用户名: 密码: 验证码:
纳米材料修饰电化学传感器及其在有害物质检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的快速发展,在全球范围内都不同程度地出现了环境污染问题,如大气污染、海洋污染、城市环境问题等。就我国的国情而言,主要的环境问题有以下几个方面:一是以大气颗粒物为主的城市空气污染,二是以有机物和重金属污染为主的水质污染,三是工业有毒的废弃物和生活垃圾对水、大气和土地的污染。要解决上述环境问题,对各种污染物进行分析和检测显然是必不可少的。因此,对污染物进行灵敏的检测引起了世界各国的普遍关注,也越来越为我国环保部门所重视。电化学分析方法具有操作简便、价格便宜、灵敏、快速、绿色环保以及易于微型化等优点,极大地引起了人们的兴趣并被广泛地应用于环境污染物的检测,如水质监测、药物分析和环境监测等方面。
     本论文基于电化学分析技术高效、快速、灵敏、方便的优势,建立新的实验体系对苏丹红Ⅰ、苯酚、亚硫酸根、亚硝酸根、重金属离子等物质进行检测,并且实际检测了水、食品、中草药等,具体研究内容如下:
     1.多壁碳纳米管/壳聚糖复合材料修饰玻碳电极的研制及苏丹红Ⅰ的检测
     研制了多壁碳纳米管/壳聚糖复合材料修饰玻碳电极用于苏丹红Ⅰ的电化学检测。利用多壁碳纳米管和壳聚糖修饰玻碳电极,用循环伏安法和差分脉冲伏安法检测苏丹红Ⅰ;对实验条件进行了优化,如pH值、扫描速率、壳聚糖与多壁碳纳米管的质量比;在最佳的实验条件下,采用差分脉冲伏安法确定其线性范围,检出限达到10-8mol/L数量级。将其用于辣椒中苏丹红Ⅰ的含量的测定,得到了令人满意的结果。
     2.石墨烯/多壁碳纳米管/BMIMPF6纳米复合材料修饰电极的研制及对苯二酚和邻苯二酚的同时检测
     研制了GR/MWCNTs/BMIMPF6/GCE修饰电极用于同时测定对苯二酚和邻苯二酚。在该电极中一维的多壁碳纳米管和二维的石墨烯共同构成了一个三维的结构,不仅增强了石墨烯复合材料的利用率,BMIMPF6的加入也提高了电极的分散性和稳定性,从而实现了对苯二酚和邻苯二酚的同时测定。数据分析显示,该修饰电极降低了氧化过电位并显著地提高了峰值电流,表现出对HQ和CT具有高的电催化活性。修饰电极GR/MWCNTs/BMIMPF6/GCE检出限低, HQ和CT的检出限分别为0.1μM和0.06μM。该方法可以用于进一步开发其他酚类化合物的电化学传感器。
     3.石墨烯-壳聚糖/金纳米粒子修饰电极的研制及亚硫酸根和亚硝酸根离子的同时检测
     研制了GR-CS/AuNPs GCE电化学传感器用于同时测定SO32-和NO2。采用透射电子显微镜(TEM)分别对GR和GR-CS/AuNPs GCE进行了表征。用循环伏安法研究了S032-和N02-在GR-CS/AuNPs GCE上的电化学行为。结果表明,该修饰电极对S032-和N02-有较好的电催化活性,并能实现对两种离子的同时测定,S032-和NO2-在该修饰电极上的线性范围分别为5μmol/L-0.41mmol/L、1μmol/L-0.38mmol/L,检出限分别为1μmol/L、0.25μmol/L(S/N=3).GR-CS/AuNPsGCE具有很好的稳定性、重现性和灵敏度。该电极用于实际水样的SO32-和NO2-的含量测定,回收率为97.2-102.6%。
     4.石墨烯/铋复合材料修饰玻碳电极的研制及中草药中铅和镉的同时检测
     研制了石墨烯/铋复合材料修饰玻碳电极‘并运用于中草药中铅和镉的同时检测。首先采用滴涂法得到石墨烯(GR)修饰的玻碳电极(GCE),再采用电沉积的方法制得GR/Bi GCE修饰电极。用方波溶出伏安法研究了Cd2+和Pb2+在GR/Bi GCE上的电化学行为。结果表明,此修饰电极对Cd2+和Pb2+均有较好的电催化活性作用,并且能实现对两种离子的同时测定。Cd2+和Pb2+在该修饰电极上的线性范围分别均为0.01-85μM,检出限均为0.01μM。GR/Bi GCE具有很好的稳定性、重现性和灵敏度。此电极用于中草药中Cd2+和Pb2+的含量测定,结果令人满意。
     5.钯纳米粒子/石墨烯/壳聚糖修饰电极的研制及抗坏血酸、多巴胺和尿酸的同时检测
     制备了钯纳米粒子/石墨烯/壳聚糖修饰电极(PdNPs/GR/CS GCE),并用于抗坏血酸、多巴胺和尿酸的同时检测。相对于裸玻碳电极、钯纳米粒子修饰电极、石墨烯/壳聚糖修饰电极,该电极在循环伏安法和微分脉冲伏安法中,对抗坏血酸、多巴胺、尿酸表现出更好的电化学催化活性。微分脉冲伏安法用于同时检测混合物中的抗坏血酸、多巴胺和尿酸,三者的峰电位分别为252mv,144mv和396mv。抗坏血酸、多巴胺和尿酸的检测下限分别为20gm,0.1μm和0.17μm。这一钯纳米粒子/石墨烯/壳聚糖修饰电极在稳定性、灵敏度、设备简单性和经济方面都表现出许多优点。
Currently, environmental pollution problems such as air pollution, marine pollution, and urban environmental issues are more and more serious around the world. Electrochemical analysis method with the advantages of simple, cheap, sensitive, rapid and easy-to-green miniaturization, etc., it is widely used in the detection of environmental pollutants, such as water quality monitoring, drug analysis and environmental monitoring.
     In this paper, we mainly focused on the development establishment of new electrochemical sensors for detecting Sudan Ⅰ, phenol, sulfite, nitrite, heavy metals and other substances based on efficient, rapid, sensitive and convenient advantages of nano-metarials modified electrodes. These proposed methods were employed to real samples and the experimental results were satisfied. The detailed profile in this dissertation is shown as follows.
     1. Electrochemical detection of Sudan Ⅰ using a multi-walled carbon nanotube/chitosan composite modified glassy carbon electrode
     A simple and sensitive electrochemical method was developed to determine Sudan Ⅰ by cyclic voltammetry and differential pulse voltammetry using a glassy carbon electrode modified with a chitosan/carbon nanotube composite. In cyclic voltammetry, Sudan Ⅰ exhibited a well-defined oxidation peak located at0.72V at the multi-walled carbon nanotube (MWCNT)/chitosan-modified GCE. The determination conditions, including pH, scan rate, and chitosan:MWCNT mass ratio at the modified electrode, were optimized. Under the optimum experimental conditions, Sudan Ⅰ could be linearly detected by differential pulse voltammetry with a detection limit of3.0×10-8mol/L.
     2. Simultaneous electrochemical determination of hydroquinone and catechol based on three-dimensional Graphene/MWCNTs/BMIMPF6nanocomposite modified electrode
     A three-dimensional (3-D) carbon electrode was fabricated in the form of1-D multiwalled carbon nanotubes (MWCNTs) and2-D graphene (GR), using ionic liquid 1-butyl-3-methylimidazolium (BMIMPF6) to improve the dispersibility and stability of the3-D carbon electrode. This GR/MWCNTs/BMIMPF6modified glassy carbon electrode (GCE) was a highly sensitive electrochemical sensor for the simultaneous determination of hydroquinone (1,4-dihydroxybenzene, HQ) and catechol (1,2-dihydroxybenzene, CT). The GR were characterised using a transmission electron microscope (TEM). The electrochemical behaviours of HQ and CT at the GR/MWCNTs/BMIMPF6/GCE were investigated using cyclic voltammetry (CV) and differential pulse voltammetry. The chemically modified electrode displayed excellent electrochemical catalytic activities towards HQ and CT. Linear relationships between the values of the oxidation peak current and the concentration of HQ and CT were obtained in the ranges of0.5μmol/L to2.9mmol/L and0.2μmol/L to0.66mmol/L with detection limits (S/N=3) of0.1μmol/L and0.06μmol/L, respectively. This GR/MWCNTs/BMIMPF6/GCE showed many advantages in terms of stability, sensitivity, facility and economy.
     3. Simultaneous electrochemical determination of sulfite and nitrite using a gold nanoparticle/graphene-chitosan modified electrode
     A highly sensitive electrochemical sensor for the simultaneous determination of SO32-and NO2-based on a glassy carbon electrode(GCE) modified with graphene(GR)-chitosan(CS) and gold nanoparticles(AuNPs) has been developed. The GR and GR-CS/AuNPs GCEs were characterised using a transmission electron microscope (TEM). The electrochemical behaviours of SO32-and NO2-at the GR-CS/AuNPs GCE were investigated using cyclic voltammetry (CV). The chemically modified electrode displayed excellent electrochemical catalytic activities towards sulphite and nitrite. Linear relationships between the values of the oxidation peak current and the concentration of SO32-and NO2-were obtained in the ranges of5μmol/L to0.41mmol/L(R=0.9986) and1μmol/L to0.38mmol/L(R=0.9940) with detection limits(S/N=3) of1μmol/L and0.25μmol/L, respectively. This GR-CS/AuNPs GCE showed many advantages in terms of stability, sensitivity, facility and economy. The proposed method was employed to example real samples with recoveries of97.2to102.6%.
     4. Electrochemical detection of Cd2+and Pb2+in Chinese herbals using graphene/Bi composites modified glassy carbon electrode
     The GR/Bi GCE modified electrode was prepared by drop-coating graphene (GR) on the glassy carbon electrode and electrodeposition of Bi on the surface of GR. The electrochemical behaviors of Cd2+and Pb2+were studied on GR/Bi GCE with square wave stripping voltammetry. The results showed that this modified electrode had good electro-catalytic activity to Cd2+and Pb2+, and their linear ranges at the modified electrode were both from0.01to85μM with low detection limits of0.01μM. This GR/Bi GCE was of good stability, reproducibility and sensitivity. It was used for the simultaneous determination of Cd2+and Pb2+in medicine and the results were satisfied.
     5. Simultaneous electrochemical determination of Ascorbic Acid, Dopamine and Uric Acid using a palladium nanoparticle/Graphene/Chitosan Modified Electrode
     A palladium nanoparticle/graphene/chitosan/glassy carbon electrode (PdNPs/GR/CS GCE) was prepared and characterized. This chemical modified electrode displayed excellent eletrochemical catalytic activities towards ascorbic acid (AA), dopamine (DA) and uric acid (UA) compared with bare GCE, PdNPs/GCE and GR/CS GCE by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). All oxidation potentials of AA, DA and UA at the PdNPs/GR/CS GCE shifted negatively and the peak currents were much larger than other electrodes. DPV was used for simultaneous determination of AA, DA and UA in their mixture, and the peak potential separations between AA and DA, DA and UA, AA and UA were252mV,144mV and396mV, respectively. The limits of detection (S/N=3) for AA, DA and UA were20μM,0.1μM and0.17μM, respectively. This PdNPs/GR/CS GCE showed many merits in stability, sensitivity, facility and economy.
引文
[1]张德阳.纳米生物材料学[M].北京:化学工业出版社,2005.
    [2]K. S. Suslick. Science,1990, (247):1439.
    [3]C. T. White, D. H. Robenson, J. W. Mintmire. Phys. Rev. B,1993, (47):5485.
    [4]I. Sopyail, M. Watanabe, S.Murasawa.Chem. Lett,1996,289:69.
    [5]M. M. Mdleleli,T. Hyeon, K. S. Suslick. J. Am. Chem. Soc,1998,120:6189.
    [6]刘吉平,廖莉玲.无机纳米材料[M].北京:科学出版社,2004.
    [7]陈月辉,赵光贤.橡胶工业,2004,(51):182.
    [8]曹茂盛,蒋成禹,田永君.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版 社,2001:12-14.
    [9]李玉金,王九思,田玲.甘肃教育学院学报,2003,(3):54.
    [10]周震,阎杰,王先友,宋德瑛,张允什.化学通报,1998,(4):23.
    [11]王天赤,路嫔,车丕智,辛显双,周百斌.哈尔滨商业大学学报,2003,(4):501.
    [12]A.J.Legget. Rev. Mod. Phys,1987,59:1.
    [13]刘焕彬,陈小泉.纳米科学与技术导论[M].北京:化学工业出版社,2006.
    [14]H. Peng,J. Tang,L. Yang,J. Pang,H.S. Ashbaugh,C. J.Brinker. J. Am. Chem. Soc, 2006,128:5304.
    [15]Z.Gu, H.UetSuka, K.Takahashi, R.Nakajima, H.Onishi, A.Fujishima, O. Sato.Angew. Chem. Int. Ed,2003,42:894.
    [16]徐华蕊,李风生.化工进展,1996,(5):29.
    [17]张亚文,李昂.中国稀土学报,2002,20:170.
    [18]王震平,杨文,刘媛媛.内蒙古石油化工,2009,24:72.
    [19]薛宽宏,包建春.纳米化学-纳米体系的化学构筑及应用,化学工业出版社,2005.
    [20]顾雪蓉,朱育平.凝胶化学,化学工业出版社,2004.
    [21]曹茂盛.超微粉体制备科学与技术,哈尔滨:哈尔滨工业大学出版社,1995.
    [22]K. Izaki, K. Hakkei. Ultrastructure progressing for advanced ceramic. Willey, 1988.
    [23]张勇.硅酸盐学报,2002,(3):22.
    [24]裴立宅,唐元洪,郭池,陈扬文,张勇.稀有金属,2005,29:2.
    [25]王学营,南照东,郝海燕,李亚生.化学学报,2007,(9):2139.
    [26]李雪梅,杨延钊,孙思修,郭令心,钟红梅,李大枝.无机化学学报,2002,18:9.
    [27]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002.
    [28]魏胜,王朝阳,黄勇,吴卫东,唐永建,韦建军.原子能科学技术,2002,36: 4.
    [29]陆必志,陈振兴.粉末冶金工业,2005,(15):2.
    [30]Hageue D. C, Mayo M. J, Nanostructured Materials,1993,61:267.
    [31]殷亚东,张志成.化学通报,1998,(12)21224.
    [32]刘银,王静,张明旭,秦晓英.材料导报,2003,17:7.
    [33]M. A. Reed, R.Frenslyw, R. J. Matyi.Appl. Phys. Lett,1989,54(11):1034.
    [34]尾崎义治,贺集诚一郎著.赵修建,张联盟译.纳米微粒导论.武汉:武汉工业大学出版社,1991.
    [35]张富强,陈诺夫,杨瑞霞,魏怀鹏,刘祥林,刘志凯,杨少延,柴春林.半导体学报,2005,(12):26.
    [36]胡良均,陈涌海,叶小玲,王占国.半导体学报,2007,28:9.
    [37]袁昌来,董发勤.硅酸盐学报,2007,(6):35.
    [38]H.He, C.Gao.中国科学化学,2011,(2):54.
    [39]J. Luo, H.Niu, W. Wu, C. Wang, X. Bai,W. Wang.Solid State Sci,2012,14:145.
    [40]Z. Liu, Z. Li, F. Wang, J. Liu, J. Ji, J. Wang, W. Wang, S. Qin, L. Zhang. Mater. Lett,2011,65:3396.
    [41]X. Niu, W. Yang, H. Guo, J. Ren, J. Gao, Biosens. Bioelectron,2013,41:225.
    [42]F. Hu, S. Chen, C. Wang, R. Yuan, Y. Chai, Y. Xiang, C. Wang, J. Mol. Cat. B: Enzym,2011,72:298.
    [43]H. Yin, Q. Ma, Y. Zhou, S. Ai, L. Zhu. Electro chem. Acta,2010,55:7102.
    [44]C. Wang, R. Yuan, Y. Chai, Y. Zhang, F. Hu, M. Zhang. Biosen. Bioelectron, 2011,30:315.
    [45]X. Niu, W. Yang, J. Ren, H. Guo, S. Long, J. Chen, J. Gao.Electrochim. Acta, 2012,80:346.
    [46]S. Hou, Z. Ou, Q. Chen, B. Wu. Biosen. Bioelectron,2012,33:44.
    [47]赖奕坚,王菲,赵斌元.实验室研究与探索,2009,28:10.
    [48]归国风,柴雅琴,袁若,孙爱丽,王福昌.化学学报,2006,64:2185.
    [49]李南岐,张平,陈崧哲,王来军,徐景明.分析试验室,2011,30:43.
    [50]王洪凯,石生勋,石一均,王峥娇,闫正.河北大学学报,2010,30:657.
    [51]余晓栋,杨慧中.传感器与微系统,2011,30:71.
    [52]王国强,朱国忠,喻生洁.分析仪器,2013,(1):40.
    [53]王倩文,于顺洋,梁荣宁,王学伟,张军,秦伟.分析试验室,2011,30:34.
    [54]崔普选,魏小平,林达,李建平.分析测试学报,2009,(5):585.
    [55]J. Koryta.Ann Rev Mater Sci,1986,16:13.
    [56]D. J.R. da Silva, F. B. Diniz. Electrochim Acta,2014,119:99.
    [57]J. Zolgharnein, T. Shariatmanesh, A. Babaei.Sensors and Actuators B,2013, 186:536.
    [58]B.Patil, YKobayashi, S.Fujikawa, T.Okajima, L.Mao, T.Ohsaka. Bioelectrochemistry,2014,95:15.
    [59]N. Xia, F. Ma, F. Zhao, Q. He, J. Du, S. Li, J. Chen, L. Liu. Electrochimi Acta, 2013,109:348.
    [60]R.H. Tammam, Mahmoud M. Saleh, J. Power Sources,2014,246:178.
    [61]E. Wudarska, E. Chrzescijanska,E.Kusmierek,J. Rynkowski. Electrochimi Acta, 2013,93:189.
    [62]S. Ramezania, M. Ghobadib, B. N. Bideh.Sensors and Actuators B,2014,192: 648.
    [63]M. Mohamadi, A. Mostafavi, M. Torkzadeh-Mahani, Biosens. Bioelectron,2014, 54:211.
    [64]J. Ghilane, F. Hauquier, J. Lacroix. Anal. Chem.,2013,85:11593.
    [65]N.Rodthongkuma, N.Ruechab, R. Rangkupana, R.W. Vachetd, O. Chailapakule. Anal. Chem. Acta,2013,804:84.
    [66]L. Zou,Y. Li,S. Cao,B. Ye. Talanta,2013,117:333.
    [67]M. Noroozifara, M. Khorasani-Motlagh,F. Zareian Jahromia,S. Rostami. Sensor. Actuat. B,2013,188:65.
    [68]Y. Wu, X. Feng, S. Zhou, H.Shi, H. Wu, S.Zhao, W. Song. Microchim. Acta, 2013,180:1325.
    [69]R. Sadeghi, H. Karimi-Maleh, A. Bahari, M. Taghavi. Phys. Chem. Liq.,2013, 51:704.
    [70]X. Zhang, M. Wang, D. Li, L. Liu, J. Ma, J. Gong, X. Yang, X. Xu, Z. Tong. J. Solid State Electrochem,2013,17:3177.
    [71]X. Liu,X. Li, Y. Xiong, Q. Huang, X. Li, Y. Dong, P. Liu, C. Zhang. Microchim. Acta,2013,180:309.
    [72]T. Thomas, R. J. Mascarenha, B.E. K. Swamy, P. Martis, Z. Mekhalif, B.S. Sherigara. Colloid Surface B,2013,110:458.
    [73]F. Cui, X. Zhang. J. Electroanal Chem.,2012,669:35.
    [74]J.Huang, Y.Liu, H. Hou, T. You. Biosens Bioelectron,2008,24:632.
    [75]钟燕,周洁丹,刘英菊,朱丽.分析测试学报,2009,28:1031.
    [76]吕鉴泉,曾宪顺,艾娟,庞代文.高等学校化学学报,2005,26:238.
    [77]K. Wu, S. Hu, J. Fei, W. Bai. Anal. Chim. Acta,2003,489:215.
    [78]Y.Yang, Y.You, Y. Liu, Z. Yang. Microchim. Acta,2013,180:379.
    [79]Y. Oztekin, M. Tok, H. Nalvuran, S. Kiyak, T. Gover, Z. Yazicigil.A. Ramanaviciene, A. Ramanavicius, Electrochim. Acta,2010,56:387.
    [80]戈芳,曹瑞国,朱斌,李经建,徐东升.物理化学学报,2010,26:1779.
    [81]易洪潮,昊康兵,胡胜水.分析科学学报,2001,17:275.
    [82]G H.Wang, W. Han, S. Hong, J. Park, S. Kang. Talanta,2009,77:1432.
    [83]X. Wang, H. Li, M. Wu, S. Ge, Y. Zhu, Q. Wang, P. He, Y. Fang. Chin. J. Anal. Chem,2013,41:1232.
    [84]D.Ye, L.Luo, Y. Ding, Q.Chen, X.Liu. Analyst,2011,136:4563.
    [85]Y. Zhang, L.Luo, Y. Ding, L. Li. Microchim. Acta,2009,167:123.
    [86]T. Dadamos, M.Teixeira.Electrochim. Acta,2009,54:4552.
    [87]H.Zhou, W.Yang, C. Sun.Talanta,2008,77:366.
    [88]X.Li, J.Liu, F.Kong, X.Liu, J.Xu, H. Chen.Electrochem. Commun,2012, 20:109.
    [89]魏培海,陈立仁,李关宾.分析化学,2001,29:49.
    [90]李启隆,赵敏,胡劲波.分析化学.1997,25:1246.
    [91]张丽君,张占恩.理化检验-化学分册,2008,44:460.
    [92]S. Cheemalapati,S. Palanisamy,V. Mani,S. Chen.Talanta,2013,117:297.
    [93]A. Afkhami,F. Soltani-Felehgari,T. Madrakian,H. Ghaedi.Biosen. Bioelectron, 2014,51:379.
    [94]F. Silva, M. Silva, P. Lima,M. Meneghetti,L. Kubota,M.Goulart.Biosens Bioelectron,2013,50:202.
    [95]B. Li, Z. Li, Z.Dai, Q.Liu, Q.Wang, D. Gu, L. Zheng.Biosens Bioelectron, 2014,52:330.
    [96]M. Gholivand, M. Khodadadian.Biosens Bioelectron,2014,53:472.
    [97]H. Silva, J. Pacheco, J. Magalhaes, S. Viswanathan, C. Delerue-Matos, Biosens Bioelectron,2014,52:56.
    [98]A. Yousef, M. Akhtar, N. Barakat, M. Motlak, O.Yang, H. Kim.Electrochim. Acta,2013,102:142.
    [99]S. Park, H. Jung, W. Lee.Electrochim. Acta,2013,102:423.
    [100]W. Xiong, M. Liu, L. Gan, Y. Lv, Y. Li,L. Yang,Z. Xu,Z. Hao,H. Liu,L. Chen.J. Power Sources,2011,196:10461.
    [101]J. Shie, U. Yogeswaran, S. Chen. Talanta,2008,74:1659.
    [102]H. Yin, Q. Ma, Y. Zhou, S. Ai, L. Zhu. Electrochim. Acta,2010,55:7102.
    [103]C. Su, C. Chang, H. Lee, J. Zhou, J. Wang, T. Sham, W. Pong.ACS nano,2011, 10:7788.
    [104]F. Patolsky, Y. Weizmann,I. Willner, Angew. Chem. Int. Ed,2004,43:2113.
    [105]J.Li, X.Lin. Sensor Actuat. B,2007,124:486.
    [106]J.Huang, Y.Liu, H. Hou,T. You. Biosens Bioelectron,2008,24:632.
    [107]X. Ge, W.Zhang, Y. Lin,D. Du.Biosens Bioelectron,2013,50:486.
    [108]T. Gan, J. Sun, W. Meng, L. Song, Y. Zhang. Food Chem.,2013,141:731.
    [109]A. Liu, M.Wei, I. Honma, H.Zhou.Anal. Chem.,2005,77:8068.
    [110]M.Arvand, B. Palizkar. Mat. Sci. Eng. C,2013,33:4876.
    [111]X. Li, J. Wu,N. Gao,G Shen,R. Yu.Sensor. Actuator. B,2006,117:35.
    [112]Z. Luo,L. Yuwen,Y. Han,J. Tian,X. Zhu,L. Weng,L. Wang.Biosens Bioelectron, 2012,36:17.
    [1]V. Martinek, M. Stiborova, Metabolism of Carcinogenic Azo Dye Sudan I by Rat, Rabbit, Minipig and Human Hepatic Microsomes, Collection of Czechoslovak Chemical Communications,2002,67(12):1883-1898.
    [2]R. Rebane, I. Leito, S. Yurchenko, K. Herodes. A review of analytical techniques for determination of Sudan I-IVdyes in food matrixes, Journal of Chromatography A. 2010,1217,(17):2747-2757.
    [3]Y. Zhang, Y. Zhang, W. Gong, A. Gopalan, K. Lee, Rapid separation of Sudan dyes by reverse-phase high performance liquid chromatography through statistically designed experiments, Journal of Chromatography A,2005,1098(1-2):183-187.
    [4]C. Yu, Q. Liu, L. Lan, B. Hu,Comparison of dual solvent-stir bars microextraction and U-shaped hollow fiber-liquid phase microextraction for the analysis of Sudan dyes in food samples by high-performance liquid chromatography-ultraviolet/mass spectrometry Journal of Chromatography A,2008,1188(2):124-131.
    [5]K. Molder, A. Kunnapas, K. Herodes, I. Leito, Fast peaks in chromatograms of Sudan dyes, Journal of Chromatography A,2007,1160(1-2):227-234.
    [6]W. Liu, W. Zhao, J. Chen, M. Yang, A cloud point extraction approach using Triton X-100 for the separation and preconcentration of Sudan dyes in chilli powder, Analytica Chimica Acta,2007,605(1):41-45.
    [7]M. Ma, X. Luo, B. Chen, S. Su, S. Yao, Simultaneous determination of water-soluble and fat-soluble synthetic colorants in foodstuff by high-performance liquid chromatography-diode array detection-electrospray mass spectrometry,Journal of Chromatography A,2006,1103(1):170-176.
    [8]V. Cornet, G. Yasmine, M. Goedele, J. Loco, J. Degroodt, Development of a Fast Analytical Method for the Determination of Sudan Dyes in Chili-and Curry-Containing Foodstuffs by High-Performance Liquid Chromatography-Photodiode Array Detection, Journal of Agricultural and Food Chemistry,2006,54(3):639-644.
    [9]E. Ertas, H. Ozer, C. Alasalvar,A rapid HPLC method for determination of Sudan dyes and Para Red in red chilli pepper,Food Chemistry,2007,105(2):756-760.
    [10]L. He, Y. Su, B. Fang, X. Shen, Z. Zeng, Y. Liu, Determination of Sudan dye residues in eggs by liquid chromatography and gas chromatography-mass spectrometry, Analytica Chimica Acta,2007,594(1):139-146.
    [11]E. Mejia, Y. Ding, M. Mora, C. Garcia, Determination of banned Sudan dyes in chili powder by capillary electrophoresis, Food Chemistry,2007,102(4):1027-1033.
    [12]Y. Wang, D. Wei, H. Yang, Y. Yang, W. Xing, Y. Li, A. Deng, Development of a highly sensitive and specific monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) for detection of Sudan I in food samples, Talanta, 2009,77(5):1783-1789.
    [13]D. Han, M. Yu, D. Knopp, R. Niessner, M. Wu, A. Deng, Development of a highly sensitive and specific enzyme-linked immunosorbent assay for detection of Sudan I in food samples,Journal of Agricultural and Food Chemistry,2007,55(16): 6424-6430.
    [14]Y. Liu, Z. Song, F. Dong, L. Zhang, Flow injection chemiluminescence determination of Sudan I in hot chilli sauce, Journal of Agricultural and Food Chemistry,2007,55(3):614-617.
    [15]L. P. Wu, Y. F. Li, C. Z. Huang, Q. Zhang, Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles, Analytical Chemistry,2006,78,(15):5570-5577.
    [16]M. Du, X. Han, Z. Zhou, S. Wu, Determination of Sudan I in hot chili powder by using an activated glassy carbon electrode, Food Chemistry,2007,105(2):883-888.
    [17]M. Inagaki, K.Kaneko, T. Nishizawa, Nanocarbons-recent research in Japan, Carbon,2004,42(8-9):1401-1417.
    [18]Y. Yang, S. Chen, Q. Xue, A. Biris, W. Zhao, Electron transfer chemistry of octadecylamine-functionalized single-walled carbon nanotubes, Electrochimca. Acta, 2008,53(14):4936.
    [19]D. Yang, L. Zhu, X. Jiang. Electrochemical reaction mechanism and determination of Sudan I at a multiwall carbon nanotubes modified glassy carbon electrode, Journal of Electroanalytical Chemistry,2010,640(1-2):17-22.
    [20]T. Gan, K. Li, K. Wu, Multi-wall carbon nanotube-based electrochemical sensor for sensitive determination of Sudan I, Sensors and Actuators B,2008, 132(1):134-139.
    [21]D. Yang, L. Zhu, X. Jiang, L. Guo, Sensitive determination of Sudan I at an ordered mesoporous carbon modified glassy carbon electrode, Sensors and Actuators B,2009,
    [22]Y. Wu, Electrocatalysis and sensitive determination of Sudan I at the singlewalled carbon nanotubes and iron(III)-porphyrin modified glassy carbon electrodes, Food Chemistry,2010,121(2):580-584.
    [23]H. Yin, Y. Zhou, X. Meng, T. Tang, S. Ai, L. Zhu, Electrochemical behaviour of Sudan I at Fe3O4 nanoparticles modified glassy carbon electrode and its determination in food samples," Food chemistry,2011,127(3):1348-1353.
    [24]M. Zhang, A. Smith, W. Gorski, Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes, Analytical Chemistry, 2004,76(17):5045-5050.
    [25]M. Zhang, C. Mullens, W. Gorski, Coimmobilization of dehydrogenases and their cofactors in electrochemical biosensors, Analytical Chemistry,2007,79(6): 2446-2450.
    [26]M. Zhang, W. Gorski, Electrochemical sensing based on redox mediation at carbon nanotubes, Analytical Chemistry,2007,77(13):3960-3965.
    [27]Y. Zhang, J. Zheng, Direct electrochemistry and electrocatalysis of cytochrome c based on chitosa-room temperature ionic liquid-carbon nanotubes composite, Electrochimica Acta,2008,54(2):749-754.
    [28]A. Babaei, M. Afrasiabi, M. Babazadeh. A Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotube/Chitosan Composite as a New Sensor for Simultaneous Determination of Acetaminophen and Mefenamic Acid in Pharmaceutical Preparations and Biological Samples, Electroanalysis,2010,22(15): 1743-1749.
    [1]Q. Guo, J. Huang, P. Chen, Y. Liu, H. Hou, T. You, Simultaneous determination of catechol and hydroquinone using electrospun carbon nanofibers modified electrode, Sens. Actuators B,2012,163:179-185.
    [2]C. Wang, R. Yuan, Y. Chai, F. Hu, Simultaneous determination of hydroquinone, catechol, resorcinol and nitrite using gold nanoparticles loaded on poly-3-amino-5-mercapto-1,2,4-triazole-MWNTs film modified electrode, Anal. Methods,2012 (4):1626-1628.
    [3]H. Yin, Q. Zhang, Y. Zhou, Q. Ma, T. liu, L. Zhu, S. Ai, Electrochemical behavior of catechol, resorcinol and hydroquinone at graphene-chitosan composite film modified glassy carbon electrode and their simultaneous determination in water samples, Electrochim. Acta,2011,56:2748-2753.
    [4]A. Asan, I. Isildak, Determination of major phenolic compounds in water by reversed-phase liquid chromatography after pre-column derivatization with benzoyl chloride, J. Chromatogr. A,2003,988:145-149.
    [5]M.F. Pistonesi, M.S. Di Nezio, M.E. Centurion, M.E. Palomeque, A.G Lista, B.S. Fernandez Band, Determination of phenol, resorcinol and hydroquinone in air samples by synchronous fluorescence using partial least-squares (PLS), Talanta,2006, 69:1265-1268.
    [6]H. Cui, Q. Zhang, A. Myint, X. Ge, L. Liu, Chemiluminescence of cerium(IV)-rhodamine 6G-phenolic compound system, J. Photoch. Photobio. A,2006, 181:238-245.
    [7]P. Nagaraja, R.A. Vasantha, K.R. Sunitha, A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations, Talanta,2001,55:1039-1046.
    [8]J.A. Garcia-Mesa, R. Mateos, Direct automatic determination of bitterness and total phenolic compounds in virgin olive oilusing a pH-based flow-injection analysis system,J. Agric. Food Chem.2007,55:3863-3868.
    [9]X. Ma, Z. Liu, C. Qiu, T. Chen, H. Ma, Simultaneous determination of hydroquinone and catechol based on glassy carbon electrode modified with gold-graphene nanocomposite, Microchim. Acta,2013,180:461-468.
    [10]T. Gan, J. Sun, K. Huang, L. Song, Y. Li, A graphene oxide-mesoporous MnO2 nanocomposite modified glassy carbon electrode as a novel and efficient voltammetric sensor for simultaneous determination of hydroquinone and catechol, Sens. Actuators B,2013,177:12-418.
    [11]L. Wang, Y. Zhang, Y. Du, D. Lu, Y. Zhang, C. Wang, Simultaneous determination of catechol and hydroquinone based on poly (diallyldimethylammonium chloride) functionalized graphene-modified glassy carbon electrode, J. Solid State Electr.2011,16:1323-1331.
    [12]M.A. Ghanem, Electrocatalytic activity and simultaneous determination of catechol and hydroquinone at mesoporous platinum electrode, Electrochem. Commun. 2007,(9):2501-2506.
    [13]A.J.S. Ahammad, M.M. Rahman, G. Xu, S. Kim, J. Lee, Highly sensitive and simultaneous determination of hydroquinone and catechol at poly(thionine) modified glassy carbon electrode, Electrochim. Acta,2011,56:5266-5272.
    [14]T.C. Canevari, L.T. Arenas, R. Landers, R. Custodio, Y. Gushikem, Simultaneous electroanalytical determination of hydroquinone and catechol in the presence of resorcinol at an SiO2/C electrode spin-coated with a thin film of Nb2O5, Analyst,2013, 138:315-324.
    [15]H. Qi, C. Zhang, Simultaneous Determination of Hydroquinone and Catechol at a Glassy Carbon Electrode Modified with Multiwall Carbon Nanotubes, Electroanalysis,2005,17:832-838.
    [16]L.L.C. Garcia, L.C.S. Figueiredo-Filho, GG. Oliveira, O. Fatibello-Filho, C.E. Banks, Square-wave voltammetric determination of paraquat using a glassy carbon electrode modified with multiwalled carbon nanotubes within a dihexadecylhydrogenphosphate (DHP) film, Sens. Actuators B,2013,181:306-311.
    [17]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science,2004,306:666-669.
    [18]C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing, Biosens. Bioelectron.2010,25:1070-1074.
    [19]K. Guo, K. Qian, S. Zhang, J. Kong, C. Yu, B. Liu, Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes, Talanta,2011.85:1174-1179.
    [20]Y. Xia, W. Li, M. Wang, Z. Nie, C. Deng, S. Yao, A sensitive enzymeless sensor for hydrogen peroxide based on the polynucleotide-templated silver nanoclusters/graphene modified electrode, Talanta,2013,107:55-60.
    [21]S. Yang, K. Chang, Y. Lee, C. M. Ma, C. Hu, Constructing a hierarchical graphene-carbon nanotube architecture for enhancing exposure of graphene and electrochemical activity of Pt nanoclusters, Electrochem. Commun.2010,(12): 1206-1209.
    [22]Rajesh, R.K. Paul, A. Mulchandani, Platinum nanoflowers decorated three-dimensional graphene-carbon nanotubes hybrid with enhanced electrocatalytic activity, J. Power Sources,2013,223:23-29.
    [23]X. Sun, S. Hu, L. Li, J. Xiang, W. Sun, Sensitive electrochemical detection of hydroquinone with carbon ionogel electrode based on BMIMPF6, J. Electroanal. Chem.2011,651:94-99.
    [24]D. Abd El-Hady, A.K.. Youssef, Hyphenation of ionic liquid albumin glassy carbon biosensor or protein label-free sensor with differential pulse stripping voltammetry for interaction studies of human serum albumin with fenoprofen enantiomers, Anal. Chim. Acta 2013,772:68-74.
    [25]Y. Jiang, Q. Zhang, F. Li, L. Niu, Glucose oxidase and graphene bionanocomposite bridged by ionic liquid unit for glucose biosensing application, Sens. Actuators B,2012,161:728-733.
    [26]N. Liu, X. Chen, Z. Ma, Ionic liquid functionalized graphene/Au nanocomposites and its application for electrochemical immunosensor, Biosens. Bioelectron. 2013,48:33-38.
    [27]C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene, Biosens. Bioelectron.2010,25:1504-1508.
    [28]Z. Liu, Z. Wang, Y. Cao, Y. Jing, Y. Liu, High sensitive simultaneous determination of hydroquinone and catechol based on graphene/BMIMPF6 nanocomposite modified electrode, Sens. Actuators B,2011,157:540-546.
    [29]X.Wang, M. Wu, W. Tang, Y. Zhu, L. Wang, Q. Wang, P. He, Y. Fang,Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid using a palladium nanoparticle/graphene/chitosan modified electrode, J. Electroanal. Chem.2013,695:10-16.
    [30]Y. Zhang, R. Yuan, Y. Chai, W. Li, X. Zhong, H. Zhong, Simultaneous voltammetric determination for DA, AA and NO2- based on graphene/poly-cyclodextrin/MWCNTs nanocomposite platform, Biosens. Bioelectron.2011,26:3977-3980.
    [1]Safavi A, Maleki N, Momeni S, Tajabadi F. Analytica Chimica Acta,2008,625 (1): 8-12.
    [2]Yue R, Lu Q, Zhou Y. Biosensors and Bioelectronics,2011,26(11):4436-4441.
    [3]Li X, Kong F, Liu J, Liang T, Xu J, Chen H. Advanced Functional Materials,2012, 22(9):1981-1988.
    [4]Ye D, Luo L, Ding Y,Chen Q, Liu X. Analyst,2011,136(21):4563-4569.
    [5]Heli H, Eskandari I, Sattarahmady N, Moosavi-Movahedi A.A. Electrochimica Acta,2012,77:294-301.
    [6]Dadamos T, Teixeira M. Electrochimica Acta,2009,54(19):4552-4558.
    [7]Isaac A, Livingstone C, Wain A.J, Compton R.G, Davis J. Trends in Analytical Chemistry,2006,25(6):589-598.
    [8]Zhang Y, Luo L.Q, Ding Y.P, Li L. Microchimica Acta,2009,167(1-2):123-128.
    [9]Li X, Liu J, Kong F, Liu X, Xu J, Chen H. Electrochemistry Communications, 2012,20:109-112.
    [10]Zhou H, Yang W, Sun C. Talanta,2008,77(1):366-371.
    [11]Chen C, Yang Q, Yang Y, Lv W, Wen Y, Hou P, Wang M, Cheng H. Advanced Materials,2009,21(29):3007-3011.
    [12]Chen B, Zhang L, Chen G. Electrophoresis,2011,32(8):870-876.
    [13]Wang Y, Li Y, Tang L, Lu J, Li J. Electrochemistry Communications,2009,11(4): 889-892.
    [14]Fu X, Wu J, Nie L, Xie C, Liu J, Huang X. Analytica Chimica Acta,2012,720: 29-37.
    [15]Ye D, Luo L, Ding Y, Chen Q, Liu X. Analyst,2011,136(21):4563-4569.
    [16]Lin A, Wen Y, Zhang L, Lu B, Li Y, Jiao Y, Yang H. Electrochimica Acta,2011, 56(3):1030-1036.
    [17]Fan C, Plaxco K, Heeger A. Proceedings of the National Academy of Sciences of the United States of America,2003,100(16):9134-9137.
    [18]Levicky R, Herne T, Tarlov M, Satija S. Journal of the American Chemical Society,1998,120(38):9787-9792.
    [19]LIU Zhao-Rong(刘赵荣),WANG Yu-Chun(王玉春),GONG Qiao-Juan(弓巧娟).Chinese Journal of Analytical Chemistry(分析化学),2010,38(7):1040-1043.
    [1]Chen C., Niu X. H., Chai Y., et al. Bismuth-based porous screen-printed carbon electrode with enhanced sensitivity for traceheavy metal detection by stripping voltammetry.Sensors and Actuators B:Chemical.2013,178:339-342.
    [2]Niu X.H., Chen C., Zhao H. L., Tang J., Li Y.X.,Lan M.B.Porous screen-printed carbon electrode. Electrochemistry Communications,2012,22:170-173.
    [3]Niu X. H., Chen C., Teng Y. J., Zhao H. L., et al. NovelScreen-printed Gold Nano Film Electrode for Trace Mercury(Ⅱ) Determination UsingAnodic Stripping Voltammetry. Analytical Letters,2012,45:764-773.
    [4]Garcia F.G., Soares B.G. Determination of the epoxideequivalent weight of epoxy resins based on diglycidyl ether of bisphenol A (DGEBA) by proton nuclear magnetic resonance. Polymer Testing,2003,22:51-56.
    [5]Sarzanini C., Bruzzoniti M.C., Mentasti E. Determination of epichlorohydrin by ion chromatography. Journal of Chromatography A,2000,884:251-259.
    [6]Bruzzoniti M.C., Andreessen S., Novic M., et al. Determination of epichlorohydrin by sulfite derivatizationand ion chromatography:characterization of the sulfitederivatives by ion chromatography-mass spectrometry. Journal of Chromatography A,2004,1034:243-247.
    [7]Anderson K., Kizling J., Holmberg K., et al. A Ring-opening reaction performed in microemulsions.Colloids and Surfaces A:physicochemical and engineering Aspects, 1998,144:259-266.
    [8]Zhao H.L., Zhou C.X., Teng Y.J., et al. NovelPt Nanowires Modified Screen-printed Gold Electrode by Electrodeposited Method.Applied Surface Science, 2011,257:3793-3797.
    [9]Cresser M.S. and J. Torrent-Castellet. Determination of gallium in an iron-aluminium matrix by solvent extraction and flame emission spectroscopy. Talanta.1972,19(11):1478-1480.
    [10]Zhang Y, S.B.Adeloju. A novel sequential injection—Cold vapour atomicabsorption spectrometric system for rapid and reliable determination of mercury.Talanta.2008,74(4):951-957.
    [11]Atienza, J.M. Herrero, A. Maquieira, and R. Puchades. Flow Injection Analysis ofSeawater. Part Ⅱ.Cationic Species.Critical Reviews in Analytical Chemistry. 1992,23(1-2):1-14.
    [12]Becker,J.S.and H.J.Dietze.Inorganic trace analysis by mass spectrometry. SpectrochimicaActa Part B:Atomic Spectroscopy.1998,53(11):1475-1506.
    [13]Nestle, N., T.Baumann, A.Wunderlich, and R.Niessner.MRI observation of heavymetal transport in aquifer matrices down to sub-mg quantities.Magnetic Resonancelmaging.2003,21(34):345-349.
    [14]Chereddy N.R., S.Thennarasu.Synthesis of a highly selective bis-rhodamine chemosensor for naked-eye detection of Cu2+ ions and its application in bio-imaging.Dyes and Pigments.2011,91(3):378-382.
    [15]Yoon, S., A.E. Albers, A.P. Wong, and CJ. Chang. Screening mercury levels in fishwith a selective fluorescent chemosensor. Journal of the American Chemical Society.2005,127(46):160-169.
    [16]Nolan, E.M., S.J. Lippard.A "Tum-On" fluorescent sensor for the selective detection of mercuric ion in aqueous media. Journal of the American Chemical Society,2003,125(47):14270-14271.
    [17]Xu, H.,R. Miao, Z. Fang, and X. Zhong.Quantum dot-based "turn-on" fluore scentprobe for detection of zinc and cadmium ions in aqueous media. Analytica ChimicaActa,2011,687(1):82-88.
    [18]Mahmoud, W.E. Functionalized ME-capped CdSe quantum dots based luminescenceprobe for detection of Ba2+ ions. Sensors and Actuators B:Chemical. 2012,164(1):76-81.
    [19]Lee C G, Wei X D, Jeffrey W K, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene.Science,2008,321(5887):385-388.
    [20]Lu C H, Yang H H, Zhu C L, et al. A Graphene platform for sensing biomolecules. AngewChemInt Ed,2009,48(26):4785-4787.
    [21]Shan C S, Yang H F, Han D X, et al. Water-Soluble grapheme covalently functionalized by biocompatiblepolylysine, Anal Chem,2009,81:354-358.
    [22]Wang Y, Li Y M, Tang L H, et al. Application od grapheme modified electrode for selective detection of dopamine,ElectrochemCommum,2009,11:889-892.
    [23]Chen C, Yang Q, Yang Y, et al. Self-Assembled Free-Standing Graphite Oxide Membrane. Advanced Materials,2009,21(29):3007-3011.
    [24]Chen B, Zhang L, Chen G Determination of salidroside and tyrosol in Rhodiola by capillary electrophoresis with graphene/poly(μrea-formaldehyde) composite modified electrode.Electrophoresis,2011,32(8):870-876.
    [1]U. Yogeswaran, S. Thiagarajan, S. Chen, Anal. Biochern.2007,365:122-131.
    [2]U. Yogeswaran, S. Chen, Electrochim. Acta.2007,52:5985-5996.
    [3]W. Schultz,Neuron.2002,36:241-263.
    [4]D. Han, T. Han, C. Shan, A. Ivaska, L. Niu, Electroanalysis.2010,22:2001-2008.
    [5]H. Manjunatha, D. H. Nagaraju, G S. Suresh, T. V. Venkateshab, Electroanalysis.2009,21:2198-2206.
    [6]S. Zhang, M. Xu, Y. Zhang, Electroanalysis.2009,21:2607-2610.
    [7]J. Zen, P. Chen, Anal. Chem.1997,69:5087-5093.
    [8]A.A. Ensafi, M. Taei, T. Khayamian, J. Electroanal. Chem.2009,633:212-220.
    [9]J. Arguello, V.L. Leidens, H.A. Magosso, R.R. Ramos, Y. Gushikem, Electrochim. Acta.2008,54:560-565.
    [10]H.R. Zare, N. Nasirizadeh, M. Mazloum Ardakani, J. Electroanal. Chem.2005,577:25-33.
    [11]H.R. Zare, N. Rajabzadeh, N. Nasirizadeh, M. Mazloum Ardakani, J. Electroanal. Chem.2006,589:60-69.
    [12]T. Luczak, Electrochim. Acta.2009,54:5863-5870.
    [13]T. Tsai, S. Thiagarajan, S. Chen, C. Cheng, Thin Solid Films,2012,520: 3054-3059.
    [14]S. Harish, J. Mathiyarasu, K. L. N. Phani, V. Yegnaraman, J. Appl. Electrochem. 2008,38:1583-1588.
    [15]J. Huang, Y. Liu, H. Hou, T. You, Biosens. Bioelectron.2008,24:632-637.
    [16]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, V. Grigorieva, A.A. Firsov, Science.2004,306:666-669.
    [17]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature.2005,438:197-200.
    [18]Y. Song, Z. He, H. Zhu, H. Hou, L. Wang, Electrochim. Acta.2011,58:757-763.
    [19]W. Yang, Z. Gao, J. Wang, B. Wang, Q. Liu, Z. Li, T. Mann, P. Yang, M. Zhang, L. Liu, Electrochim. Acta.2012,69:112-119.
    [20]Y. Zhou, H. Yin, X. Meng, Z. Xu, Y. Fu, S. Ai, Electrochim. Acta.2012,71: 294-301.
    [21]J. Ping, J. Wu, Y. Wang, Y. Ying, Biosens. Bioelectron.2012,34:70-76.
    [22]Z. Sheng, X. Zheng, J. Xu, W. Bao, F. Wang, X. Xia, Biosens. Bioelectron.2012, 34:125-131.
    [23]C. Sun, H. Lee, J. Yang, C. Wu, Biosens. Bioelectron.2011,26:3450-3455.
    [24]X. Tian, C. Cheng, H. Yuan, J. Du, D. Xiao, S. Xie, M.M.F. Choi, Talanta.2012, 93:79-85.
    [25]M.N.V. Ravi Kumar, React. Funct. Polym.2000,46:1-27.
    [26]C. Chatelet, O. Damour, A. Domard, Biomaterials.2001,22:261-268.
    [27]S.C. Fernandes, I.C. Vieira, R.A. Peralta, A. Neves, Electrochim. Acta.2010,55:7152-7157.
    [28]X. Liu, Y. Peng, X. Qu, S. Ai, R. Han, X. Zhu, J. Electroanal. Chem. 2011,654:72-78.
    [29]C. Chen, Q. Yang, Y. Yang, W. Lv, Y. Wen, P. Hou, M. Wang, H. Cheng, Adv. Mater.2009,21:3007-3011.
    [30]B. Chen, L. Zhang, G. Chen, Electrophoresis.2011,32:870-876.
    [31]Y. Kim, S. Bong, Y. Kang, Y. Yang, R.K. Mahajan, J.S. Kim, H. Kim, Biosens. Bioelectron.2010,25:2366-2369.
    [32]K. Torigoe, K. Esumi, Langmuir.1995,11:4199-4201.
    [33]P. Santhosh, K.M. Manesh, S. Uthayakumar, S. Komathi, A.I. Gopalan, K.P. Lee, Bioelectrochemistry.2009,75:61-66.
    [34]J.V. Rojas, C.H. Castano, Radiat. Phys. Chem.2012,81:16-21.
    [35]S. Mubeen, T. Zhang, B. Yoo, M.A. Deshusses, N.V. Myung, J. Phys. Chem. C. 2007,111:6321-6327.
    [36]S. Hashemnia, H. Ghourchian, A.A. Moosavi-Movahedi, H. Faridnouri, J. Appl. Electrochem.2009,39:7-14.
    [37]Y. Wang, Y. Li, L. Tang, J. Lu, J. Li, Electrochem. Commun.2009,11:889-892.
    [38]U. Chandra, B.E. Kumara Swamy, O. Gilbert, B.S. Sherigara, Electrochim. Acta 2010,55:7166-7174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700