用户名: 密码: 验证码:
雾化快凝磁性磨料制备及其磁力光整加工性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁力光整加工技术,作为一种先进的光整加工工艺,在航空、航天、机械、仪器、仪表、医疗器械等精密光整加工的许多领域具有广泛的应用前景。在磁力光整加工技术中,磁性磨料起着至关重要的作用,甚至决定着加工零件的表面质量。然而,目前制备的磁性磨料,存在着形状不规则、加工效率低、使用寿命短、工艺复杂、成本高等问题,已经成为磁力光整加工技术亟待解决的瓶颈问题。为此,本文提出一种新的磁性磨料制备方法——雾化快凝磁性磨料制备方法。通过改进气体雾化快速凝固制粉系统,使高压雾化气体与陶瓷硬质磨料粉末预先混合后,再雾化熔融态的铁磁性合金基体液流,然后快速凝固的方法制备球形复合磁性磨料,并将其应用于导磁和非导磁材料的磁力光整加工中。
     本文的主要研究工作和创新点如下:
     (1)深入研究金属及其合金粉末气体雾化快速凝固制备系统的结构组成,基于磁性磨料的性能要求,研制雾化快凝球形复合磁性磨料制备系统。该系统能够解决传统陶瓷/铁基合金复合材料体系中陶瓷相与铁基体相很难相容的技术难题,使磁性磨料粉末制备工艺简单,成本低,产量高,可实现规模化工业生产。
     (2)基于磁性磨料的理想微观形貌和性能要求,对陶瓷/铁基合金复合材料制备工艺、铁磁性合金磁性能和雾化快凝工艺特点进行研究,确定适合该工艺条件下球形复合材料的组成配比;成功制备符合磁性磨料性能要求和理想结构模型的Al2O3/铁基合金球形复合磁性磨料和SiC/铁基合金球形复合磁性磨料。
     (3)借助扫描电镜、能谱仪和X射线衍射仪,试验研究雾化快凝工艺条件下球形复合磁性磨料的形成机理、影响因素和界面微结构。结果表明,只有对雾化快凝工艺参数、铁基体成分合金化和流体动力学效应影响因素的综合控制,才能制备出符合性能要求的球形复合磁性磨料;其界面微观结构:Al2O3/铁基合金球形复合磁性磨料是机械结合、溶解与润湿结合的混合结合;SiC/铁基合金球形复合磁性磨料是冶金反应润湿结合。
     (4)研究磁力光整加工系统的技术特点,根据磁通量连续原理和安培环路定理,设计并研制Nd-Fe-B稀土永磁磁极的开路磁场磁力光整加工系统。在该系统上,进行不导磁材料316L不锈钢和导磁材料S136模具钢的磁力光整加工性能试验。结果表明,Al2O3/铁基合金球形复合磁性磨料和SiC/铁基合金球形复合磁性磨料都可实现高效率和纳米级表面粗糙度水平的光整加工,工件的表面质量得到明显改善,表面粗糙度最低可达Ra10nm以下。
     (5)通过磁力光整加工试验研究所制备球形复合磁性磨料的磨损特征和使用寿命。结果显示,Al2O3/铁基合金球形复合磁性磨料和SiC/铁基合金球形复合磁性磨料在磁力光整加工过程中其使用寿命均达140分钟以上,磨损形式都是正常的磨耗磨损,未发现陶瓷磨粒脱落现象。这表明,在本文研制的制备系统上通过雾化快凝工艺实现了铁磁性基体相与陶瓷硬质磨粒相的牢固结合,使得磁性磨料的使用寿命得以显著提高。
     博士课题研究工作将为球形复合磁性磨料的规模化工业制备提供依据与指导。
Magnetic abrasive finishing (MAF), as an advanced finishing method, can be widely used inmany field, such as aeronautics, astronautics, medical apparatus and instruments etc. And magneticabrasives play a very important role in MAF, further more directly determines the surface quality ofparts finished. However, the irregular shape, low processing efficiency, short service life, complexprocess, high cost exist in the commercial magnetic abrasives which are prepared by traditionalmethods, so the preparation of magnetic abrasives becomes a bottleneck problem urgently to besolved in MAF.
     Therefore, a new method, that combines gas atomization and rapid solidification, is proposed toprepare spherical composite magnetic abrasive in this paper. Depending on improving the system ofpreparation powder, the high-pressure atomizing gas and ceramic hard abrasive powder werebeforehand mixed uniformly, it makes the molten ferromagnetic alloy matrix atomize into tinydroplets, and the tiny droplets were rapidly cooled down and solidified, and then the sphericalcomposite magnetic abrasive powder was obtained. Subsequently this spherical composite magneticabrasive was used in MAF to process non-conductive magnetic material and conductive magneticmaterial.
     The main work and the results obtained in this dissertation are as follows:
     (1) The system equipment which fabricates powder of metal or its alloy by gas atomization andrapid solidification was studied and analyzed firstly. And a special equipment to prepare sphericalcomposite magnetic abrasive through a process that combines gas atomization and rapid solidificationwas developed based on performance requirement of magnetic abrasives. This equipment can solvethe technical conundrum for the system of ceramic/Fe-based composite in which the compatibility ofFe-based phase and ceramics phase is very bad, and make the preparation process simple, cost low,productivity high. And this method can realize the large-scale industrial manufacturing of magneticabrasives.
     (2) The study was carried out on composite materials preparation theory of ceramic/Fe-basedsystem, magnetic property of ferromagnetic alloys and process characteristics of gas atomization andrapid solidification. The composition of spherical composite magnetic abrasive under the condition ofgas atomization and rapid solidification was investigated according to ideal micro-morphology andperformance requirement of magnetic abrasive. Al2O3/Fe-based and SiC/Fe-based sphericalcomposite magnetic abrasive, which conform to the ideal structural model and requirements of mechanical and soft magnetic properties of the magnetic abrasive, were successfully obtained.
     (3) The formation mechanism, interfacial microstructure and influencing factors of sphericalcomposite magnetic abrasive under different conditions of gas atomization and rapid solidificationwere detected by means of scanning electron microscope(SEM), energy dispersion spectrometer(EDS)and X-ray diffraction(XRD). The results demonstrate that three factors, i.e. process parameters for gasatomization and rapid solidification, alloying of the ferromagnetic matrix and the hydrodynamic effectare effectively controlled at the same time, the magnetic abrasive which conforms to the idealstructural model and requirements of mechanical and soft magnetic properties of the magneticabrasive can be obtained. The interfacial microstructure of Al2O3/Fe-based is joining mixed withmechanical, dissolved and wetted combined; the interfacial microstructure of SiC/Fe-based ismetallurgy reaction wetting joining.
     (4) The MAF system of open magnetic field of Nd-Fe-B rare earth permanent magnetic poleswas developed according to the magnetic flux continuous principle and Amp loop theorem based onMAF theory. The investigation were carried out on the processing performance of magnetic abrasivefor316L stainless steel and S136mold steel based on this MAF system developed. During machining,not only Al2O3/Fe-based and SiC/Fe-based spherical composite magnetic abrasive under differentconditions could realize high efficiency and nanometer level surface roughness finishing, but also thesurface quality of the machined parts could be observably improved.
     (5) The tests were carried out on wearing characteristics and service life of the magneticabrasives. During tests, the abrasion wear is the dominating wear behavior for the Al2O3/Fe-based andSiC/Fe-based spherical composite magnetic abrasive. The disadvantageous phenomenon of the fallout of Al2O3and SiC grains have never happened, their service life reaches to more than140minutesin the tests. This indicates that between the ferromagnetic matrix phase and abrasive phase of thismagnetic abrasive had been realized strong joining through gas atomization and rapid solidification inthis special equipment developed. And this process can make the service life of magnetic abrasiveimprove significantly.
     This work can provide basis and guidance for the large-scale industrial manufacturing ofspherical composite magnetic abrasives.
引文
[1]杨世春,汪鸣铮,张银喜.表面质量与光整技术[M].北京:机械工业出版社,2000.
    [2]余承业.特种加工新技术[M].北京:国防工业出版社,1995.
    [3]周锦进,方建成,徐文骥.光整加工技术的研究与发展[J].制造技术与机床,2004,3:7-11.
    [4] Shinmura Takeo. Development of a unit system magnetic abrasive finishing apparatus usingpermanent magnets[J]. Bulletin of the Japan Society of Precision Engineering,1983,10:313-315.
    [5] Kang J, George A, Yamaguchi H. High-speed Internal Finishing of Capillary Tubes by MagneticAbrasive Finishing[C]. Procedia CIRP1,2012:414-418.
    [6] Baron K S L, Park Y M. Micro deburring for precision parts using magnetic abrasive finishingmethod[J]. Journal of Materials Processing Technology,2007,6:19-25.
    [7] Baron Y M, Park J I. Characterization of the magnetic abrasive finishing method and itsapplication to deburring[J]. Key Engineering Materials,2005,291:291-296.
    [8] Yamaguchi H, Riveros R E, Mitsuishi I, et al. Magnetic field-assisted finishing for microporeX-ray focusing mirrors fabricated by deep reactive ion etching[C]. CIRP Annals-ManufacturingTechnology,2010,59:351-354.
    [9] Goloskov E I, Baron Y M. Polishing external cylindrical surface by the magnetic-abrasivemethod[J]. Thanslated from Khimicheskoe I Nftyanoe Mashinostroenie,1970,11:32-33.
    [10] Kang J, Yamaguchi H. Internal finishing of capillary tubes by magnetic abrasive finishing usinga multiple pole-tip system[J]. Precision Engineering,2012,36:510-516.
    [11] Yin S, Shinmura T. Vertical vibration-assisted magnetic abrasive finishing and deburring formagnesium alloy[J]. International Journal of Machine Tools&Manufacture,2004,44:1297-1303.
    [12] Zou Y H, Shinmura T. Development of magnetic field assisted machining process usingmagnetic machining jig[J]. Transactions of the Japan Society of Mechanical Engineers, Part C,2002,5:1575-1581.
    [13] Yin S, Shinmura T, Wang D. Magnetic field-assisted polishing for ferromagnetic metallicmaterials[J]. Key Engineering Materials,2006,304:320-324.
    [14] Yamaguchi H, Hanada K. Development of spherical magnetic abrasive made by plasma spray[J].Journal of Manufacturing Science and Engineering,2008,130(3):0311071-0311079.
    [15] Yamaguchi H, Shinmura T, Kashiwagi R. Internal finishing of austenitic stainless steel tube by amagnetic field assisted finishing process using a slurry circulation system[A]. Transactions of theNorth American Manufacturing Research Institute of SME[C],2004,32:175-182.
    [16] Yamaguchi H, Shinmura T. Study of the surface modification resulting from an internalmagnetic abrasive finishing process[J]. Wear,1999,246:225-229.
    [17] Yamaguchi H, Shinmura T. Internal finishing process for alumina ceramic components by amagnetic field assisted finishing process[J]. Precision Engineering,2004,28:135-142.
    [18] Kim J D, Kang Y H. Development of a magnetic abrasive jet machining system for precisioninternal polishing of circular tubes[J]. Journal of Materials Processing Technology,1997,71:384-393.
    [19] Kim J D, Choi M S. Simulation for the prediction of surface-accuracy in magnetic abrasivemachining[J]. Journal of Materials Processing Technology,1997,53:630-642.
    [20] Ko S L, Baron Y M, Park J I. Development of face magnetic inductor with permanent magnetsfor deburring using MAF process[J]. Key Engineering Materials,2007,329:237-242.
    [21] Jayswal S C, Jain V K, Dixit P M. Modeling and simulation of magnetic abrasive finishingprocess[J]. International Journal of Advanced Manufacturing Technology,2005,26:477-490.
    [22] Jain N K, Jain V K, Jha S. Parametric optimization of advanced fine-finishing processes[J].International Journal of Advanced Manufacturing Technology,2007,34:1191-1213.
    [23] Dhirendra K, Singh V, Jain V K. Experimental investigation into force acting during a magneticabrasive finishing processes[J]. International Journal of Advanced Manufacturing Technology,2006,30:652-662.
    [24] Jain V K, Jayswal S C, Dixit P M. Modeling and simulation of surface roughness in magneticabrasive finishing using non-uniform surface profiles[J]. Materials and Manufacturing Processes,2007,2:256-270.
    [25] Singh D K, Jain V K, Raghuram V, et al. Analysis of surface texture generated by a flexilemagnetic abrasive brush[J]. Wear,2005,259:1254-1261.
    [26] Vahdati M, Shokuhfar A. A trend toward abrasive nano finishing of plane surfaces withmagnetic field energy[J]. Material wissenschaft und Werkstofftechnik,2008,39(2):167-170.
    [27] Chang G W, Yan B H, Hsu R T. Study on cylindrical magnetic abrasive finishing using unbondedmagnetic abrasives[J]. International Journal of Machine Tools and Manufacture,2002,4:575-583.
    [28]赵玉刚.磁力光整加工技术与复杂曲面数字化仿形磁粒光整加工系统的研究[博士学位论文].大连:大连理工大学,1999.
    [29]池震宇.磨削加工与磨具选择[M].北京:兵器工业出版社,1990.
    [30]李秀红.基于磁场特性的内孔表面光整新技术理论分析与实验研究[博士学位论文].太原:太原理工大学,2010.
    [31]郭燕莹,张银喜.外圆表面磁性研磨加工的研究[J].中国机械工程,1997,8(3):76-78.
    [32]郭燕莹,张银喜.内圆表面磁性研磨加工的研究[J].中国机械工程,1997,8(6):23-25.
    [33]李学全.物流管道内表面磁力研磨机理及技术研究[博士学位论文].上海:上海交通大学,2001.
    [34] Wang Y, Hu D J. Study on the inner surface finishing of tubing by magnetic abrasive finishing[J].International Journal of Machine Tool and Manufacture,2005,45:43-49.
    [35]王艳,胡德金.不锈钢物流管道内表面磁力研磨的回转磁场设计[J].机械工程学报,2005,41(2):102-106.
    [36]赵玉刚.磁极开槽形状和尺寸对磁场分布和磁粒光整加工能力影响的研究[J].中国机械工程,1999,6(10):685-690.
    [37]赵玉刚.复杂曲面三座标数字化磁粒光整加工控制系统[J].中国机械工程,1999,1(10):1-3.
    [38]赵玉刚.自由曲面数字化磁性磨粒光整加工机床[J].制造技术与机床,1999,10:1-4.
    [39] Ching T L, Yang L D. Study of Magnetic abrasive finishing in free-form surface operationsusing the Taguchi method[J]. International Journal of Advanced Manufacturing Technology,2007,34:122-130.
    [40]方建成,金洙吉.磁粒光整加工基础研究[J].中国机械工程,2002,13(9):1593-1596.
    [41]方建成,金洙吉.磁粒性能分析及其应用实验[J].华侨大学学报(自然科学版),2003,24(2):162-167.
    [42]潘晶,刘新材,徐志峰.粘结Fe-SiC磁性磨料的研究[J].机械工程材料,2001,25(5):26-28.
    [43]金东燮,慎一哲.平面磁粒研磨及其研磨性能的研究[J].哈尔滨科学技术大学学报,1989,2:1-5.
    [44] Jain V K. Magnetic field assisted abrasive based micro-/nano-finishing[J]. Journal of MaterialsProcessing Technology,2009,(209):6022-6038.
    [45] Wang A C, Lee S J. Study the characteristics of magnetic finishing with gel abrasive[J].International Journal of Machine Tools and Manufacture,2009,49(14):1063-1069.
    [46] Zhao Z D, Huang Y H, Zhao Y G, et al. Research on preparation and properties of magneticabrasive by conventional solid-state method[J]. Key Engineering Materials,2009,416:553-557.
    [47]黄玉红.烧结法制备磁性磨料[硕士学位论文].淄博:山东理工大学,2010.
    [48]廖月明.激光烧结磁磨粒新工艺[J].电加工,1998,3:38-40.
    [49]金国哲,杨林,刘智.微波烧结法制备磁性磨料的工艺参数[J].大连工业大学学报,2008,27(4):326-328.
    [50]潘晶,刘新材,徐志锋,等.粘结Fe+SiC磁性磨料的研究[J].机械工程材料,2001,25(5):26-28.
    [51]陈红玲,张银喜,郭燕莹.粘结磁性磨料的研究[J].太原理工大学学报,2001,32(5):533-538.
    [52]李学全,刘仁茂.磁性磨粒制备技术[J].金刚石与磨料磨具工程,1999,113(5):20-22.
    [53] Gridasova T Y, Zhornyak A F, Karpova L A, et al. Magnetoabrasive materials from melts[J].Powder Metallurgy and Metal Ceramics,1980,19(7):505-507.
    [54] Saito T, Koike K, Yamato H, et al. Development of gas-atomized magnetic tools[J]. KeyEngineering Materals,2005,291-292:287-290.
    [55] Hanada K, Yamaguchi H, Zhou H. New spherical magnetic abrasives with carried diamondparticles for internal finishing of capillary tubes[J]. Diamond and Related Materials,2008,17:1434-1437.
    [56] Hanada K,Yamaguchi H. Development of spherical iron-based composite powder with carriedalumina abrasive grains by plasma spray[J]. Advanced Materials Research,2009,75:43-46.
    [57]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1982.
    [58]韩凤麟,马福康,曹勇家.粉末冶金技术手册[M].北京:化学工业出版社,2009.
    [59]张华诚.粉末冶金实用工艺学[M].北京:冶金工业出版社,2004.
    [60]李规华.粉末冶金车间设备及设计[M].北京:冶金工业出版社,1994.
    [61]程天一,章守华.快速凝固技术与新型合金[M].北京:宇航出版社,1990.
    [62]张荣生,刘海洪.快速凝固技术[M].北京:冶金工业出版社,1994.
    [63]梅策香,柳钰,张小安.快速凝固的非平衡效应研究[J].材料导报,2009,23(6):90-93.
    [64]陈振华.现代粉末冶金技术[M].北京:化学工业出版社,2007.
    [65]黄培云,金展鹏,陈振华.粉末冶金基础理论与新技术[M].北京:科学出版社,2010.
    [66] Zhang G X, Zhao Y G, Zhao D B, et al. Preparation of white alumina spherical compositemagnetic abrasive by gas atomization and rapid solidification process[J]. Scripta Materialia,2011,65:416-419.
    [67]陈仕奇,黄伯云.金属粉末气体雾化制备技术的研究现状与进展[J].粉末冶金技术,2004,22(5):297-302.
    [68]周祖福.复合材料学[M].武汉:武汉工业大学出版社,1995.
    [69]张国定,赵昌正.金属基复合材料[M].上海:上海交通大学出版社,1996.
    [70] Clyne T W, Withers P J. An introduction to metal matrix composites[M]. London: CambridgeUniversity Press,1995.
    [71]王玲,赵浩峰,蔚晓嘉,等.金属基复合材料及其浸渗制备的理论与实践[M].北京:冶金工业出版社,2005.
    [72]陈维平,杨少锋,韩孟岩.陶瓷/铁基合金复合材料的研究进展[J].中国有色金属学报,2010,20(2):257-266.
    [73]徐东,汪德宁,刘国庆,等. Fe-40Al合金与Al2O3陶瓷的界面润湿现象[J].复合材料学报,1995,12(3):41-45.
    [74] Travitzky N, Kumar P, Sandhage K H, et al. Rapid synthesis of Al2O3Reinforced Fe-Cr-Nicomposites[J]. Materials Science and Engineering A,2003,344(1/2):245-252.
    [75] Lemster K, Graule T, Minghetti T, et al. Mechanical and machining properties ofX38CrMoV5-1/Al2O3metal matrix composites and components[J]. Materials Science andEngineering A,2006,420(1/2):296-305.
    [76]肖诗纲.刀具材料及其合理选择[M].北京:机械工业出版社,1981.
    [77]张幼桢.金属切削理论[M].北京:航空工业出版社,1988.
    [78]第一机械工业部科学技术情报研究所.磨料磨具人造超硬材料[M].北京:机械工业出版社,1981.
    [79]任敬心,康仁科.难加工材料的磨削[M].北京:国防工业出版社,1999.
    [80]中国航空材料手册编辑委员会.中国航空材料手册(第5卷)[M].北京:中国标准出版社,2001.
    [81] Ding Y H, Zhang Y X, Yao X G. Development and investigation of ferromagnetic magnetomaterial in magnetic lapping technology[J]. Key Engineering Materials,2004,258:636-639.
    [82] Chen H L, Zhang Y X, Yan W L. The Technology of finishing process of die space based uponmagnetic abrasive finishing[J]. Key Engineering Materials,2004,258:657-661.
    [83]北京大学物理系铁磁学编写组.铁磁学[M].北京:科学出版社,1976.
    [84]郭贻诚.铁磁学[M].北京:人民教育出版社,1965.
    [85]陈康华,包崇玺,刘红卫.金属/陶瓷润湿性(上)[J].材料科学与工程,1997,15(3):6-10.
    [86] Eustathopoulos N, Chatain D, Coudurier L. Wetting and interfacial chemistry in liquidmetal-ceramic systems[J]. Materials Science and Engineering A,1991, A135(1-2):83-88.
    [87]陈康华,包崇玺,刘红卫.金属/陶瓷润湿性(下)[J].材料科学与工程,1997,15(4):27-34.
    [88] Delannay F, Froyen L, Deruyttee A. The wetting of solids by molten metals and its relation to thepreparation of metal-matrix composites[J]. Journal of Materials Science,1987,22(1):1-16.
    [89]曹菊芳,汤文明,赵学法,等. SiC/Fe3Al界面的固相反应[J].中国有色金属学报,2008,18(5):812-817.
    [90] Leon C A, Drew R A L. The influence of nickel coating on the wettability of aluminum onceramics[J]. Composites A,2002,33(10):1429-1432.
    [91] Kalogeropoulou S, Baud L, Eustathopoulos N. Relationship between wettability and reactivity inFe/SiC system[J]. Acta Metall Materials,1995,43(3):907-912.
    [92]汤文明,郑治祥,丁厚福,等. SiC/Fe-Cr合金界面反应的研究[J].无机材料学报,2001,16(5):921-926.
    [93]徐波,丁厚福,郑治祥. SiC颗粒增强铁基复合材料的现状及展望[J].合肥工业大学学报(自然科学版),2002,25(1):19-22.
    [94]汪德宁,徐颖,徐东,等.金属间化合物Fe40Al与α-Al2O3的界面润湿行为及合金元素Y和Nb的作用[J].材料科学与工艺,1996,4(1):5-9.
    [95]孙康宁,王昕,张玉军,等. Fe3Al/Al2O3复合材料制备工艺研究[J].复合材料学报,1999,16(4):50-53.
    [96]陈建,潘复生,顾明元.活性金属/陶瓷润湿机理研究[J].上海交通大学学报,2001,35(3):364-367.
    [97] Chidambaran P R, Edwards G R, Olson D L. A thermodynamic criterion to predict wettability atmetal-alumina interfaces[J]. Metallurgical Transactions B,1992,23B(2):215-222.
    [98]韩凤麟.粉末冶金基础教程——基本原理与应用[M].广州:华南理工大学出版社,2006.
    [99] Anderson I E. Boost in atomizer pressure shaves powder particle size. Advanced Materials andProcesses,1991,(7):30-40.
    [100]向青春,周彼德,李荣德.快速凝固法制取金属粉末技术的发展状况[J].粉末冶金技术,2000,18(4):283-291.
    [101] Le T, Henein H. Effect of nozzle geometry and position on gas atomization[J]. InternationalJournal of Powder Metallurgy,1996,32(4):353-364.
    [102] Stone I C, Tsakiropoulos P. Cooling rates in gas atomized Al-4wt%Cu alloy powders[J].International Journal of Rapid Solidification,1992,7:177-190.
    [103] Shao G, Tsakiropoulos P, Miodownik A P. The Microstructure of rapidly solidified Al-8Fe-4Ni-1Mo alloy powders[J]. International Journal of Rapid Solidification,1993,8:41-64.
    [104]赛兴鹏,姜希孝.60Sn40Pb等合金气体雾化喷嘴设计参数的探讨与分析[J].粉末冶金技术,1993,11:78-79.
    [105]黄培云.制造微细金属粉末的方法和装置[P].中国专利,1051002A,1991.
    [106]陈桂云,谢赞华,藏志新,等.快速凝固粉末冶金Al-Si-Cu-Mg合金的组织和性能[J].粉末冶金技术,1994,12:3-7.
    [107] Yan B H, Chang G W, Cheng T J, et al. Electrolytic magnetic abrasive finishing[J]. InternationalJournal of Machine Tools and Manufacture,2003,43:1355-1366.
    [108] Chen H L, Li W H, Yang S C. Study on the performance and evaluating indexes of magneticabrasive grains[A],20094thIEEE Conference on Industrial Electronics and Applications[C],2009:1673-1675.
    [109]尹韶辉.磁场辅助超精密光整加工技术[M].长沙:湖南大学出版社,2009.
    [110]郭占成,刘宇星,刘美凤,等.电沉积Fe、Ni基合金箔的组织形貌及磁性能[J].中国有色金属学报,2004,14(2):273-279.
    [111]都有为.磁性材料进展[J].物理,2000,29(6):323-332.
    [112] Lin F T, Jiang D M, Ma X M, et al. Structural order and magnetic properties of Fe3Si/Si(100)heterostructures grown by pulsed-laser deposition[J]. Thin Solid Films,2007,515:5353-5356.
    [113] Paterson J H, Devine R, Phelps A D R. Complex permeability of soft magnetic ferrite/polyesterresin composites at frequencies above1MHz[J]. Journal of magnetism and magnetic materials,1999,196-197:394-396.
    [114] Hsua Y L, Leeb Y J, Chang Y H, et al. Structural and magnetic properties of epitaxialFe3Si/GaAs heterostructures[J]. Journal of Crystal Growth,2007,301-302:588-591.
    [115]汤文明,郑治祥,丁厚福,等. SiC/Fe界面固相反应模型[J].无机材料学报,2003,18(4):885-891.
    [116]陈佩文.无机材料科学基础[M].武汉:武汉工业大学出版社,1996.
    [117]姚伯英.金属磨削加工[M].上海:龙门联合书局出版,1954.
    [118]刘贺云,柳世传.精密加工技术[M].武昌:华中理工大学出版社,1991.
    [119] Dhirendra K S, Jain V K. Experimental investigation into force acting during a magneticabrasive finishing process[J]. International Journal of Advance Manufacture Technology,2006,30:652-662.
    [120] Jain R K, Jain V K, Kalra P K. Modeling of abrasive flow machining: a neural networkapproach[J]. Wear,1999b,231:242-248.
    [121] Kim J D, Choi M S. Study on magnetic polishing of free-form surface[J], International Journalof Machine Tools and Manufacturing,1997,37(8):1179-1187.
    [122] Yamaguchi H, Shinmura T. Study on a new internal finishing process by the application ofmagnetic abrasive machining-discussion of the cylindricity[J]. Journal of the Japan Society forPrecision Engineering,1995,7:996-1000.
    [123] Gao W Q, Meng L, Yan Q S, et al. The research of NC magnetic abrasive finishing for mouldparting surface[J], Key Engineering Materials,2009,(389-390):199-204.
    [124]宋后定,陈培林.永磁材料及其应用[M].北京:机械工业出版社,1984.
    [125]林其壬,赵佑民.磁路设计原理[M].北京:机械工业出版社,1987.
    [126]周寿增,董清飞.超强永磁体——稀土铁系永磁材料[M].北京:冶金工业出版社,1999.
    [127] Yao X G, Ding Y H. Study of magnetic finishing for an internal surface using a permanentmagnetic pole[J]. Key Engineering Materials,2009,416:391-395.
    [128]张桂香,赵玉刚,赵东标,等.大壁厚内圆槽磁力光整加工装置设计[J],机械科学与技术,2012,31(6):861-864.
    [129]李春胜,黄德彬.金属材料手册[M].北京:化学工业出版社,2004.
    [130] Gil L, Bruhl S, Jimenez L, et al. Corrosion performance of the plasma nitrided316L stainlesssteel[J]. Surface and Coatings Technology,2006,201(7):4424-4429.
    [131]杨胜强,李文辉,陈红玲.表面光整加工理论与新技术[M].北京:国防工业出版社,2011.
    [132] Singh D K, Jain V K, Raghuram V. Parametric study of magnetic abrasive finishing process[J].Journal of Materials Processing Technology,2004,149:22-29.
    [133] Yamaguchi H, Shinmura T, Ikeda R. Study of internal finishing of austenitic stainless steelcapillary tubes by magnetic abrasive finishing[A], Proceedings of ASME InternationalConference on Manufacturing Science and Engineering[C],2006,1-10.
    [134]米谷茂.残余应力的产生和对策[M].北京:机械工业出版社,1983.
    [135]高建明.材料力学性能[M].武昌:武汉工业大学出版社,2004.
    [136]袁发荣,伍尚礼.残余应力测试与计算[M].长沙:湖南大学出版社,1987.
    [137]陈日曜.金属切削原理[M].北京:机械工业出版社,1993.
    [138]郭燕莹,张银喜.磁性研磨的加工特性[J].太原工业大学学报,1997,28(3):92-95.
    [139] Sadat A S. Effect o f high cutting speed on surface integrity of AISI4340steel during turning[J].Journal Materials Science&Technology,1990,49(6):371-375.
    [140] Albert J S, Henry T Y. Experimental and finite element predictions on the residual stresses dueto orthogonal metal cutting[J]. International Journal for Numerical Methods in Engineering,1993,36(9):1487-1507.
    [141]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990.
    [142]殷玲,刘忠,陈日耀.陶瓷磨削中金刚石砂轮磨损形式及其生成原因[J].华中理工大学学报,1996,24(4):19-22.
    [143] Shinmura T, Takazawa K, Hatano E. Study on magnetic abrasive finishing—effects of varioustypes of magnetic abrasives on finishing characteristics[J]. Bulletin of the Japan SocietyPrecision Engineering,1987,21(2):139-141.
    [144]周荷生,张清.金属的磨料磨损与耐磨材料[M].北京:机械工业出版社,1988.
    [145] Yin S, Shinmura T. Vertical vibration-assisted magnetic abrasive finishing and deburring formagnesium alloy[J]. International Journal of Machine Tools&Manufacture,2004,44:1297-1303.
    [146]方建成,金洙吉,徐文骥,等.旋转磁场磁粒光整加工研究[J].中国机械工程,2001,12(11):1304-1307.
    [147]李伯民,赵波.实用磨削技术[M].北京:机械工业出版社,1996.
    [148]方建成,金洙吉.磁粒光整加工材料去除规律研究[J].华中理工大学学报,2000,28(11):85-87.
    [149] Yamaguchi H, Shinmura T, Kaneko T. Development of a new internal finishing processapplying magnetic abrasive finishing by use of pole rotation system[J]. Precision Engineering,1996,30(4):317-322.
    [150] Gorana V K, Jain V K, Lal G K. Experimental investigation into cutting forces and active graindensity during abrasive flow machining[J]. International Journal of Machine Tools andManufacture,2004,44:201-211.
    [151] Yamaguchi H, Shinmura T. Study of an internal magnetic abrasive finishing using a polerotation system[J]. Precision Engineering,2000,24:237-244.
    [152] Gorana VK, Jain V K, Lal G K. Forces prediction during material deformation in abrasive flowmachining[J]. Wear,2006,260:128-139.
    [153] Yan B H, Chang G W, Chang J H, et al. Improving electrical discharge machined surfaces usingmagnetic abrasive finishing[J]. Machining Science&Technology,2004,8(1):103-118.
    [154] Wang A C, Weng S H. Developing the polymer abrasive gels in AFM process[J]. Journal ofMaterials Processing Technology,2007,192-193:486-490.
    [155] Jain R K, Jain V K, Dixit P M. Modeling of material removal and surface roughness in abrasiveflow machining process[J]. International Journal of Machine Tools and Manufacture,1999a,39:1903-1923.
    [156] Jayswal S C, Jain V K, Dixit P M. Magnetic abrasive finishing process—a parametricanalysis[J]. Journal of Advanced Manufacturing Technology,2005a,4(2):131-150.
    [157] Jain V K, Kumar P, Behera P K, et al. Effect of working gap and circumferential speed on theperformance of abrasive finishing process[J]. Wear,2001b,250:384-390.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700