The science and technologies for fusion energy with lasers and direct-drive targets,Ieee. Transaction on plasma science,2010,38:690~703
    [31] A. J. Schmitt, J. W. Bates, S. P. Obenschain, S. T. Zalesak, Shock ignition targetdesign for inertial fusion energy, Phys. Plasmas,2010,17:042701
    [32] K. Kimura, Assessment of long-term creep strength and review of allowablestress of high Cr fettitic creep resistant steels. ASME Pressure Vessels and PipingDivision Conference,2005
    [33] H. G. Armaki, R. P. Chen, S. Kano, K. Maruyama, Y. Hasegawa, M. Igarashi,Strain-induced coarsening of nanoscale precipitates in strength enhanced high Crferritic steels, Mater. Sci. Eng. A,2012,532:373~380
    [34] M. C. Brandes, L. Kovarik, M. K. Miller, M. J. Mills, Morphology, structure, andchemistry of nanoclusters in a mechanically alloyed nanostructured ferritic steel, J.Mater. Sci,2012,47:3913~3923
    [35] H. G. Armaki, R. P. Chen, K. Maruyama, M. Igarashi, Creep Behavior anddegradation of subgrain structures pinned by nanoscale precipitates instrength-enhanced5to12pct Cr ferritic steels, Metall. Mater. Trans. A,2011,42:3084~3094
    [36] H. G. Armaki, R. P. Chen, S. Kano, K. Maruyama, Y. Hasegawa, M. Igarashi,Microstructural degradation mechanisms during creep in strength enhanced high Crferritic steels and their evaluation by hardness measurement, J. Nucl. Mater,2011,416:273~279
    [37] H. G. Armaki, R. P. Chen, K. Maruyama, M. Igarashi, Premature creep failure instrength enhanced high Cr ferritic steels caused by static recovery of temperedmartensite lath structures, Mater. Sci. Eng. A,2010,527:6581~6588
    [38] Y. Wen, Y. Liu, F. Liu, T. Fujita, D. Liu, M. Chen, B. Huang, Addition of Fe2O3as oxygen carrier for preparation of nanometer-sized oxide strengthened steels, J.Nucl. Mater,2010,405:199~202
    [39] C. C. Eiselt, M. Klimenkov, R. Lindau, A. M slang, Characteristic results andprospects of the13Cr–1W–0.3Ti–0.3Y2O3ODS steel, J. Nucl. Mater,2009,386~388:525~528
    [40] P. He, M. Klimenkov, R. Lindau, A. M slang, Characterization of precipitates innanostructured14%Cr ODS alloys for fusion application, J. Nucl. Mater,2012,428:131~138
    [41] D. K. Mukhopadhyay, F. H. Froes, D. S. Gelles, Development of oxidedispersion strengthened ferritic steels for fusion, J. Nucl. Mater,2006,258~263:1205~1209
    [42] P. Olier, A. Bougault, A. Alamo, Y. D. Carlan, Effects of the forming processesand Y2O3content on ODS-Eurofer mechanical properties, J. Nucl. Mater,2009,386~388:561~563
    [43] S. V. Rogozhkin, A. A. Aleev, A. G. Zaluzhnyi, R. P. Kuibida, Effect ofirradiation by heavy ions on the nanostructure of perspective materials for nuclearpower plants, Phys. Metals Metallogr,2010,113:200~211
    [44] M. K. Miller, D. T. Hoelzer, S. S. Babu, E.A. Kenik, K. F. Russell, Hightemperature microstructural stability of a MA/ODS ferritic alloy, The Minerals,Metals&Materials Society,2003,1~5
    [45] S. Ukai, S. Ohtsuka, T. Kaito, H. Sakasegawa, N. Chikata, S. Hayashi, S. Ohnuki,High-temperature strength characterization of advanced9Cr-ODS ferritic steels,Mater. Sci. Eng. A,2009,510~511:115~120
    [46] S. Ohtsuka, S. Ukai, M. Fujiwara, T. Kaito, T. Narita, Improvement of9Cr-ODSmartensitic steel properties by controlling excess oxygen and titanium contents, J.Nucl. Mater,2003,329~333:372~376
    [47] A. A. Aleev, N. A. Iskandarov, M. Klimenkov, R. Lindau, A. M slang, A. A.Nikitin, S.V. Rogozhkin, P. Vladimirov, A. G. Zaluzhnyi, Investigation of oxideparticles in unirradiated ODS Eurofer by tomographic, J. Nucl. Mater,2011,409:65~71
    [48] H. Tanigawa, H. Sakasegawa, N. Hashimoto, R. L. Klueh, M. Ando, M. A.Sokolov, Irradiation effects on precipitation and its impact on the mechanicalproperties of reduced-activation ferritic/martensitic steels, J. Nucl. Mater,2007,367~370:42~47
    [49] R. Lindau, A. M slang, M. Schirra, P. Schlossmacher, M. Klimenkov,Mechanical and microstructural properties of a hipped RAFM ODS-steel, J. Nucl.Mater,2002,307~311:769~772
    [50] M. Tanelke, F. Abe, K. Sawada, Creep-strengthening of steel at hightemperatures using nano-sized carbonitride dispersions. Nature,2003,424:294~296
    [51] D. A. Mcclintock, M. A. Sokolov, D. T. Hoelzer, R. K. Nanstad, Mechanicalproperties of irradiated ODS-EUROFER and nanocluster strengthened14YWT, J.Nucl. Mater,2009,392:353~359
    [52] V. de Castro, T. Leguey, M. A. Monge, A. Muňoz, R. Pareja, D. R. Amador, J.M. Torralba, M. Victoria, Mechanical dispersion of Y2O3nanoparticles in steelEUROFER97: process and optimization, J. Nucl. Mater,2003,322:228~234
    [53] Y. Chen, K. Sridharan, T. R. Allen, S. Ukai, Microstructural examination ofoxide layers formed on an oxide dispersion strengthened ferritic steel exposed tosupercritical water, J. Nucl. Mater,2006,359:50~58
    [54] C. A. Williams, E. A. Marquis, A. Cerezo, G. D. W. Smith, Nanoscalecharacterisation of ODS–Eurofer97steel: an atom-probe tomography study, J. Nucl.Mater,2010,400:37~45
    [55] H. Kishimoto, R. Kasada, O. Hashitomi, A. Kimura, Stability of Y-Ti complexoxides in Fe-16Cr-0.1Ti ODS ferritic steel before and after heavy-ion irradiation, J.Nucl. Mater,2009,386~388:533~536
    [56] C. C. Koch, R. O. Scattergood, K. M. Youssef, E. Chan, Y. T. Zhu,Nanostructured materials by mechanical alloying: new results on propertyenhancement, J. Mater. Sci,2010,45:4725~4732
    [57] M. Klimenkov, R. Lindau, A. M slang, New insights into the structure of ODSparticles in the ODS-Eurofer alloy, J. Nucl. Mater,2009,386~388:553~556
    [58] N. Baluc, R. Schaublin, P. Spatig, M. Victoria, On the potentiality of usingferritic/martensitic steels as structural materials for fusion reactors, Nucl. Fusion,2004,44:56~61
    [59] H. Sakasegawa, S. Ohtsuka, S. Ukai, H. Tanigawa, M. Fujiwara, H. Ogiwara, A.Kohyama, Particle size effects in mechanically alloyed9Cr ODS steel powder, J. Nucl.Mater,2007,367~370:185~190
    [60] R. Kasada, N. Toda, K. Yutani, H. S. Cho, H. Kishimoto, A. Kimura, Pre-andpost-deformation microstructures of oxide dispersion strengthened ferritic steels, J.Nucl. Mater,2007,367~370:222~228
    [61] J. H. Ahna, H. J. Kimb, I. H. Oh, Y. J. Kim, Preparation of nano-sized ODSalloys by ball-milling using metallic salts, J. Alloys Compd,2009,483:247~251
    [62] S. Ukai, T. Kaito, S. Ohtsuka, T. Narita, M. Fujiwara, T. Kobayashi, Productionand Properties of nano-scale oxide dispersion strengthened (ODS)9Cr martensiticsteel claddings, ISIJ. Int,2003,43:2038~2045
    [63] R. Coppola, M. Klimiankou, R. Lindau, R. P. May, M. Valli, SANS and TEMstudy of Y2O3particle distributions in oxide-dispersion strengthened EUROFERmartensitic steel for fusion reactors, Phys. B,2004,350:545~548
    [64] M. Klimiankou, R. Lindau, A. M slang, J. Schr der, TEM study of PM2000steel, Powder. Metall,2005,48:277~287
    [65] R. L. Klueh, P. J. Maziasz, I. S. Kim, L. Heatherly, D. T. Hoelzer, N. Hashimoto,E. A. Kenik, K. Miyahara, Tensile and creep properties of an oxide-dispersion-strengthened ferritic steel, J. Nucl. Mater,2002,307~311:773~777
    [66] D. Mukhopadhyay, Development of low activation oxide dispersion strengthenedferritic steels for fusion reactors, PHD thesis,1996:4~5
    [67] F. Abe, Precipitate design for creep strengthening of9%Cr tempered martensiticsteel for ultra-supercritical power plants, Sci. Technol. Adv. Mater,2008,9:013002
    [68] I. S. Kim, B. Y. Choi, C. Y. Kang, T. Okuda, P. J. Maziasz, K. Miyahara, Effectof Ti and W on the mechanical properties and microstructure of12%Cr basemechanical-alloyed nano-sized ODS ferritic alloys, ISIJ. Int,2003,43:1640~1646
    [69] R. Lindau, A. M slang, M. Rieth, M. Klimiankou, E. M. Morris, A. Alamo, A. A.F. Tavassoli, C. Cayron, A. M. Lancha, P. Fernandez, N. Baluc, R. Sch ublin, E.Diegele, G. Filacchioni, J.W. Rensman, B. v. d. Schaaf, E. Lucon, W. Dietz, Presentdevelopment status of EUROFER and ODS-EUROFER for application in blanketconcepts, Fusion Eng. Des,2005,75~79:989~996
    [70] J. Bentley, D. T. Hoelzer, D. W. Coffey, K. A. Yarborough, EFTEM andspectrum imaging of mechanically alloyed oxide-dispersion-strengthened12YWT and14YWT ferritic steels, Microsc Microanal,2004,10:662~663
    [71] T. R. Allen, J. Gan, J. I. Cole, M. K. Miller, J. T. Busby, S. Shutthanandan, S.Thevuthasan, Radiation response of a9chromium oxide dispersion strengthened steelto heavy ion irradiation, J. Nucl. Mater,2008,375:26~37
    [72] M. Klimenkov, Quantitative measurement of argon inside of nano-sized bubblesin ODS steels, J. Nucl. Mater,2011,411:160~162
    [73] N. B. Morley, M. A. Abdou, M. Anderson, P. Calderoni, R.J. Kurtz, Overviewof fusion nuclear technology in the US, Fusion Eng. Des,2006,81:33~43
    [74] Z. Oksiuta, N. Baluc, Optimization of the chemical composition andmanufacturing route for ODS RAF steels for fusion reactor application, Nucl. Fusion2009,49:055003
    [75] L. Barnard, G. R. Odette, I. Szlufarska, D. Morgan, An ab initio study of Ti-Y-Onanocluster energetics in nanostructured ferritic alloys, Acta Mater,2012,60:935~947
    [76] S. V. Rogozhkin, A. A. Aleev, A. G. Zaluzhnyi, N. A. Iskanderov, Atom probetomography of nanoscaled features of oxide-dispersion-strengthened ODS Eurofersteel in the initial state and after neutron irradiation, Phys. Metals Metallogr.,2012,113:98~105
    [77] C. Capdevila, M. K. Miller, G. Pimentel, J. Chao, Influence of recrystallizationon phase separation kinetics of oxide dispersion strengthened Fe-Cr-Al alloy, Scriptamater,2012,66:254~257
    [78] A. Hirata, T. Fujita, Y. R. Wen, J. H. Schneibel, C. T. Liu, M. W. Chen, Atomicstructure of nanoclusters in oxide-dispersion-strengthened steels, Nature. Mater,2011,10:922~926
    [79] S. Ukai, T. Okuda, M. Fujiwara, T. Kobayashi, S. Mizuta, H. Nakashima,Characterization of high temperature creep properties in recrystallized12Cr–ODSferritic steel claddings, J. Nucl. Sci. Technol,2002,39:872~879
    [80] Y. Sugino, S. Ukai, S. Hayashi, Q. Tang, B. Leng, Directional recrystallization ofODS alloys by means of zone annealing J. Nucl. Mater,2011,417:171~175
    [81] M. Yamamoto, S. Ukai, S. Hayashi, T. Kaito, S. Ohtsuka, Formation of residualferrite in9Cr-ODS ferritic steels, Mater.Sci.Eng.A,2010,527:4418~4423
    [82] J. S. Benjamin, Dispersion strengthened superalloys by mechanical alloying,Metall. Trans,1970,1:2943~2951
    [83] S. Takaki1, T. Tsuchiyama, K. Nakashima, H. Hidaka, K. Kawasaki, Y.Futamura, Microstructure development of steel during severe plastic deformation,Met.Mater. Inter,2004,10:533~539
    [84] Y. F. Zhu, Y. Yang, L. J. Wei, Z. L. Zhao, L. Q. Li, Hydrogen storage propertiesof Mg-Ni-Fe composites prepared by hydriding combustion synthesis and mechanicalmilling, J. Alloys Compd,2012,520:207~212
    [85] X. Jiang, L. T. Drzal, Reduction in percolation threshold of injection moldedhigh-density polyethylene/exfoliated graphene nanoplatelets composites by solid stateball milling and solid state shear pulverization, J Appl Polym Sci,2012,124:525~535
    [86] H. C. Huang, S. P. Huang, T. E. Hsieh, C. H. Chen, Characterizations ofUV-curable montmorillonite/epoxy nanocomposites prepared by a hybrid of chemicaldispersion and planetary mechanical milling process, J Appl Polym Sci,2012,123:3199~3207
    [87] V. D. Cojocaru, Ball milling synthesis and stability under pressure innanostructured HITPERM alloys, J. Magn. Magn. Mater,2012,324:1664~1669
    [88] J. F. Willart, L. Carpentier, F. Dannede, M. Descamps, Solid-state vitrification ofcrystalline griseofulvin by mechanical milling, J Pharm Sci,2012,101:1570~1577
    [89] F. Delogu, Formation of a Al50Fe50solid solution by mechanical alloying, Mater.Chem. Phys,2012,133:500~506
    [90] M. J. Phasha, A. S. Bolokang, P. E. Ngoepe, Solid-state transformation innanocrystalline Ti induced by ball milling, Mater. Lett,2010,64:1215~1218
    [91] T. F. Marinca, I. Chicinas, O. Isnard, V. Pop, F. Popa, Synthesis, structural andmagnetic characterization of nanocrystalline nickel ferrite—NiFe2O4obtained byreactive milling, J. Alloys Compd,2011,509:7931~7936
    [92] M. Sinha, S. K. Pradhan, Synthesis of nanocrystalline Cd–Zn ferrite by ballmilling and its stability at elevated temperatures, J. Alloys Compd,2010,489:91~98
    [93] K.Y. Zhao, C. J. Li, J. M. Tao, D. H. L. Ng, X. K. Zhu, The synthesis,microstructure, hardness and thermal properties of bulk nanocrystalline Al producedby in situ consolidation with low-energy ball milling, J. Alloys Compd,2010,504:306~310
    [94] S. S. Berbano, I. Seo, C. M. Bischoff, K. E. Schuller, S. W. Martin, Formationand structure of Na2S+P2S5amorphous materials prepared by melt-quenching andmechanical milling, J. Non-Cryst. Solids,2012,358:93~98
    [95] H. Kishimura, H. Matsumoto, Fabrication of Ti–Cu–Ni–Al amorphous alloys bymechanical alloying and mechanical milling, J. Alloys Compd,2011,509:4386~4389
    [96] D. Mukherjee, V. Ande, R. Manna, B. S. Murty, N. K. Mukhopadhyay,Formation of nanostructured and amorphous β-Al3Mg2based alloys by rapidsolidification and mechanical milling, Mater. Sci. Eng. A,2010,527:5078~5083
    [97] J. S. Blázquez, J. J. Ipus, C. F. Conde, A. Conde, Comparison of equivalent ballmilling processes on Fe70Zr30and Fe70Nb30, J. Alloys Compd,2012,536:9~12
    [98] M. P. Pitt, P. E.Vullum, M. H. S rby, M. P. Sulic, H. Emerich, M. Paskevicius, C.E.Buckley, J. C. Walmsley, R. Holmestad, B. C. Hauback, Functionality of thenanoscopic crystalline Al/amorphous Al50Ti50surface embedded compositeobserved in the NaAlH4+xTiCl3system after milling, J. Alloys Compd,2011,514:163~169
    [99] H. Ahamed, V. Senthilkumar, Hot deformation behavior of mechanically alloyedAl6063/0.75Al2O3/0.75Y2O3nano-composite—a study using constitutive modelingand processing map, Mater. Sci. Eng. A,2012,539:349~359
    [100] C. X. Ouyang, S. G. Zhu, J. Ma, H. X. Qu, Master sintering curve ofnanocomposite WC-MgO powder compacts, J. Alloys Compd,2012,518:27~31
    [101] D. Demirskyi, A.Ragulya, Low-temperature microwave sintering of TiN-SiCnanocomposites, J. Mater. Sci,2012,47:3741~3745
    [102] J. Murbe, J. Topfer, High permeability Ni-Cu-Zn ferrites through additive-freelow-temperature sintering of nanocrystalline powders, J. Am. Ceram. Soc,2012,32:1091~1098
    [103] S. Bierlich, J. Topfer, Zn-and Cu-substituted Co2Y hexagonal ferrites:Sintering behavior and permeability, J. Magn. Magn. Mater,2012,324:1804~1808
    [104] R. Orrù, R. Licheri, A. M. Locci, A. Cincotti, G. Cao, Consolidation/synthesisof materials by electric current activated/assisted sintering, Mater. Sci. Eng. R,2009,63:127~287
    [105] W. Chen, U. Anselmi-Tamburini, J. E. Garay, J. R. Groza, Z. A. Munir,Fundamental investigations on the spark plasma sintering/synthesis process I. Effectof dc pulsing on reactivity, Mater. Sci. Eng. A,2005,394:132~138
    [106] U. Anselmi-Tamburini, S. Gennari, J. E. Garay, Z. A. Munir, Fundamentalinvestigations on the spark plasma sintering/synthesis process II. modeling of currentand temperature distributions, Mater. Sci. Eng. A,2005,394:139~148
    [107] U. Anselmi-Tamburini, J. E. Garay, Z. A. Munir, Fundamental investigationson the spark plasma sintering/synthesis process III. current effect on reactivity, Mater.Sci. Eng. A,2005,407:24~30
    [108] H. Sakasegawa, M. Tamura, S. Ohtsuka, S. Ukai, H. Tanigawa, A. Kohyama, M.Fujiwara, Precipitation behavior of oxide particles in mechanically alloyed powder ofoxide-dispersion-strengthened steel, J. Alloys Compd,2008,452:2~6
    [109] M. J. Alinger, On the formation and stability of nanometer scale precipitates inferritic alloys during processing and high temperature service, University ofCalifornia, PHD thesis,2004:13~15
    [110] F. Abe, Coarsening behavior of lath and its effect on creep rates in temperedmartensitic9Cr–W steels, Mater. Sci. Eng. A,2004,387~389:565~569
    [111] Z. Zhang, D. L. Chen, Contribution of Orowan strengthening effect inparticulate-reinforced metal matrix nanocomposites, Mater. Sci. Eng. A,2008,483~484:148~152
    [112] Z. Zhang, D. L. Chen, Consideration of Orowan strengthening effect inparticulate-reinforced metal matrix nanocomposites: a model for predicting their yieldstrength, Scripta mater,2006,54:1321~1326
    [113] C. S. Goh, J. Wei, L. C. Lee, M. Gupta, Properties and deformation behaviourof Mg-Y2O3nanocomposites, Acta Mater.2007,55:5115~5121
    [114] C. Cayron, E. Rath, I. Chu, S. Launois, Microstructural evolution of Y2O3andMgAl2O4ODS EUROFER steels during their elaboration by mechanical milling andhot isostatic pressing. J. Nucl. Mater,2004,335:83–102.
    [115] A. Shibata, H. Takahashi, N. Tsuji, Microstructural and crystallographicfeatures of hydrogen-related crack propagation in low carbon martensitic steel, ISIJ.Int,2012,52:208~212
    [116] F. Foroozmehr, A. Najafizadeh, A. Shafyei, Effects of carbon content on theformation of nano/ultrafine grained low-carbon steel treated by martensite process,Mater. Sci. Eng. A,2011,528:5754~5758
    [117] S. M. Hosseini, A. Najafizadeh, A. Kermanpur,Producing the nano/ultrafinegrained low carbon steel by martensite process using plane strain compression, J.Mater. Process. Technol.,2011,211:230~236
    [118] M. Calcagnotto, Y. Adachi, D. Pongea, D. Raabe, Deformation and fracturemechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and theeffect of aging, Acta Mater.,2011,59:658~670
    [119] V. de Castro, T. Leguey, A. Muňoz, M. A. Monge, R. Pareja, E. A. Marquis, S.Lozano-Perez, M. L. Jenkins, Microstructural characterization of Y2O3ODS–Fe–Crmodel alloys, J. Nucl. Mater.,2009,386~388:449~452
    [120] L. L. Hsiung, M. J. Fluss, S. J. Tumey, B. W. Choi, Y. Serruys, F. Willaime, A.Kimura, Formation mechanism and the role of nanoparticles in Fe-Cr ODS steelsdeveloped for radiation tolerance, Phys. Rev. B,2010,82:184103
    [121] S. Lozano-Perez, V. de Castro Bernal, R. J. Nicholls, Achieving sub-nanometreparticle mapping with energy-filtered TEM, Ultramicroscopy,2009,109:1217~1228
    [122] Y. Jiang, J. R. Smith, G. R. Odette, Formation of Y-Ti-O nanoclusters innanostructured ferritic alloys: a first-principles study, Phys. Rev. B,2009,79:064103
    [123] D. Murali, B. K. Panigrahi, M.C. Valsakumar, S. Chandra, C. S. Sundar, B. Raj,The role of minor alloying elements on the stability and dispersion of yttriananoclusters in nanostructured ferritic alloys: An ab initio study, J. Nucl. Mater.,2010,403:113~116
    [124] C. Hin, B. D. Wirth, Formation of Y2O3nanoclusters in nano-structured ferriticalloys: modeling of precipitation kinetics and yield strength, J. Nucl. Mater.,2010,402:30~37
    [125] S. Ohtsuka, S. Ukai, M. Fujiwara, T. Kaito, T. Narita, Nano-structure control inODS martensitic steels by means of selecting titanium and oxygen contents, J. Phys.Chem. Solids,2005,66:571–575
    [126] C. Z. Yu, H. Oka, N. Hashimoto, S. Ohnuki, Development of damage structurein16Cr–4Al ODS steels during electron-irradiation, J. Nucl. Mater.2011,417:286~288
    [127] S. Yamashita, S. Ohtsuka, N. Akasaka, S. Ukai, S. Ohnuki. Formation ofnanoscale complex oxide particles in mechanically alloyed ferritic steel. Philos MagLett.,2004,84:525~529
    [128] E. A. Marquis, Core/shell structure of oxygen-rich nanofeatures in oxide-dispersion strengthened Fe-Cr alloys, Appl. Phys. Lett.,2008,93:181904
    [129] C. Capdevila, M. K. Miller, K.F. Russell, J. Chaoa, J. L. G. Carrasco, Phaseseparation in PM2000TM Fe-base ODS alloy: experimental study at the atomic levelMater. Sci. Eng. A,2008,490:277~288
    [130] H. Sakasegawa, F. Legendre, L. Boulanger, M. Brocq, L. Chaffron, T. Cozzika,J. Malaplate, J. Henry, Y. de Carlan, Stability of non-stoichiometric clusters in theMA957ODS ferrtic alloy, J. Nucl. Mater., doi:10.1016/j.jnucmat.2011.12.056
    [131] M. J. Alinger, G. R. Odette, G. E. Lucas, Tensile and fracture toughnessproperties of MA957: implications to the development of nanocomposited ferriticalloys, J. Nucl. Mater.,2002,307~311:484~489
    [132] M. L. Hamilton, D. S. Genes, R. J. Lobsinge, G. D. Johnson, W. F. Brown, M.M. Paxton, R. J. Puigh, C. R. Eiholzer, C. Marlinez, M. A. Blotter, Fabricationtechnological development of the oxide dispersion strengthened alloy MA957for FastReactor Applications, book,2000,25~35
    [133] M. K. Miller, D. T. Hoelzer, E. A. Kenik, K. F. Russell, Nanometer scaleprecipitation in ferritic MA/ODS alloy MA957, J. Nucl. Mater.,2004,329~333:338~341
    [134] P. Dou, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F.Abe, Polymorphic and coherency transition of Y–Al complex oxide particles withextrusion temperature in an Al-alloyed high-Croxide dispersion strengthened ferriticsteel, Acta Mater.,2011,59:992~1002
    [135] L. Zhang, S. Ukai, T. Hoshino, S. Hayashi, X. Qu, Y2O3evolution anddispersion refinement in Co-base ODS alloys, Acta Mater.,2009,57:3671~3682
    [136] L. Zhang, X. H. Qu, X. B. He, R. U. Din, M. L. Qin, H. M. Zhu, Hotdeformation behavior of Co-base ODS alloys, J. Alloys Compd,2012,512:39~46
    [137] J. H. Lee, Development of oxide dispersion strengthened ferritic steels with andwithout aluminum, Front. Energy,2012,6:29~34
    [138] Q. X. Sun, T. Zhang, X. P. Wang, Q. F. Fang, T. Hao, C. S. Liu, Microstructureand mechanical properties of oxide dispersion strengthened ferritic steel prepared by anovel route, J. Nucl. Mater.,2012, in press
    [139] H. Je, A. Kimura, The strain rate effect on high-temperature tensile properties ofhigh-Cr Oxide dispersion strengthened steels, Zero-carbon energy Kyoto,2012,3:329~335
    [140] V. Swamy, N. A. Dubrovinskaya, L. S. Dubrovinsky, High-temperature powderx-ray diffraction of yttria to melting point, J. Mater. Res.,1999,14:456~459
    [141] S. Ukai, S. Mizuta, M. Fujiwara, T. Okuda, T. Kobayashi, Development of9Cr-ODS martensitic steel claddings for fuel pins by means of ferrite to austenitephase transformation, J. Nucl. Sci. Technol,2002,39:778~788
    [142] W. K. Kang, F. Yilmaz, H. S. Kim, J. M. Koo, S. J. Hong, Fabrication ofAl–20wt%Si powder using scrap Si by ultra high-energy milling process, J. AlloysCompd,2012,536:45~49
    [143] J. T. Niu, G. T. Zhou, Microstructures and mechanical properties of TiAl-Basedalloys prepared by high-energy ball milling and hot-pressing sintering, Mater. Sci.Forum,2011,704~705:828~831
    [144] L. Ding, D. P. Xianga, Y. Y. Li, C. Li, J. B. Li, Effects of sintering temperatureon fine-grained tungsten heavy alloy produced by high-energy ballmilling assistedspark plasma sintering, Int. J. Refractory Met. Hard Mater.,2012,33:65~69
    [145] D. Z. Zhang, M. L. Qin, Rafi-ud-din, L. Zhang, X. H. Qu, Fabrication andcharacterization of nanocrystalline Nb–W–Mo–Zr alloy powder by ball milling, Int. J.Refractory Met. Hard. Mater.,2012,32:45~50
    [146]沈刚,机械合金化铁磁--反铁磁体系的结构与磁性能研究:[博士论文],上海:上海大学,2006
    [147] T. Okuda, M. Fujiwara, Dispersion behaviour of oxide particles in mechanicallyalloyed ODS steel. J. Mater. Sci. Lett.,1995,14:1600~1603
    [148] Y. Kimura, S. Takaki, S. Suejima, R. Uemor, H. Tamehiro, Ultra grain refiningand decomposition of oxide during super-heavy deformation in oxide dispersionferritic stainless steel powder. ISIJ Int,1999,39:176~182
    [149] T. Gougousi, Z. Chen, Deposition of yttrium oxide thin films in supercriticalcarbon dioxide. Thin Solid Films,2008,516:6197~6204
    [150] C. Suryanarayana, E. Ivanov, V. V. Boldyrev, The science and technology ofmechanical alloying. Mater. Sci. Eng. A,2001,304~306:151~158
    [151] S. Yamasaki, H. K. D. H. Bhadeshia, Modelling and characterisation of Mo2Cprecipitation and cementite dissolution during tempering of Fe–C–Mo martensiticsteel. Mater. Sci. Technol.,2003,19:723~724
    [152] L. Wang, G. Xie, J. Zhang, L. H. Lou, On the role of carbides during therecrystallization of a directionally solidified nickel-base superalloy. Scripta Mater.,2006,55:457~460
    [153] M. Brocq, B. Radiguet, J. M. L. Breton, F. Cuvilly, P. Pareige, F. Legendre,Nanoscale characterisation and clustering mechanism in an Fe–Y2O3model ODSalloy processed by reactive ball milling and annealing, Acta Mater.,2010,58:1806~1814
    [154] J. Ribis, S. Lozano-Perez, Orientation relationships and interface structure of′-Cr nanoclusters embedded in-Fe matrix after–′demixing in neutron irradiatedoxide dispersion strengthened material, Mater. Lett.,2012,74:143~146
    [155] C. A. Williamsa, G. D.W. Smitha, E. A. Marquisb, The effect of Ti on thecoarsening behavior of oxygen-rich nanoparticles in oxide-dispersion-strengthenedsteels after annealing at1200°C, Scripta mater.,2012,67:108~111
    [156] W. T. Han, S. Ukai, F. R. Wan, Y. Sato, B. Leng, H. Numata, N. Oono, S.Hayashi, Q. X. Tang, Y. Sugino, Hardness and micro-texture in friction stir welds of ananostructured oxide dispersion strengthened ferritic steel, Mater. Trans.,2012,53:390~394
    [157] S. Noha, B. Kimb, R. Kasadaa, A. Kimuraa, Diffusion bonding between ODSferriticsteel and F82H steel for fusion applications, J. Nucl. Mater.,2012,426:208~213
    [158] S. K. Karak, J. D. Majumdar, W. Lojkowski, A. Michalski, L. Ciupinski, K. J.Kurzyd owski, I. Manna, Microstructure and mechanical properties of nano-Y2O3dispersed ferritic steel synthesized by mechanical alloying and consolidated by pulseplasma sintering, Philos. Mag.,2012,95:516~534
    [159] L. L. Hsiung, HRTEM study of oxide nanoparticles in Fe-16Cr ODS ferriticsteel developed for fusion energy, Microscopy,2010,1811~1819
    [160] M. Klimiankou, R. Lindau, A. M slang, HRTEM study of yttrium oxideparticles in ODS steels for fusion reactor application, J. Nucl. Mater.,2003,249:381~387
    [161] L. L. Hsiung, M. J. Fluss, A. Kimura, Structure of oxide nanoparticles inFe-16Cr MA/ODS ferritic steel, Mater. Lett.,2010,64:1782~1785
    [162] L. L. Hsiung, M. Fluss, J. Kuntz, B. El-Dasher, W. Choi, S. J. Tumey, A.Kimura, TEM Study of Oxide Nanoparticles in ODS Steels developed for radiationtolerance,2010TMS Annual Meeting Seattle
    [163] M. K. Miller, K. F. Russell, D. T. Hoelzer, Characterization of precipitates inMA/ODS ferritic alloys, J. Nucl. Mater.,2006,351:264~268
    [164] M. Rattia, D. Leuvrey, M.H. Mathon, Y. de Carlan, Influence of titanium onnano-cluster (Y, Ti, O) stability in ODS ferritic materials, J. Nucl. Mater.,2006,386~388:540~543
    [165] J. H. Schneibel, C. T. Liu, M. K. Miller, M. J. Mills, P. Sarosi, M. Heilmaier, D.Sturm, Ultrafine-grained nanocluster-strengthened alloys with unusually high creepstrength, Scripta mater.,2009,61:793~796
    [166] M. K. Miller, C. L. Fu, M. Krcmar, D. T. Hoelzer, C. T. Liu, Vacancies as aconstitutive element for the design of nanocluster-strengthened ferritic steels, Front.Mater. Sci. China,2009,3:9~14
    [167] M. Klimiankou, R. Lindau, A. M slang, TEM characterization of structure andcomposition of nanosized ODS particles in reduced activation ferritic-martensiticsteels, J. Nucl. Mater.,2004,329~333:347~351
    [168] P. Unifantowicza, R. Sch ublina, C. Hébertb, T. P ocińskic, G. Lucasb, N.Baluca, Statistical analysis of oxides particles in ODS ferriticsteel using advancedelectron microscopy, J. Nucl. Mater.,2012,422:131~136
    [169] F. Corpace, A. Monnier, A. P. Quintin, J. P. Manaud, Phenomena leading to amodification of the nano-sized structure during resistance upset welding of ODS steelcladding, Mater. Sci. Forum,2012,706~709:977~982
    [170] I. Monnet, C. Grygiel, M.L. Lescoat, J. Ribis, Amorphization of oxides in ODSsteels/materials by electronic stopping power, J. Nucl. Mater.,2012,424:12~16
    [171] Y. R. Wen,Y. Liu,A. Hirata, F. Liu, T. Fujita, Y. H. Dou, D. H. Liu, B. Liu, Z.M. Liu, C. T. Liu, Innovative processing of high-strength and low-cost ferritic steelsstrengthened by Y–Ti–O nanoclusters, Mater. Sci. Eng. A,2012,544:59~69
    [172] A. Steckmeyer, R. V. Hideroa, J. M. Gentzbittel, V. Rabeau, B. Fournier,Tensile anisotropy and creep properties of a Fe-14CrWTi ODS ferriticsteel, J. Nucl.Mater.,2012, in press
    [173] Z. W. Zhang,C. T. Liu, X. L. Wang, M. K. Miller, D. Ma, G. Chen, J. R.Williams, B. A. Chin, Effects of proton irradiation on nanocluster precipitation inferriticsteel containing fcc alloying additions, Acta Mater.,2012,60:3034~3036
    [174] T. Koyano, T. Takizawa, T. Fukunaga, U. Mizutani, Mechanical alloyingprocess of Fe-Cr powders studied by magnetic measurements, J. Appl. Phys.,1993,73:429~433
    [175] M. Brocq, B. Radiguet, S. Poissonnet, F. Cuvilly, P. Pareige, F. Legendre,Nanoscale characterization and formation mechanism of nanoclusters in an ODS steelelaborated by reactive-inspired ball-milling and annealing, J. Nucl. Mater.,2011,409:80~85
    [176] C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci.,2001,46:1~184
    [177] S. Enzo, P. Macri, P. Rose, N. Cowlam, Mechanical alloying for structuralapplications. Materials Park, OH: ASM International,1993,101~108
    [178]刘文西,黄孝瑛,陈玉如,材料结构电子显微分析,天津大学出版社,1989P71氧化物的形成
    [179] R. Rahmanifard, H. Farhangi, A. J. Novinrooz, N. Afshari, Investigation ofmicrostructural characteristics of nanocrystalline12YWT steel during milling andsubsequent annealing by X-ray diffraction line profile analysis, J. Mater. Sci.,201045:6498~6504
    [180] H. Sakasegawa, L. Chaffron, F. Legendre, M. Brocq, L. Boulanger, S.Poissonnet, Y. de Carlan,J. Bechade, T. Cozzika, J. Malaplate, Evaluation ofthreshold stress of the MA957ODS ferrtic alloy, J. Nucl. Mater.,2009,386~388:511~514
    [181] H. Sakasegawa, L. Chaffron, F. Legendre, L. Boulanger, T. Cozzika, M. Brocq,Y. de Carlan, Correlation between chemical composition and size of very small oxideparticles in the MA957ODS ferritic alloy, J. Nucl. Mater,2009,384:115~118
    [182] D. Bhattacharyya, P. Dickerson, G.R. Odette, S.A. Maloy, A. Misra, M.A.Nastasi, On the structure and chemistry of complex oxide nanofeatures innanostructured ferritic alloy U14YWT, Philos. Mag.,2012,92:2089~2107
    [183] M. L. Lescoat, I. Monnet, J. Ribis, P. Dubuisson, Y. de Carlan, Amorphizationof oxides in ODS materials under low and high energy ion irradiations, J. Nucl.Mater.,2011,417:266~269
    [184] I. Monnet, P. Dubuisson, Y. Serruys, M. O. Ruault, O. Ka tasov, B. Jouffrey,Microstructural investigation of the stability under irradiation of oxide dispersionstrengthened ferritic steels, J. Nucl. Mater,2004,335:311~321
    [185] L. Henkel, D. Koch, G. Grathwohl, MgAl(2)O(4)-spinel synthesized byhigh-energy ball milling and reaction sintering, J. Am. Ceram. Soc,2009,95:805~811
    [186] X. H. Su, X. L. Du, S. Q. Li, J. G. Li, Synthesis of MgAl2O4spinelnanoparticles using a mixture of bayerite and magnesium sulfate, J. Am. Ceram. Soc,2010,12:1813~1819
    [187] F. Tavangarian, R. Emadi, Synthesis and characterization of purenanocrystalline magnesium aluminate spinel powder, J. Alloys Compd,2010,489:600~604
    [188] S. Meir, S. Kalabukhov, N. Froumin, M. P. Dariel, N. Frage, Synthesis anddensification of transparent magnesium aluminate spinel by SPS processing, J. Am.Ceram. Soc,2009,92:358~364
    [189] L. B. Kong, J. Ma, H. Huang, MgAl2O4spinel phase derived from oxidemixture actived by a high-energy ball milling process, Mater. Lett,2002,56:238~243
    [190] A. Pan, H. Yang, R. Liu, R. Yu, B. Zou, Z. Wang, Color-tunablePhotoluminescence of alloyed CdSxSe1-x nanobelts, J. Am. Chem. Soc,2005,127:15692~15693
    [191] R. Hoogewijs, L. Fiermans, Electronic relaxation processes in the KLL'augerspectra of the free magnesium atom, solid magnesium and MgO, J. Electron Spectrosc.Relat. Phenom,1977,11:171~173
    [192] T. Sugama, L.E. Kukacka, N. Carciello, Study of interactions at water-solublepolymer/Ca (OH)2or gibbsite interfaces by XPS, Cement Concrete Res,1989,19:857~867
    [193] C. Chen, S. J. Splinter, T. Do, N. S. Mcintyre, Measurement of oxide filmgrowth on Mg and Al surfaces over extended periods using XPS, Surface Science,1997,382:652~657
    [194] J. Pourhosseini, M. Zekeri, M. R. Rahimipour, E. Salahi, G. R. Pourhosseini,Preparation of FeAl-Al2O3nanocomposite via mechanical alloying and subsequentannealing, Mater. Sci. Technol,2010,26:1132~1136
    [195] J. S. C. Jang, C. C. Koch, Amorphization and disordering of the Ni3Al orderedintermetallic by mechanical milling, J. Mater. Res.,1990,5:498~510
    [196] L. M. Di, H. Bakker, Mechanically induced phase transformation in the Nb3Auintermetallic compound, J. Phys.: Condens. Matter,1991,3:9319~9326
    [197] E. Bonetti, L. D. Bianco, D. Fiorani, D. Rinaldi, R. Caciuffo, A. Hernando,Disordered magnetism at the grain boundary of pure nanocrystalline iron, Phys. Rev.Lett.,1999,83:2829~2832
    [198] G. Herzer, Grain structure and magnetism of nanocrystalline ferromagnets,IEEE Trans. Magn,1989,25:3327~3329
    [199] H. J. Fecht, E. Hellstern, Z. Fu, W. L. Johnson, Nanocrystalline metals preparedby high-energy ball milling, Metall. Trans. A,1990,21:2333~2337
    [200] L. Capolungo, C. Jochum, M. Cherkaoui, J. Qu, Homogenization method forstrength and inelastic behavior of nanocrystalline materials, Int. J. Plasticity,2005,21:67~82
    [201] C. C. Koch, Research on metastable structure using high energy ball milling atnorth Carolina state university (overview), Metall. Trans. JIM,1995,36:85~95
    [202] F. G. Caballero, C. Capdevila, C. G. De Andres, Modelling of kinetics ofaustenite formation in steels with differet initial microstructures, ISIJ. Int,2001,41:1093~1102
    [203]王东江,相变动力学模型的改进及其在非晶晶化过程中的应用,[硕士学位论文],天津:天津大学,2007
    [204] J. Mahieu, J. Maki, B. C. De. Cooman, S. Claessens, Phase transformation andmechanical properties of Si-free CMnAl transformation-induced plasticity-aided steelMetall. Mater. Trans. A,2002,33:2573~2580
    [205] H. Chen, Y. C. Liu, Z. S. Yan, Y. L. Li, L. F. Zhang, Consideration of the growthmodel in isochronal austenite-ferrite transformation of ultra-low-carbon Fe-C alloy,Appl. Phys. A,2010,98:211~217
    [206] Y. C. Liu, F. Sommer, E. J. Mittemeijer, Abnormal austenite-ferritetransformation behavior in substitutional Fe-based alloys, Acta Mater.,2003,51:507~519
    [207]胡荣祖,史启祯,热分析动力学,科学出版社,2001,10~15
    [208] A. T. W. Kempen, F. Sommer, E. J. Mittemeijer, The kinetics of the austenite–ferrite phase transformation of Fe-Mn: differential thermal analysis during cooling,Acta Mater.,2002,50:3545~3555
    [209] A. T. W. Kempen, F. Sommer, E. J. Mittemeijer, Determination andinterpretation of isothermal and non-isothermal transformation kinetics: the effectiveactivation energies in terms of nucleation and growth, J. Mater. Sci.,2002,37:1321~1332
    [210] D. J. Wang, Y. C. Liu, C. Bao, W. X. Tan, Z. M. Gao, Approaches forisochronal transformation kinetics model and their application to the crystallization ofamorphous alloys, Appl. Phys. A,2009,96:721~729
    [211] Y. C. Liu, F. Sommer, E. J. Mittemeijer, Kinetics of austenitization underuniaxial compressive stressin Fe-2.96at.%Ni alloy, Acta Mater,2010,58:753~763
    [212] Y. C. Liu, D. J. Wang, F. Sommer, E.J. Mittemeijer, Isothermal austenite-ferritetransformation of Fe-0.04at.%C alloy: Dilatometric measurement and kineticanalysis, Acta Mater.,2008,56:3833~3842
    [213] J. W. Christian, The theory of transformations in metals and alloys, PergamonPress,2002, Oxford
    [214] F. Liu, F. Sommer, E. J. Mittemeijer, An analytical model for isothermal andisochronal transformation kinetics,2004, J. Mater. Sci,39:1621~1634
    [215] D. J. Wang, Y. C. Liu, Y. H. Zhang, Improved analytical model for isochronaltransformation kinetics, J. Macter. Sci,2008,43:4876~4885
    [216] T. Nishizawa, I. Ohnuma, K. Ishida, Examination of the Zener relationshipbetween grain size and particle dispersion, Mater. Trans,1997,38:950~956
    [217]陈浩,间隙型铁基合金奥氏体→铁素体相变动力学过程分析,[硕士学位论文],天津:天津大学,2009
    [218] A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C. H. Zhang, J. Isselina, P.Dou, J.H. Lee, T.F. Abe, Development of Al added high-Cr ODS steels for fuelcladding of next generation nuclear systems, J. Nucl. Mater.,2011,417:176~179
    [219] M. Krasnowski, A. Witek, T. Kulik,The FeAl–30%TiC nanocompositeproduced by mechanical alloying and hot-pressing consolidation,intermetallics,2002,10:371~376
    [220] P. Susila, D. Sturm, M. Heilmaier, B. S. Mury, V. S. Sarma, Microstructuralstudies on nanocrystalline oxide dispersion strengthened austenitic(Fe–18Cr–8Ni–2W–0.25Y2O3) alloy synthesized by high energy ball milling andvacuum hot pressing, J. Mater. Sci,201045:4858~4865
    [221] D. Srinivasan, R. Corderman, P. R. Subramanianb, Strengtheningmechanisms (via hardness analysis) in nanocrystalline NiCr with nanoscaled Y2O3and Al2O3dispersoids, Mater. Sci. Eng. A,2006,416:211~218
    [222] M. P. Phaniraj, D. I. Kim, J. H. Shim, Y. W. Cho, Microstructuredevelopment in mechanically alloyed yttria dispersed austenitic steels, Acta Mater,2009,57:1856~1864

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700