用户名: 密码: 验证码:
修正的似化学模型在熔渣体系中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过文献报道的二元渣系的活度实验值,应用变通的Gibbs-Duhem方程结合α函数法检验了8个全浓度及4个存在饱和浓度的二元渣系在不同温度下两组元活度的可靠性,得出两组元的总平均相对偏差分别为7%和13%,其中2个全浓度的二元渣系B2O3-SiO2(1450℃,1550℃)、FeO-TiO2(1400℃)及4个存在饱和浓度的熔渣体系误差较大,误差大的原因可能是由于实验数据太少或测量数据不太准确所致。其它6个全浓度的二元渣系在不同温度下的平均标准偏差在5%以下,因此通过变通的Gibbs-Duhem方程结合α函数法验证,除B2O3-SiO2(1450℃、1550℃)、FeO—TiO2(1400℃)及4个存在饱和浓度的渣系以外,其余6个全浓度二元渣系在不同温度下的实验数据较可靠。由于无限稀活度系数是冶金热力学重要的参数之一,因此本文计算出8个渣系中,不同温度下各组元的无限稀活度系数,仅作参考。
     通过二分法及泰勒展开式对过量吉布斯能的优化拟合得到二元熔渣体系的键能参数ω,η多项表达式,应用修正的似化学模型计算了18个二元熔渣体系在不同温度下的活度值,与实验数据比较得出两组元的总平均相对偏差为:13%和12%,可以看出活度计算值与实验值吻合较好,所以应用半经验模型(修正的似化学模型)对计算熔渣体系的热力学量较为可靠,只是由于该模型中的配位数的物理意义相对比较模糊,因此有待于进一步改进。修正的似化学模型虽没有考虑体系的内部结构特征,但体系的最大有序一般是在体系离子间缔合(或络合)最强的成分附近,这相当于近似考虑了离子键的缔合,且该模型中比当量分数的ω,η多项表达式只考虑独立离子间的相互作用,这样更接近真实情况。
     借助几何模型的方法(非对称近似),将修正的似化学模型推广到三元熔渣体系。并将该模型应用到SiO2-CaO-FeO(1600℃,1550℃)体系,计算得到该体系下aFeo活度值,且与实验值比较得出平均相对偏差为:S*FeO(1600℃)=±40%, S*FeO(1550℃)=±45%,可看出计算值与实验数据吻合的较好,而Si02-CaO-FeO体系(1550℃)的aCaO活度值和SiO2-CaO-FeO体系(1550℃)的asiO2活度值,与实验值的平均相对偏差分别为:S*CaO=±1497%,s*SiO2=±681%,可看出活度计算值与实验值吻合不是很好,并用Pelton的键能参数计算该体系下的aFeo' aCaO' aSi02活度值,与作者的计算结果基本一致。同时应用相同方法计算了SiO2-CaO-MnO(1550℃,1500℃)熔渣体系,通过非对称近似计算得到该体系组元aMnO活度值,得到与实验数据的平均相对偏差分别为:S*MnnO(1550℃)=±22%,SMnO(1500℃)=±41%,可看出计算值与实验值的吻合较好,同Pelton计算结果基本一致,因此利用该模型计算三元系中某组分活度值是可行的,对于预测冶金熔渣的热力学性质具有一定优势。
The reliability of the two components activity value of 8 entire-concentration and 4 existing-saturation-concentration binary systems at different temperature was tested by using Gibbs-Duhem equation combine withα-function, the general average relative deviation of the two components are 7% and 13% respectively. which two binary slag system-wide concentrations of B2O3-SiO2 (1450℃,1550℃) and FeO-TiO2 (1400℃) and the existence of four concentrations of slag saturated system error is larger.The reason induced this results may be the few experiment data or less accuracy of measurement data.The average relative deviations of the other 6 entire-concentration binary systems are all less than 5% at different temperature. Thereby, the results of the test which made by using Gibbs-Duhem equation combine withα-function show that the experimental data of the 6 binary slag systems at different temperatures, except B2O3-SiO2 (1450℃,1550℃),FeO-TiO2(1400℃) and the existence of four existing-saturation-concentration of slag system are reliable. Infinite dilution activity coefficient, one of the most important parameters of metallurgical thermodynamics, of each component of 8 entire-concentration the slag systems was calculated and the results could apply some reference.
     Polynomial ofωandη(ωandηare bond energy parameters of binary slag systems) was obtained from optimization fitting of excess Gibbs energy with dichotomy and Taylor expansion. The activity values of 18 binary slag systems were calculated with the model of modified quasi-chemical model, and error analysis comparing with experiment data indicates that the general average relative deviation of the two components are 13% and 12% respectively. It could conclude that the activity values obtained from calculation fit better with experimental values, hence that the application of semi-empirical model (modified quasi-chemical model) on calculation and prediction of slag systems thermodynamic is reliable. However the physical meaning of the coordination number in this theory is rather ambiguous and further improvement need to be made. Inner structural features of the system had not been considered in modified quasi-chemical model, but the maximum ordering of the system occurs near at the component of the strongest association (or complexation) effect between ions in the system, and it could be taken for that the association effect of ionic bond has been considered.In this model only interaction of ions has been considered in multiterm expression ofωandη, and it will be more closer to the fact.
     With the help of two methods of geometric model (symmetry approximate and non-symmetry approximate) modified quasi-chemical model has been extend to ternary slag systems.With the application of this model on the system of SiO2-CaO-FeO, the activity value aFeO of the system of SiO2-CaO-FeO (1600℃, 1550℃) was obtained, the average relative deviation compared with experiment data are S*FeO (1600℃)=±40%, S*FeO (1550℃)=±45%, it inosculates better with experimental data. The average relative deviation between activity value aCaO and aSiO2 of the system of SiO2-CaO-FeO (1550℃) and the system of SiO2-CaO-FeO (1550℃)and the experiment data are S*CaO=±1497%,S*SiO2=±681%, respectively, it inosculates not good with experimental data. Activity values of aFe0, aCaO, aSiO2 in this system was calculated with Pelton bond energy parameter, and it inosculates good with the calculation results obtained by the author.In the mean time the same method was applied on slag system of SiO2-CaO-MnO (1550℃,1500℃), Activity value of this system component aMnO was obtained with non-symmetry approximate calculation, the relative deviation compared with experimental data are S*MnO (1550℃) =±22%,S*MnO (1500℃)=±41%, Which are in accordance with Pelton's results. it inosculates better with experimental data.Thereby the modified quasi-chemical model has obviously advantage in ternary slag systems.
引文
[1]傅崇说.有色冶金原理[M]第二版.北京:冶金工业出版社,1993:1-19.
    [2]李飞飞.二元系熔渣组元活度数据的热力学一致性验证.昆明理工大学学士学位论文.2008.
    [3]黄希祜.钢铁冶金原理(第三版)[M].北京:冶金工业出版社.2002:35-45,194.
    [4]C. Wagner. Thermodynamic of Alloys. Addsion-Wesley, London,1952.
    [5]魏庆成.冶金热力学[M].重庆大学出版社.1996.
    [6]黄希祜.关于炉渣的结构模型及其热力学性质的近代发展[M].中国稀土学报(专辑).重庆.2000:51-58.
    [7]T. Yokokawa, K. Niwa. Free energy and basicity of molten silicate solution [J]. Trans Jpn. Inst. Met.1969.10(2):81-84
    [8]S. G Whiteway, I.B.Smith,C. R. Masson. Theory of molecular size distribuition multichain ploymers [J]. Can. J. Chem.(Canada).1970.48(1):33-45
    [9]G. M. Mehrotra, M. G. Frohberg, P. M. Mathew, M. L. Kapoor. Free energy of formation of intermediate compounds in the system PbO-TiO2 [J]. Scr.Metall.(USA),1973.7(10):1047-1051
    [10]D. R. Gaskell. Activities and free energies of mixing in binary silicate melts [J].,Metall.Trans.B,1977,8B(1):131-145
    [11]C.Borgianni, P.Granati. Carlo calculaitons of ionic structure in silicate and alumino-silicate melts [J]. Metall.Trans.B,1979.10B(1):21-25
    [12]P. L. Lin, A. D. Pelton. A Structural model for binary silicate systems [J]. Metall. Trans.B,1979.10B(4):667-675
    [13]P. Sastri, A.K. Lahiri. A'central atoms'model for binary silicate and aluminate melts[J]. Phys.Chem.Glasses.1983.24(4):98-103
    [14]王之昌,周继程,程兆年.一个新的聚合模型在CaO-SiO2熔体中的应用[J].金属学报.1986.22(5):425-433
    [15]张鉴.关于炉渣结构的共存理论[J].北京钢铁学院学报.1984.6(1):21-29
    [16]M. Hillert, B. Jansson, B. Sundman, J. Agren. A two-sublattice model for molten solutions with different tendency for ionization [J]. Metall. Trans. A. Phys. Mater. Sci.1985.16A(2):261-266
    [17]M. Hoch, I. Arpshofen. A modified aggregation model for the calculation of thermodynamic state functions of liquid alloys [J].Z. Met. kd.1984.75(1): 23-29
    [18]M. Hoch. Application of the Hoch-Arpshofen model to ternary quatenrary and larger systems [J]. CALPHAD.1987.11(3):219-224
    [19]M. A. J. Michels, E. Wesker. A network model for the thermodynamics of Multicomponent silicate melts Binary mixtures MO-SiO2[J]. CALPHAD.1987. 12(4):383-393
    [20]F. Sommer. Association model for the description of the thermodynamic funct-ion of liquid alloys [J].Ⅱ. Basic concepts. Z. Met. kd.1982.73(2):72-76
    [21]F. Sommer. Association model for the description of thermodynamic functions of liquid alloys [J]. Ⅱ. Numerical treatment and results. Z. Met. kd.1982.73(2): 77-86
    [22]唐恺,蒋国昌,周国治,丁伟中,李富燊,徐匡迪,冶金熔渣热力学性质的SReS模型[J].金属学报.2000.36(5):502-506
    [23]徐建锋,高阶亚正规熔体(SReM)模型软件的完善与发展.上海大学硕士学位论文,2007
    [24]Kuo-Chih Chou. A general solution model for perdicting tenrary thermodynamic properties CALPHAD,1995.19(3):315-325
    [25]周国治.新一代的溶液几何模型及其今后的展望[J].金属学报.1997.33(2):126-132.
    [26]M.Nagamori, K.Itagaki, A.Yazawa. Metall.Rev.MMIJ,6:22(1989)
    [27]M.Blander, A.D.Pelton. Geochim.Cosmochim.Acta,51:85(1987)
    [28]M.Hoch. I.Arpshofen, Z.Metallkde.,75:23(1984)
    [29]Tao Dong-ping, Yang Xianwan, Acta Metall.Sinica,11:1(1998)
    [30]A.Romero-Serrano. A.D.Pelton. Metall,Mater.Trans.B,26B305(1995)
    [31]陶东平.液态合金和熔融炉渣的性质-理论.模型.计算[M].昆明:云南科技出版社.1997:191-214
    [32]Juliana Gutierre等.三元硅酸盐系热力学模型[J].现代冶金.2002.2.34-40
    [33]C. H. P. Lupis, J. F. Elliott. Acta Metall.1967.15:265
    [34]P. L. Lin, A. D. Pelton. Metall. Tetall. Trans B.1979.10B:667
    [35]成国光,张鉴.对于MgO-SiO2渣系作用浓度计算模型[J].有色金属.冶炼部分.1995.2:21-22,29.
    [36]张鉴.二元冶金熔体热力学性质与其相图类型的一致性(或相似性)[J].金属学报.1998.34(7):742-752.
    [37]成国光,赵沛.CaO-B2O3熔渣中氮的热力学计算模型[J].北京科技大学学报.1995.17卷增刊.52-56.
    [38]张鉴,冶金熔体的计算热力学[M].北京:冶金工业出版社.1998:1-224
    [39]Wilson G. M. A new expression for the excess free energy of mixing[J]. J. Am. Chem. Soc.1964.64(2):127-30.
    [40]Walas S.M,韩世均译.化工相平衡[M].北京:中国石化出版社.1991:223-240
    [41]Hildebrand J. H. Solubility.Ⅶ:regular solution.J.Am.Chem.Soc.1929.51 (1):66
    [42]杨学民,郭占成,于宪溥,王大光.熔渣规则溶液模型的发展及其在冶金物理化学中应用的综述(二)[J].上海金属.1995.17(2):1-6.
    [43]H. K. Hardy..Acta Metall.1953.1:202-209.
    [44]#12
    [45]E. A. Guggenheim. Mixtrues[M]. Oxford:Oxford University Press,1952
    [46]A. D. Pelton, M. Blander. Computer Assisted Analysis Of TheThermodynamic Properties And Phase Diagrams Of Slags [J]. Proc. Second Int. Symp. On Metall Slags and Fluxes.Fine,H. A.Gaskell,D.R.,eds,TMS-ALME, Warrendale, PA, 1984:281-294.
    [47]孙益民,马芝森,叶信宇,王玉,乔芝郁,麻孝勇.EuCl3-CaCl2二元系的热力学优化和计算[J].安徽师范大学学报(自然科学版).2006.29(1):45-51.
    [48]Ye Xin-yu, Sun,Yi-min,QIAO Zhi-yu,Teng Xiao-ming,Tan Jun-jun. Thermo-dynamic Optimizationof the LaF3-NaF System[J]. Journal of Southwest China Normal University (Natural Science).2005.30(2):284-288.
    [49]Gaya.H and Welfringer. J. Metallurgical Slag and Fluxes,ed.Fine,H.A.and Gaskeu, D.R.Metall.Soc.of AIME,1984:357.
    [50]邹元曦,周继程,徐元森等.冶金熔体热力学的若干研究[J].金属学报.1982.18(2):127-134.
    [51]陶东平.分子相互作用体积模型的基本特征和应用[J].昆明理工大学学报(理工版).2004.29(4):135-142.
    [52]Tao Dong-Ping. Prediction of Activities of Three Components in the Ternary Molten Slag CaO-FeO-SiO2 by the Molecular Interaction Volume Model [J]. Metallurgical and Materials Trans:B,2006,37(6):1091-1097.
    [53]王嵩.二元液态合金体系组元活度的热力学一致性检验.昆明理工大学硕士学位论文[D].2008.
    [54]魏寿昆.活度在冶金物理化学中的应用[M].中国工业出版社.1964:63-65.
    [55]Hwan-Tang, T.Tsai and A.Muan. Activity-Composition Relations in the Systems CaO-MnO and MgO-MnO at 1500℃ and 1600℃[J]. J.Am.Ceram.Soc. 1992.75:1472-1475.
    [56]Ping Wu, Gunnar Eriksson, and A. D. Pelton. Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the CaO-FeO, CaO-MgO, CaO-MnO, FeO-MgO, FeO-MnO and MgO-MnO systems [J]. Am. Ceram.Soc.1993.76(8):2065-75.
    [57]I. Srecec, A. Ender, E. Woermann, W. Gans, E. Jacobsson, G.Eriksson and E. Ro-sen. Activity-Composition Relations of the Magnesiowustite Solid Solution Series in Equilibrium with Metallic Tron in the Temperature Range 1050K-1400K [J]. Phy. Chem.Miner.1987.14:492-498.
    [58]张成弢,冀春霖.SiO2-B2O3二元系熔渣中组元的活度[J].东北工学院学报.1990.11:8-12
    [59]G.Eriksson and A.D.Pelton. Metallurgical Transactions B.1993.24B:795.
    [60]S. Raghavan. G. N. K. Iyenger and K. P. Abraham. Determination of the thermo-dynamic properties of{xMgO+(1-x)MnO}(s,sln) from a solid-electrolyte galva-nic cell in the temperature range 1163 to 1318K[J]. Chem. Thermodynamic. 1985.17:585-591.
    [61]Hahn,W.C.Muan and A.Mater.Res.Bull.5(1970):055
    [62]G..Rog and A.Kozlowska-Rog. Determination of the activities in {xMnO+(1-x) NiO} by solid-electrolyte galvanic cells in the temperature range 973K to 1173K [J]. Chem. Thermodynamic 1997.(29):305-310.
    [63]A. D. Pelton. M.Blander. A Least Squares Optumization Technique For The An-alysis of Thermodynamic Data In Ordered Liquids [J]. CALPHAD.1988.12(1): 97-98.
    [64]乔芝郁,庄卫东.扩展的似化学理论及其在KCl-YCl3体系中的应用[J].北京科技大学学报.1992.14(6):612-617.
    [65]Ping Wu,Gunnar Eriksson, A. D. Pelton,and M. Blander.Prediction of the Ther-modynamic Properties and Phase Diagrams of Silicate Systems-Evaluation of the FeO-MgO-SiO2 System.ISIJ International, Val.33(1993), No.1, pp.26-35.
    [66]Gunnar Eriksson and A. D. Pelton. Critical evaluation and optimization of the thermody- namic properties and phase diagrams of the MnO-TiO2, MgO-TiO2, FeO-TiO2, Ti2O3-TiO2, Na2O-TiO2 and Na2O-TiO2 Systems[J].Metall Trans B. 1993.24B:795-805.
    [67]B.K.D.P.Rao and D.R.Gaskell. The Thermodynamic Activity of MnO in Melts Containing SiO2,B2O3 and TiO2[J]. Met.Trans.1981.12B:469-477.
    [68]S.Kambayshi and E.Kato.J.Chem.Thermodynamics:1984.16:241-248.
    [69]R.H.Rein and J.Chipman.Trans. Activies in the Liquid Solution SiO2-CaO-MgO-Al2O3 at 1600℃[J]. Met.Soc.AIME,1965.233:415-425.
    [70]A.D.Pelton and M.Blander.Thermodynamic Analysis of Ordered Liquid Solutio-ons by a Modified Quasichemical Approach-Application to Silicate Slags [J]. Metall.Trans.B.1986.17B(12):805-815.
    [71]德国钢铁工程师协会编,王剑等译.渣图集[M].冶金工业出版社.1987:165.
    [72]John H. Mathews, Kurtis D. Fink著,陈渝,周璐等译.数值方法(MATLAB版)[M].电子工业出版社.2006:39.
    [73]B. K. D. P. Rao, D.R. Gaskell. The Thermodynamic Properties of Melts in the System MnO-SiO2 [J]. Met. TransB.1981.12B:311-317

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700