用户名: 密码: 验证码:
液态碳氢燃料红外光谱性质的透射法实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽油、柴油、乙醇、煤油等液态碳氢燃料属于具有光谱选择性的半透明介质,在航空航天、能源动力、化工等领域得到广泛应用。其吸收指数、折射率等光谱性质参数是燃烧、高温热转换、红外测量等过程研究和设计分析的基础数据。获取液态碳氢燃料的光谱性质参数数据对相关技术发展具有重要意义。
     本文以透射法实验获取液态碳氢燃料的红外光谱性质参数为目标,对中高温透射光谱测量的实验技术、基于光谱透射比测量数据的吸收指数和折射率反演求解模型、封装窗口材料和典型液态碳氢燃料的红外光谱性质参数分析进行了研究。
     主要研究内容包括以下四方面:
     1.基于光谱透射比的多层半透明介质光谱性质反演模型与求解方法研究。在分析传统双厚度法和基于KK关系式的单厚度法的基础上,考察了高阶反射项、窗口表面反射率等参数对反演精度的影响。提出了IDTM模型,将双厚度法扩展应用于窗口-液态碳氢燃料-窗口组成的三层半透明结构。通过计算分析,研究了该模型的适用范围及实验偏差的影响。
     2.样品封装窗口材料的光谱性质研究。通过实验测量与反演求解,获得了石英、硒化锌等典型红外窗口材料在0.83μm~21μm波段的常温光谱性质参数与2μm~15μm波段的中温(373K和423K)光谱性质参数,分析了材料的红外光谱透过性能及温度的影响,为液体碳氢燃料样品封装设计提供了依据。
     3.液态碳氢燃料中高温透射光谱测量实验技术研究。设计了液体碳氢燃料样品封装结构与加热装置,结合激光器、傅里叶变换红外光谱仪等仪器,建立了具有中高温加热功能的红外透射光谱实验测量系统。通过数值模拟,研究了恒温箱内部热环境及光学窗口的瞬态加热特性,分析了加热温度、腔内壁发射率、窗口半透明特性和窗口外表面换热条件等相关因素的影响。
     4.典型液态碳氢燃料的红外光谱性质实验测量与分析。以纯水为对象,实验测量其光谱透射比,反演计算其吸收指数、折射率数据,通过与文献数据比较,验证了实验测量与反演分析的可靠性。在此基础上,实验测量了乙醇、-35#柴油、普通煤油和RP-3航空煤油样品在2μm~15μm波段范围内的红外透射光谱;并结合反演计算,进一步获得了相应的光谱吸收指数和折射率数据。初步分析了温度对RP-3航空煤油红外光谱性质的影响。
     通过本文研究,初步建立了基于透射法测量液态碳氢燃料中高温光谱性质的实验装置,获得了四种典型液态碳氢燃料部分区域的红外光谱性质参数,为进一步研究液态碳氢燃料光谱性质奠定了基础,为相关技术领域的工程设计及热分析提供了参考。
Liquid hydrocarbon fuels including gasoline, diesel oil, ethanol and kerosene, belong toa kind of semitransparent medium. The properties of liquid hydrocarbon fuels are importantfor research of spaceflight, power and energy, chemical production. The infrared spectralparameters of liquid hydrocarbon fuels include absorption index and refractive index. Thoseparameters are the basic data of heat transfer simulation and thermal design in combustionsimulation, high thermal exchange and infrared measurement, etc. The study of the infraredspectral parameters of liquid hydrocarbon fuels plays an important role in relativetechnology.
     On the basis of transmittance method, the infrared spectral properties of liquidhydrocarbon fuels were studied. High temperature measuring technique of transmittedspectrum is established. Based on measured date of spectral transmittance, inversionmodeling was established. The parameters of the infrared spectral properties forencapsulation window materials and typical liquid hydrocarbon fuels were analyzed.
     The main work of in this dissertation includes the following four aspects.
     1. Investigation on the inversion modeling and solving method of multi-layersemitransparent materials based on the infrared spectral properties. The traditional doublethickness method and single thickness method based on KK relations were investigated, andthen effects of high order reflection item and variety of window reflection werequantificationally studied. The IDTM model was proposed, and the double thickness methodwas introduced and improved so that the method can be applied three-layer configuration ofwindow-liquid hydrocarbon-window that is similar with sandwich. The applications oftheoretical inversion methods and the effect characteristics of experimental errors on modelwere summarized based on calculation analysis.
     2. The spectral properties of materials of sample encapsulation window wereexperimental studied. The spectral parameters of materials of typical infrared windowswere studied, such as quartz and Zinc selenide in wavelength0.83μm~21μm and airtemperature, in wavelength2μm~15μm and medium temperature that is respectively373K and423K,based on experimental measurement and inversion calculation. Theeffects of spectra and temperature on spectral characteristics of infrared window wereinvestigated. The studied results supply the help for designing the liquid hydrocarbonfuel encapsulation.
     3. The measurement technology of spectral transmittance of hydrocarbon fuels inmedium and high temperature was studied. The sample encapsulation configuration of liquid hydrocarbon fuel and heating equipments were designed. The measurement equipments ofspectral transmittance that can operate in medium and high temperature were designed andconstructed, which include laser sources and Fourier Transform Infrared Spectroscopy. Thethermal environment in constant temperature chest and the transient heating characteristicsof sample optical cell were numerical studied, and the effects on thermal environment andtransient heating characteristics were investigated, which include heating temperature,emissivity, the semitransparent characteristics of window material, and heat exchangeconditions of outer surface of window, etc.
     4. The experimental measurement and analysis of the infrared spectral parameters oftypical liquid hydrocarbon fuels were studied. Firstly, the optical constants of water werestudied. The spectral transmittances of water were experimental measured, and theabsorption index and refractive index were attained by the inversion calculation, and thefeasibility of measurement operation and inversion methods were validated based oncompared with the data of literature. The infrared transmittance spectra of typical liquidhydrocarbon fuels were investigated in wavelength2μm~15μm, which include aviationkerosene RP-3, common kerosene,-35#diesel oil and ethanol. And the infrared spectralparameters include the absorption index and refractive index of typical liquid hydrocarbonfuels were attained based on inversion calculation. The effect of temperature on the infraredspectral parameters of liquid hydrocarbon fuels aviation kerosene RP-3was studied.
     By the investigations in this thesis, high temperature measuring equipment of spectralproperties of hydrocarbon fuels in medium and high temperature environment based ontransmittance method was built. The infrared spectral parameters of four kinds of typicalliquid hydrocarbon fuels in limited wavelength range were attained. The study can promotethe development of infrared spectral parameters of liquid hydrocarbon fuels. The basicparameters of liquid hydrocarbon fuel can help the application of thermal engineering designand quantitative research of heat transfer.
引文
[1] Abianeh O S, Chen P C. A Discrete Multicomponent Fuel Evaporation Model with LiquidTurbulence Effects[J]. International Journal of Heat and Mass Transfer,2012,55(23-24):6897-6907.
    [2] Amani E, Nobari M R H. A Calibrated Evaporation Model for the Numerical Study of EvaporationDelay in Liquid Fuel Sprays[J]. International Journal of Heat and Mass Transfer,2013,56(1-2):45-58.
    [3] Sazhin S S, Kristyadi T, Abdelghaffar W A, et al. Models for Fuel Droplet Heating and Evaporation:Comparative Analysis[J]. Fuel,2006,85(12-13):1613-1630.
    [4] Abramzon B, Sazhin S. Convective Vaporization of a Fuel Droplet with Thermal RadiationAbsorption[J]. Fuel,2006,85(1):32-46.
    [5]孙凤贤,王银燕.辐射与对流耦合加热下正十二烷液滴的蒸发特性[J].航空动力学报,2008,23(11):2043-2048.
    [6]吕继组,白敏丽,李晓杰.辐射传热空间非均匀性对燃油雾化的影响[J].工程热物理学报,2011,32(4):625-628.
    [7] Chen P C, Wang W C, Roberts W L, et al. Spray and Atomization of Diesel Fuel and ItsAlternatives from a Single-hole Injector Using a Common Rail Fuel Injection System[J]. Fuel,2013,103:850-861.
    [8] Kim S, Hwang J W, Lee C S. Experiments and Modeling on Droplet Motion and Atomization ofDiesel and Bio-diesel Fuels in a Cross-flowed Air Stream[J]. International Journal of Heat andFluid Flow,2010,31(4):667-679.
    [9] Smirnov N N, Betelin V B, Kushnirenko A G, et al. Ignition of Fuel Sprays by Shock WaveMathematical Modeling and Numerical Simulation[J]. Acta Astronautica,2013,87:14-29.
    [10]肖保国,杨顺华,赵慧勇,等. RP-3航空煤油燃烧的详细和简化化学动力学模型[J].航空动力学报,2010,25(9):1948-1955.
    [11] Zhou H C, Ai Y H. Effect of Radiative Transfer of Heat Released from Combustion Reaction onTemperature Distribution: A Numerical Study for a2-D System[J]. Journal of QuantitativeSpectroscopy and Radiative Transfer,2006,101(1):109-118.
    [12] Peng L N, He G Q, Liu P J. Experimental Investigation on Active Cooling for Ceramic MatrixComposite[J]. Journal of China Ordnance,2009,5(2):102-105.
    [13] Wang Q W, Wu F, Zeng M, et al. Numerical Simulation and Optimization on Heat Transfer andFluid Flow in Cooling Channel of Liquid Rocket Engine Thrust Chamber[J]. EngineeringComputations (Swansea, Wales),2006,23(8):907-921.
    [14] Huang H, Spadaccini L J, Sobel D R. Fuel-cooled Thermal Management for AdvancedAeroengines[J]. Journal of Engineering for Gas Turbines and Power,2004,126(2):284-293.
    [15] Raj P K. Large Hydrocarbon Fuel Pool Fires: Physical Characteristics and Thermal EmissionVariations with Height[J]. Journal of Hazardous Materials,2007,140(1-2):280-292.
    [16]康泉胜.小尺度油池火非稳态燃烧特性及热反馈研究[D].北京:中国科学技术大学学位论文,2009:1-13.
    [17] Suo-Anttila J M, Blanchat T K, Ricks A J, et al. Characterization of Thermal Radiation Spectra in2m Pool Fires[C]. Proceedings of the Combustion Institute:32nd International Symposium onCombustion, Canada,2009,2567-2574.
    [18] Davidson D F, Hong Z, Pilla G L, et al. Multi-species Time-history Measurements during n-heptaneOxidation behind Reflected Shock Waves[J]. Combustion and Flame,2010,157(10):1899-1905.
    [19] Grosch A, Beushausen V, Wackerbarth H, et al. Calibration of Mid-infrared TransmissionMeasurements for Hydrocarbon Detection and Propane Concentration Measurements in HarshEnvironments by Using a Fiber Optical Sensor[J]. Journal of Quantitative Spectroscopy andRadiative Transfer,2011,112(6):994-1004.
    [20] Pan C X, Zhang J Z, Shan Y. Effects of Exhaust Temperature on Helicopter Infrared Signature[J].Applied Thermal Engineering,2013,51(1-2):529-538.
    [21]刘友宏,卲万仁,张锦绣. RP-3发动机排气系统及尾喷流的流场和红外特征数值模拟[J].航空动力学报,2008,23(4):591-597.
    [22]初云涛,华志刚,谈锋,等.利用声波法重建舰船排气温度场及红外辐射强度[J].红外与激光工程,2009,38(4):594-597.
    [23] Shan Y, Zhang J Z, Pan C X. Numerical and Experimental Investigation of Infrared RadiationCharacteristics of a Turbofan Engine Exhaust System with Film Cooling Central Body[J].Aerospace Science and Technology,2013, In press.
    [24] Shuai Y, Dong S K, Tan H P. Simulation of the Infrared Radiation Characteristics ofHigh-temperature Exhaust Plume including Particles using the Backward Monte Carlo Method[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2005,95(2):231-240.
    [25]庄磊.航空煤油池火热辐射特性及热传递研究[D].北京:中国科学技术大学学位论文,2008:1-10.
    [26]蔡文祥.环形燃烧室两相燃烧流场与燃烧性能数值研究[D].南京:南京航空航天大学学位论文,2007:12-14.
    [27] Rothamer D A, Hanson R K. Temperature and Pressure Imaging using Infrared PlanarLaser-induced Fluorescence[J]. Applied Optics,2010,49(33):6436-6447.
    [28] Cai T D, Jia H, Ang G S W, et al. A Sensor for Measurements of Temperature and WaterConcentration Using a Single Tunable Diode Laser near1.4μm[J]. Sensors and Actuators A:Physical,2009,152(1):5-12.
    [29] Kawahara N, Tomita E, Ohtsuki A, et al. Cycle-resolved Residual Gas Concentration Measurementinside a Heavy-duty Diesel Engine Using Infrared Laser Absorption[C]. Proceedings of theCombustion Institute:33nd International Symposium on Combustion, United Kingdom,2011,2903-2910.
    [30]周洁.基于光学波动法和相关原理的颗粒测量及多波长火焰温度分析[D].杭州:浙江大学学位论文,2001:1-15.
    [31]李麦亮.激光光谱诊断技术及其在发动机燃烧研究中的应用[D].长沙:国防科学技术大学学位论文,2004:1-15.
    [32]杨臧健.谱色测温系统的设计研究[D].合肥:中国科学技术大学学位论文,2009:5-12.
    [33] Zhong F Q, Fan X J, Yu G, et al. Heat Transfer of Aviation Kerosene at Supercritical Conditions[J].Journal of Thermophysics and Heat Transfer,2009,23(3):543-550.
    [34] Gascoin N, Gillard P, Tour Y. Validation of Transient Cooling Modeling for HypersonicApplication[J]. Journal of Thermophysics and Heat Transfer,2007,21(1):86-94.
    [35] Spadaccini L J, Sobel D R, Huang H. Deposit Formation and Mitigation in Aircraft Fuels[J].Journal of Engineering for Gas Turbines and Power,2001,123(4):741-746.
    [36]艾青.热辐射与高速流耦合换热的数值研究[D].哈尔滨:哈尔滨工业大学学位论文,2009:45-70.
    [37] Lindermeir E, Beier K. HITEMP Derived Spectral Database for the Prediction of Jet EngineExhaust Infrared Emission Using a Statistical Band Model[J]. Journal of QuantitativeSpectroscopy and Radiative Transfer,2012,113(12):1575-1593.
    [38] Orphal J, Bergametti G, Beghin B, et al. Monitoring Tropospheric Pollution Using InfraredSpectroscopy from Geostationary Orbit[J]. C. R. Physique,2005,6(8):888-896.
    [39] Clerbaux C, Gille J, Edwards D. New Directions: Infrared Measurements of Atmospheric Pollutionfrom Space[J]. Atmospheric Environment,2004,38(27):4599-4601.
    [40]王瑗,盛连喜,李科,等.石油污染土壤的近红外波段偏振光特性测量[J].科学通报,2008,53(23):2956-2961.
    [41]焦洋,徐亮,高闽光,等.污染气体扫描成像红外被动遥测技术研究[J].光谱学与光谱分析,2012,32(7):1754-1757.
    [42] Dombrovsk L A, Sazhin S S, Sazhina E M, et al. Heating and Evaporation of Semi-transparentDiesel Fuel Droplets in the Presence of Thermal Radiation[J]. Fuel,2001,80(11):1535-1544.
    [43] Dombrovsky L A. Spectral Model of Absorption and Scattering of Thermal Radiation by DieselFuel Droplets[J]. High Temperature Materials and Processes,2002,40(2):242-248.
    [44] Porter J M, Jeffries J B, Hanson R K. Mid-infrared Absorption Measurements of LiquidHydrocarbon Fuels near3.4μm[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2009,110(18):2135-2147.
    [45]钟锡华.现代光学基础[M].北京:北京大学出版社,2003:172-180.
    [46]谈和平,夏新林,刘林华,等.红外辐射特性与传输的数值计算-计算热辐射学[M].哈尔滨:哈尔滨工业大学出版社,2006:202-210.
    [47]余其铮.辐射换热原理[M].哈尔滨:哈尔滨工业大学出版社,2000:60-65.
    [48] Jain S R, Walker S. Far-infrared Absorption of Some Organic Liquids[J]. The Journal of PhysicalChemistry,1976,16(5):535-542.
    [49] Bertie J E, Eysel H H. Infrared Intensities of Liquids I: Determination of Infrared Optical andDielectric Constants by FT-IR Using the CIRLE ATR Cell[J]. Applied Spectroscopy,1985,39(3):392-401.
    [50] Bertie J E, Ahmed M K, Baluja S. Infrared Intensities of Liquids.5. Optical and DielectricConstants, Integrated Intensities, and Dipole Moment Derivatives of H2O and D2O at22℃[J]. TheJournal of Physical Chemistry,1989,93:2210-2218.
    [51] Goplen T G, Cameron D G, Jones R N. Absolute Absorption Intensity and DispersionMeasurements on Some Organic Liquids in the Infrared[J]. Applied Spectroscopy,1980,34(6):657-691.
    [52]齐宏.弥散颗粒辐射反问题的理论与实验研究[D].哈尔滨:哈尔滨工业大学学位论文,2008:118-120.
    [53]刘晓东.高温微粒红外辐射特性测量技术研究[D].哈尔滨:哈尔滨工业大学学位论文,2008:101-105.
    [54] Tuntomo A, Tien C L, Park S H. Optical Constants of Liquid Hydrocarbon Fuels[J]. CombustionScience and Technology,1992,84(1):133-140.
    [55] Gupta M C. Optical Constant Determination of Thin Films[J]. Applied Optics,1988,27(5):954-956.
    [56] Kaplan S G, Hanssen L M. Infrared Regular Reflectance and Transmittance Instrumentation andStandards at NIST[J]. Analytica Chimica Acta,1999,380(2-3):303-310.
    [57] Zhang Z Y, Modest M F, Bharadwaj S P. Measurement of Infrared Absorption Coefficients ofMolten Glasses[J]. Experimental Heat Transfer,2001,14(3):145-156
    [58] Lu Y T, Penzkofer A. Optical Constants Measurements of Strongly Absorbing Media[J]. AppliedOptics,1986,25(2):221-225.
    [59] Bertie J E, Zhang S L. Infrared Intensities of Liquids XXI: Integrated Absorption Intensities ofCH3OH, CH3OD, CD3OH and CD3OD and Dipole Moment Derivatives of Methanol[J]. Journal ofMolecular Structure,1997,413-414:333-363.
    [60] Bertie J E, ZHANG S L, Manji R. Infrared Intensities of Liquids X: Accuracy of Current Methodsof Obtaining Optical Constants from Multiple Attenuated Total Reflection Measurements Using theCIRCLE Cell[J]. Applied Spectroscopy,1992,46(11):1660-1665.
    [61] Webber M E, Mihalcea R M, Baer D S, et al. Diode-laser Absorption Measurements of Hydrazineand Monomethylhydrazine[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1999,62(4):511-522.
    [62] Bertie J E, Lan Z. An Accurate Modified Kramers–Kronig Transformation from Reflectance toPhase Shift on Attenuated Total Reflection[J]. The Journal of Physical Chemistry,1996,105(19):8502-8514.
    [63] El-Zaiat S Y, El-Den M B, El-Kameesy S U, et al. Spectral Dispersion of Linear Optical Propertiesfor Sm2O3Doped B2O3-PbO-Al2O3Glasses[J]. Optics&Laser Technology,2012,44(5):1270-1276.
    [64] Keefe C D, Person J K. New Technique for Determining the Optical Constants of Liquids[J].Applied Spectroscopy,2002,56(7):928-934.
    [65] Khashan M A, El-Naggar A M. A New Method of Finding the Optical Constants of a Solid fromthe Reflectance and Transmittance Spectrograms of Its Slab[J]. Optics Communications,2000,174(5-6):445-453.
    [66] Yusoha R, Horprathum M, Eiamchai P, et al. Determination of the Thickness and Optical Constantsof ZrO2by Spectroscopic Ellipsometry and Spectrophotometric Method[J]. Procedia Engineering,2011,8:223-227.
    [67] Friedman M H, Churchill S W. The Absorption of Thermal Radiation by Fuel Droplets[J]. Chem.Eng. Prog. Symp. Ser.,1965,61:1-4.
    [68] Al'perovich L I, Komarova A I, Narziev B N, et al. Optical Constants of Petroleum Samples in the0.25-25μm Range[J]. Journal of Applied Spectroscopy,1978,28(4):491-494.
    [69] Kelly J J, Barlow C H, Jinguji T M, et al. Prediction of Gasoline Octane Numbers fromNear-infrared Spectral Features in the Range660-1215nm[J]. Analytical Chemistry,1989,61(4):313-320.
    [70] Gurton K P, Bruce C W. Midinfrared Optical Properties of Petroleum Oil Aerosols[R]. ArmyResearch Laboratory, ARL-TR-255.
    [71] Bertie J E, Keefe C D. Comparison of Infrared Absorption Intensities of Benzene In the Liquid andGas Phases[J]. Journal of Chemical Physics,1994,101(6):4610.
    [72] Bertie J E, Zhang S L, Keefe C D. Measurement and Use of Absolute Infrared AbsorptionIntensities of Neat Liquids[J]. Vibrational Spectroscopy,1995,8(2):215-229.
    [73] Bertie J E, Zhang S L, Jones R N, et al. Determination and Use of Secondary Infrared IntensityStandards[J]. Applied Spectroscopy,1995,49(12):1821-1825.
    [74] Boer J H W G D, Kroesen G M W, Dehoog F J. Measurement of the Complex Refractive Index ofLiquids in the Infrared Using Spectroscopic Attenuated Total Reflection Ellipsometry: Correction forDepolarization by Scattering[J]. Applied Optics,1995,34(25):5708-5714.
    [75] Hawranek J P, Wrzeszcz W. The Infrared Dielectric Function of Liquid Triethylamine[J]. Journalof Molecular Liquids,1995,67:21l-216.
    [76] yd ba-Kopczyńska B I, Be K B, Tomczak J, et al. Optical Constants of Liquid Pyrrole in theInfrared[J]. Journal of Molecular Liquids,2012,172:34-40.
    [77] Bec′K B, Hawranek J P. Vibrational Analysis of Liquid n-Butylmethylether[J]. VibrationalSpectroscopy,2013,64:164-171.
    [78] Anderson M R. Determination of Infrared Optical Constants for Single ComponentHydrocarbon Fuels[D]. United States: Master's thesis of University of Missouri-Rolla,2000.
    [79] Bertie J E, Apelblat Y, Keefe C D. Infrared Intensities of Liquids. Part XXIII. Infrared OpticalConstants and Integrated Intensities of Liquid Benzene-d1at25℃[J]. Journal of MolecularStructure,2000,550–551:135-165.
    [80] Keefe C D, Pearson J K, Macdonald A. Optical Constants and Vibrational Assignment of LiquidToluene-d8between4000and450cm-1at25℃[J]. Journal of Molecular Structure,2003,655(1):69-80.
    [81] Bertie J E, Apelblat Y, Keefe C D. Infrared Intensities of Liquids XXV: Dielectric Constants, MolarPolarizabilities and Integrated Intensities of Liquid Toluene at25℃between4800and400cm-1[J].Journal of Molecular Structure,2005,750(1-3):78-93.
    [82] Keefe C D, Barrett J, Jessome L L. Optical Constants and Vibrational Assignment ofFluorobenzene between4000and400cm-1at25℃[J]. Journal of Molecular Structure,2005,734(1-3):67-75.
    [83] Dombrovsky L A, Sazhin S S, Mikhalovsky S V, et al. Spectral Properties of Diesel FuelDroplets[J]. Fuel,2003,82(1):15-22.
    [84] Keefe C D, Macdonald J L. Optical Constant, Molar Absorption Coefficient, and Imaginary MolarPolarizability Spectra of Liquid Hexane at25℃Extended to100cm-1and Vibrational Assignmentand Absolute Integrated Intensities between4000and100cm-1[J]. Vibrational Spectroscopy,2007,44(1):121-132.
    [85] Keefe C D, Jaspers-Fayer S. Infrared Optical Properties and Raman Spectra of n-Pentane andn-Pentane-d12[J]. Vibrational Spectroscopy,2011,57(1):72-80.
    [86] Keefe C D, Macinnis S. Temperature Dependence of the Optical Properties of Liquid Toluenebetween4000and400cm-1from30to105℃[J]. Journal of Molecular Structure,2005,737(2-3):207-219.
    [87] Keefe C D, Gillis E A L. Temperature Dependence of the Optical Properties of Liquid Benzene inthe Infrared between25and50℃[J].Spectrochimica Acta. Part A: Molecular and BiomolecularSpectroscopy,2008,70(3):500-509.
    [88] Liu J T, Jeffries J B, Hanson R K. Large-modulation-depth2f Spectroscopy with Diode Lasers forRapid Temperature and Species Measurements in Gases with Blended and Broadened Spectra[J].Applied Optics,2004,43(35):6500-6509.
    [89] Vasudevan V, Davidson D F, Hanson R K. High-Temperature Measurements of the Reactions ofOH with Toluene and Acetone[J]. The Journal of Physical Chemistry,2005,109(15):3352-3359.
    [90] Oehlschlaeger M A, Davidson D F, Hanson R K. High-Temperature UV Absorption of MethylRadicals behind Shock Waves[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2005,92(4):393-402.
    [91] Klingbeil A E, Jeffries J B, Hanson R K. Temperature and Pressure-Dependent Absorption CrossSections of Gaseous Hydrocarbons at3.39μm[J]. Measurement Science and Technology,2006,17(7):1950-1957.
    [92] Klingbeil A E, Jeffries J B, Hanson R K. Temperature-Dependent Mid-IR Absorption Spectra ofGaseous Hydrocarbons[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2007,107(3):407-420.
    [93] Klingbeil A E, Jeffries J B, Hanson R K. Temperature and Composition-Dependent Mid-InfraredAbsorption Spectrum of Gas-Phase Gasoline: Model and Measurements[J]. Fuel,2008,87(17-18):3600-3609.
    [94] Klingbeil A E, Porter J M, Jeffries J B,et al. Two-Wavelength Mid-IR Absorption Diagnostic forSimultaneous Measurement of Temperature and Hydrocarbon Fuel Concentration. Proceedings ofthe Combustion Institute:32nd International Symposium on Combustion, Canada,2009,821-829.
    [95] Porter J M, Jeffries J B, Hanson R K. Mid-Infrared Laser-Absorption Diagnostic for Vapor-PhaseMeasurements in An Evaporating n-decane Aerosol[J]. Applied Physics Section B,2009,97(1):215-225.
    [96] Sung H P, Porter J M, Jeffries J B, et al. Two-color-absorption Sensor for Time-ResolvedMeasurements of Gasoline Concentration and Temperature[J]. Applied Optics,2009,48(33):6492-6500.
    [97] Porter J M, Jeffries J B, Hanson R K. Mid-infrared Laser-Absorption Diagnostic for Vapor-PhaseFuel Mole Fraction and Liquid Fuel Film Thickness[J]. Applied Physics Section B,2011,102(2):345-355.
    [98] Otanicar T P, Phelan P E, Golden J S. Optical Properties of Liquids for Direct Absorption SolarThermal Energy Systems[J]. Solar Energy,2009,83(7):969-977.
    [99] Fabiano B G, Pasquini C. A Low Cost Short Wave near Infrared Spectrophotometer: Application forDetermination of Quality Parameters of Diesel Fuel[J]. Analytica Chimica Acta,2010,670(1-2):92-97.
    [100] Biliˇskov N. Infrared Optical Constants, Molar Absorption Coefficients, Dielectric Constants,Molar Polarisabilities, Transition Moments and Dipole Moment Derivatives of Liquid N,N-dimethylformamide–carbon Tetrachloride Mixtures[J]. Spectrochimica Acta Part A: Molecularand Biomolecular Spectroscopy,2011,79(2):302-307.
    [101] Biliˇskov N. Infrared Optical Constants, Molar Absorption Coefficients, Dielectric Constants,Molar Polarisabilities, Transition Moments and Dipole Moment Derivatives of Liquid N,N-dimethylacetamide–carbon Tetrachloride Mixtures[J]. Spectrochimica Acta Part A: Molecularand Biomolecular Spectroscopy,2011,79(2):295-301.
    [102] Wen Q, Shen J, Shi Z, et al. Temperature Coefficients of the Refractive Index for Hydrocarbons andBinary Mixtures[J]. Chemical Physics Letters,2012,539-540:54-57.
    [103] Brosmer M A, Tien C L. Thermal Radiation Properties of Acetylene[J]. Journal of Heat Transfer,1985,107(4):943-948.
    [104] Brosmer M A, Tien C L. Infrared Radiation Properties of Methane at Elevated Temperatures[J].Journal of Quantitative Spectroscopy and Radiative Transfer.1985,33(5):521-532.
    [105] Brosmer M A, Tien C L. Thermal Radiation Properties of Propylene[J].Combustion Science andTechnology,1986,48(3-4):163-175.
    [106] Park S H, Stretton A J, Tien C L. Infrared Radiation Properties of Methyl Methacrylate Vapor[J].Combustion Science and Technology,1988,62(4-6):257-271.
    [107] Fuss S P, Ezekoye O A, Hall M J. The Absorptance of Infrared Radiation by Methane at ElevatedTemperatures[J]. Journal of Heat Transfer,1996,118(4):918-923.
    [108] Fuss S P, Hall M J, Ezekoye O A. Band Integrated Infrared Absorptance of Low Molecular WeightParaffin Hydrocarbons at High Temperatures[J]. Applied Optics,1999,38(13):2895-2904.
    [109] Fuss S P, Hamins A. Determination of Planck Mean Absorption Coefficients for HBr, HCl andHF[J]. Journal of Heat Transfer,2002,124(1):26-29.
    [110] Clausen S, BAK J. FTIR Transmission-emission Spectroscopy of gases at High Temperatures:Experimental Set-up and Analytical Procedures[J]. Journal of Quantitative Spectroscopy andRadiative Transfer,1999,61(2):131-141.
    [111] Bak J, Clausen S. FTIR Transmission-emission Spectroscopy of gases at High Temperatures:Demonstration of Kirchhoff's Law for a Gas in an Enclosure[J]. Journal of QuantitativeSpectroscopy and Radiative Transfer,1999,61(5):687-694.
    [112] Modest M F, Bharadwaj S P. Medium Resolution Transmission Measurements of CO2at HighTemperature[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2002,73(2-5):329-338.
    [113] Bharadwaj S P, Modest M F, Riazzi R J. Medium Resolution Transmission Measurements of WaterVapor at High Temperature[J]. Journal of Heat Transfer,2006,128(4):374-381.
    [114] Bharadwaj S P, Modest M F. Medium Resolution Transmission Measurements of CO2at HighTemperature-an Update[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2007,103(1):146-155.
    [115] Andre′F, Perrin M Y, Taine J. FTIR Measurements of12C16O2Line Positions and Intensities at HighTemperature in the3700–3750cm-1Spectral Region[J]. Journal of Molecular Spectroscopy,2004,228(1):187-205.
    [116] Rinsland C P, Sharpe S W, Sams R L. Temperature-Dependent Infrared Absorption Cross Sectionsof Methyl Cyanide (Acetonitrile)[J]. Journal of Quantitative Spectroscopy and RadiativeTransfer,2005,96(2):271-280.
    [117] Rinsland C P, Devi C P, Blake T A, et al. Quantitative Measurements of Integrated Band Intensitiesof Benzene Vapor in the Mid-Infrared at278,298, and323K[J]. Journal of QuantitativeSpectroscopy and Radiative Transfer,2008,109(15):2511-2522.
    [118] Wakatsuki K. High Temperature Radiation Absorption of Fuel Molecules and an Evaluation ofits Influence on Pool Fire Modeling. United States: Doctor’s thesis of University of Maryland,2005.
    [119] Wakatsuki K, Jackson G S, Hamins A, et al. Effects of Fuel Absorption on Radiative Heat Transferin Methanol Pool Fires. Proceedings of the Combustion Institute:31nd InternationalSymposium on Combustion, Germany,2007,2573-2580.
    [120] Wakatsuki K, Jackson G S, Kim J, et al. Determination of Planck Mean Absorption Coefficients forHydrocarbon Fuels[J]. Combustion Science and Technology,2008,180(4):616-630.
    [121] Grosch A, Beushausen V, Wackerbarth H, et al. Temperature-and Pressure-Dependent MidinfraredAbsorption Cross Sections of Gaseous Hydrocarbons[J]. Applied Optics,2010,49(2):196-203.
    [122] Sambamurthy N B, Shaija A, Narasimham G S V L, et al. Laminar Conjugate Natural Convectionin Horizontal Annuli[J]. International Journal of Heat and Fluid Flow,2008,29(5):1347-1359.
    [123] He Y L, Tao W Q, Qu Z G, et al. Steady Natural Convection in a Vertical Cylindrical Envelope withAdiabatic Lateral Wall[J]. International Journal of Heat and Mass Transfer,2004,47(14):3131-3144.
    [124] Balaji C, Herwig H. The Use of ACFD Approach in Problems Involving Surface Radiation andFree Convection[J]. International Journal of Heat and Mass Transfer,2003,30(2):251-259.
    [125] Premachandran B, Balaji C. Conjugate Mixed Convection with Surface Radiation from aHorizontal Channel with Protruding Heat Sources[J]. International Journal of Heat and MassTransfer,2006,49(19-20):3568–3582.
    [126] Sharma A K, Velusamy K, Balaj C. Conjugate Transient Natural Convection in a CylindricalEnclosure with Internal Volumetric Heat Generation[J]. Annals of Nuclear Energy,2008,35(8):1502-1514.
    [127] Sharma A K, Velusamy K, Balaji C. Turbulent Natural Convection of Sodium in a CylindricalEnclosure with Multiple Internal Heat Sources: a Conjugate Heat Transfer Study[J]. InternationalJournal of Heat and Mass Transfer,2009,52(11-12):2858-2870.
    [128] Gad M A, Balaji C. Effect of Surface Radiation on RBC in Cavities Heated from Below[J].International Communications in Heat and Mass Transfer,2010,37(10):1459-1464.
    [129] Xamán J, álvarez G, Hinojosa J, et al. Conjugate Turbulent Heat Transfer in a Square Cavity with aSolar Control Coating Deposited to a Vertical Semitransparent Wall[J]. International Journal ofHeat and Fluid Flow,2009,30(2):237-248.
    [130] Xamán J, Mejía G, álvarez G, et al. Analysis on the Heat Transfer in a Square Cavity with aSemitransparent Wall: Effect of the Roof Materials[J]. International Journal of Thermal Sciences,2010,49(10):1920-1932.
    [131] Colomer G, Costa M, Consul R, et al. Three-Dimensional Numerical Simulation of Convection andRadiation in a Differentially Heated Cavity Using the Discrete Ordinates Method[J]. InternationalJournal of Heat and Mass Transfer,2004,47(2):257-269.
    [132] Nouanegue H F, Muftuoglu A, Bilgen E. Heat Transfer by Natural Convection, Conduction andRadiation in an Inclined Square Enclosure Bounded with a Solid Wall[J]. International Journal ofThermal Sciences,2009,48(5):871-880.
    [133] Kuznetsov G V, Sheremet M A. Conjugate Natural Convection with Radiation in an Enclosure[J].International Journal of Heat and Mass Transfer,2009,52(9-10):2215-2223.
    [134] Kuznetsov G V, Sheremet M A. Conjugate Natural Convection in an Enclosure with a Heat Sourceof Constant Heat Transfer Rate[J]. International Journal of Heat and Mass Transfer,2011,54(1-3):260-268.
    [135]战乃岩,杨茉,徐沛巍.封闭腔导热辐射与自然对流耦合换热的数值研究[J].中国科学:技术科学,2010,40(9):1052-1060.
    [136]夏新林,刘顺隆,马国嵩.管内高温介质流动入口段的辐射与对流耦合换热数值模拟[J].航空动力学报,2002,17(1):115-121.
    [137] Rao C G. Interaction of Surface Radiation with Conduction and Convection from a VerticalChannel with Multiple Discrete Heat Sources in the Left Wall[J]. Numerical Heat Transfer Part A,2007,52(9):831-848.
    [138] Hernandez J, Zamor B. Effects of Variable Properties and Non-uniform Heating on NaturalConvection Flows in Vertical Channels[J]. International Journal of Heat and Mass Transfer,2005,48(3-4):793-807.
    [139] Desrayaud G, Lauriat G. Flow Reversal of Laminar Mixed Convection in the Entry Region ofSymmetrically Heated, Vertical Plate Channels[J]. International Journal of Thermal Sciences,2009,48(11):2036-2045.
    [140] Bazdidi-Tehrani F, Shahini M. Combined Mixed Convection-Radiation Heat Transfer Within aVertical Channel: Investigation of Flow Reversal[J]. Numerical Heat Transfer Part A,2009,55(3):289-307.
    [141] Barhaghi D G, Davidson L. Large-eddy Simulation of Mixed Convection-radiation Heat Transfer ina Vertical Channel[J]. International Journal of Heat and Mass Transfer,2009,52(17-18):3918-3928.
    [142] Bianco N, Langellotto L, Manca O, et al. Radiative Effects on Natural Convection in VerticalConvergent Channels[J]. International Journal of Heat and Mass Transfer,2010,53(17-18):3513-3524.
    [143] He J, Liu L P, Jacobi A M. Numerical and Experimental Investigation of Laminar Channel Flowwith a Transparent Wall[J]. Journal of Heat Transfer,2011,133(6):061701.
    [144] Rajkumar M R, Venugopal G, Lal S A. Natural Convection with Surface Radiation from a PlanarHeat Generating Element Mounted Freely in a Vertical Channel[J]. Heat and Mass Transfer,2011,47(7):789-805.
    [145] Palik E D. Handbook of Optical Constants of Solids Ⅱ[M]. San Diego: Acadenuc press,1991:737-747.
    [146]费业泰.误差理论与数据处理[M].第6版.北京:机械工业出版社,2010:15-25.
    [147]王新北.基于傅里叶红外光谱仪的材料光谱发射率测量技术的研究[D].哈尔滨:哈尔滨工业大学学位论文,2007:95-100.
    [148] Harris D C. Durable3-5μm Transmitting Infrared Window Materials[J]. Infrared Physics andTechnology,1998,39(4):185-201.
    [149] Boulon G. Fifty Years of Advances in Solid-state Laser Materials[J]. Optical Materials,2012,34(3):499-512.
    [150] Nehra S P, Singh M. Hydrogenation Effect on Electrical, Optical and Magnetic Properties ofZnSe/Co Bilayer DMS Thin Films[J]. Solid State Communications,2010,150(33-34):1587-1591.
    [151] Archana J, Navaneethan M, Ponnusamy S, et al. Chemical Synthesis of Monodispersed ZnSeNanowires and Its Functional Properties[J]. Materials Letters,2012,81:59-61.
    [152] Marple D T F. Refractive Index of ZnSe, ZnTe, and CdTe[J]. Journal of Applied Physics,1964,35(3):539-542.
    [153] Li H H. Refractive Index of ZnS, ZnSe, and ZnTe and Its Wavelength and TemperatureDerivatives[J]. Journal of Physical and Chemical Reference Data,1984,13(1):103-150.
    [154] George M H, Marvin R Q. Optical Constants of Water in the200nm to200mm WavelengthRegion[J]. Applied Optics,1973,12(3):555-563.
    [155]谈和平,余其铮,米歇尔拉勒芒.高温下半透明介质内辐射与导热的非稳态复合换热[J].工程热物理学报,1989,10(3):295-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700