用户名: 密码: 验证码:
铁炭内电解技术和混凝法深度处理焦化废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究系统的阐述了焦化废水的种类和特性。焦化废水往往由于成分复杂、水质变化大、毒性大、含有大量难降解有机物等特点,是目前国内难处理的工业废水之一。目前焦化废水通常采用预处理和二级生物处理后排放,但经二级生物处理后出水大都很难达标。因此,焦化废水的深度处理势在必行。本研究在客观分析焦化废水深度处理技术的基础上,采用铁炭微电解技术和混凝法分别对焦化废水进行了深度处理的试验研究。
     铁炭微电解技术研究结果表明,利用铁炭微电解技术深度处理焦化废水,其反应环境、原水pH值、反应时间、铸铁屑和颗粒活性炭的投加量是影响处理效果的主要因素。利用正交试验确定了最佳反应条件:曝气条件下原水pH值为3、反应时间为4h、铸铁屑和颗粒活性炭的投加量分别为40g/L和10g/L。在最佳条件下进行动态连续流试验,考察了回流比(R)对CODCr(Chemical Oxygen Demand)和NH4+-N处理效果的影响,研究得出铁炭微电解深度处理焦化废水效果较好,当回流比(R)=1时,出水CODCr浓度范围为96.7~136.02mg/L,可以达到《钢铁工业污染物排放标准》(GB 13456—1992)二级排放标准;当回流比(R)=2时,出水CODCr浓度范围为58.69~90.19mg/L,可以达到《钢铁工业污染物排放标准》(GB 13456—1992)一级排放标准。NH+_4~+-N的出水浓度在回流比(R)=1、2时均可以达到《钢铁工业污染物排放标准》(GB 13456—1992)二级排放标准。
     混凝法深度处理焦化废水试验中,采用了PAC(Polyaluminium chloride)、PFS(Polyaluminium chloride)、PAM(Polyacrylamide)三种常见混凝剂进行深度处理焦化废水试验研究,通过实验确定了PAC、PFS、PAM单一作用时最佳投药量和最佳pH值,并确定PAC、PFS分别和PAM复配使用时的最佳组合及最佳投药量。研究结果表明:投加混凝剂对焦化废水中的污染物有一定的去除,但混凝剂不同处理效果也不同,有机混凝剂去除效果好于无机混凝剂,铁盐混凝剂效果由于铝盐混凝剂,具体为PAM>PFS>PAC;复配合使用时的最佳组合和最佳投加量分别为PFS+PAM和60+6mg/L,CODCr和色度去除率分别为58.2%、88.2%。
Systematic analysis of the varieties and characteristics of coking wastewater was conducted. Coking wastewater is often due to complex composition, large changes in water quality, toxic, large amounts of refractory organic matter, so is one of the intractable industrial wastewater. Currently coking wastewater is pretreatmented and biological treatmented before discharge, but water after biological treatment cann,t meet the discharge standard. Thereforethe advanced treatment of coking wastewater treatment is imperative. In this study, based on objective analysis of the advanced treatment of coking wastewater, the use of iron-carbon micro-electrolysis technology and coagulation as the respective advanced treatment of the coking wastewater treatment is studied.
     The results of iron-carbon micro-electrolysis used as the advanced treatment of coking wastewater show that, the react environment, the initial pH level of wastewater, the reaction time, the dosage of iron scrap and granular activated carbon are main factors affecting the treatment effect. The L9(34) orthogonal experiment is carried out to define the optimal conditions as follows: the initial pH level of wastewater is 3, the retention time is 4 hour, the dosage of cast iron and active carbon is 40 and 10g/L. Dynamic continuous experiment conduct under the best conditions, investigate the impact that reflux ratio(R) changes removal effect of CODCr and NH4+-N, the result shows that:When the reflux ratio (R) is one, the concentration of CODCr in the effluent water ranged from 96.7~136.02mg/L, which can meet the discharge standard of wastewater polluntants for iron and steel industry (GB 13456—1992) standardⅡ; When the reflux ratio(R) is one, the concentration of CODCr in the effluent water ranged from 58.69 to 90.19mg/L, which can meet the discharge standard of wastewater polluntants for iron and steel industry (GB 13456—1992)standardⅠ. the concentration of NH4+-N in the effluent water when the reflux ratio (R) is one and two all can meet the discharge standard of wastewater polluntants for iron and steel industry (GB 13456—1992)standardⅡ.
     Using coagulation as an advanced treatment of coking wastewater, three common coagulants such as PAC, PFS, PAM are used. Through experiment, the optimum pH value, optimum dosing quantity of flocculatant to this kind of wastewater, the best fit and the best quantity in best fit are determined. Results show: different flocculants have different effect on the treatment of coking wastewater. Organic flocculant is better than inorganic flocculant, ferric flocculant is better than aluminum flocculant, that is PAM>PFS>PAC. The best dosing quantity in the best fit is PFS+PAM and 60+6mg/L. The removal efficiency of COD_(Cr) and chroma of the treated water can reach 58.2%, 88.2%.
引文
[1] Qian Y, Wen Y, Zhang H. Efficiency of pretreatment methods in the actived sludge removal of refractory compounds in coke-plant wastewater. Water Research, 1994, 28(3): 701-710.
    [2] Zhang M, Tay J H, Qian Y, et a1. Coke plant wastewater treatment by fixed biofilm system for COD and NH3-N removal. Water Research, 1998, 32(2): 519-527.
    [3] Azhar N G, Stuckey D C. The influence of chemical structure on the anaerobic catabolism of refractory compounds: a case study of instant coffee waster. Water Science and Technology, 1994, 30(12): 223-232.
    [4] Li Y M,Gu G W, Zhao J E, et a1. Anoxic degradation of nitrogenous heterocyclic Compouds by acclimate activated sludge[J]. Process Biochemistry, 2001, 37(1):81-86.
    [5]何晨燕,赵玉新.焦化废水处理技术探讨.北方环境, 2004, 29(1): 51-54.
    [6]刑向军,周集体,成耀武. A-A/O法在焦化废水处理中的运行与管理.环境工程, 2005, 23(2): 29-32.
    [7]钱易等.焦化废水中难降解有机物去除的研究.环境科学研究, 1992, 5(5): 1-8。
    [8]辛国章,吴健,白玉兴.聚合硫酸铁在水处理工艺中的应用.冶金环境保护, 2002, (4): 19-21.
    [9]何礼君.超微细气泡曝气柱应用于焦化生产中的可行性探讨.冶金环境保护, 2002, (4): 1-3.
    [10]邵林广,陈斌,黄霞等.水解(酸化).缺氧.好氧固定床生物膜系统处理废水的试验研究.环境科学, 1994, 15(6):51~53.
    [11]葛文准,陈玮,郭虹民等.炼焦废水的处理研究.上海环境科学, 1989, 8(8): 14-16.
    [12]王士钊,谭胜,付洪瑞,等.利用斜发沸石处理氨氮废水的研究.河北化工, 2003, (4): 51-52.
    [13]徐晓军,魏在山,宫磊,等.絮凝气浮法处理高浓度焦化废水的试验研究.青岛建筑工程学院学报, 2003, 24(4): 1-4.
    [14]何苗.焦化废水中有机污染物经厌氧酸化后对好氧生物降解性能的影响.中国环境科学, 1998, 18(3): 276-279.
    [15]乔元梅,任艳霞.焦化废水处理技术综述.过滤与分离, 2007, 17(3): 46-48.
    [16]郑兴灿,李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社, 1998, 9-11.
    [17] Jun xin L. Removal of nitrogen from coal gasification and coke plant wastewater in A/O submer-ged biofilm activated sludge ( SBF-AS )hybrid system. Wat. Sci. Tech, 1996, 34(10): 17-24.
    [18] Lee M W, Park J M. Biological nitrification removal from coke plant wastewater with external carbon addition. Water Enviro. Res, 1998, (70):1090-1095.
    [19] Min Zhang, etal. Comparison between Anaerobic-Anoxie-Oxicand Anoxie-Oxie System for Coke Plant Wastewater Treatment. J. Environ Eng, 1997, 123(9): 876-883.
    [20] Zhang M, Tay J H, Qian Y, eta1. Coke plant Wastewater Treatment by Fixed Biofilm System for COD and NH3-N Removal. Water Res, 1998, 32 (2): 519-527.
    [21] Yu H, Gu G W, Song L. Post-treatment of Effluent from Coke Plant wastewater Treatment System in sequencing Batch Reactors. J. Environ. Eng, 1997, 123(3): 305-308.
    [22]王虹.马鞍山市降水酸度的时空变化特征及其成因初探.安徽师范大学学报(自然科学版), 2004, 27(2): 208-211.
    [23]郭文倩,宋运学,杜海声.常用焦化废水中氨氮去除方法的比较.工业用水与废水, 2007, 38(1): 64-67.
    [24]杜鸿章,尹承龙.焦化污水催化湿式氧化净化技术.工业水处理, 1996, 16(6): 11-13.
    [25] James C. Biological Nitrogen Remove from Coke Plant Wastewater with Extental Carbon Addition. Proc. 37th Ind. Waste Conf., 1982. 497-505.
    [26] MyrlR. Apreliminary Study Oil Application of Biooaugmentation to Refractory Compounds in Coke-plant Wastewater Treatment.Proc. 35thlnd.Waste Conf., 1980. 343-353.
    [27]葛文准,等.炼焦废水的处理研究.上海环境科学, 1989, 8(8): 14-l6.
    [28]周静,李素芹.新型复合絮凝剂深度处理焦化废水的效果研究.工业用水处理, 2008, 28(5): 35-38.
    [29]郑义,张琢,胡宏韬,等.焦化废水混凝深度处理研究.上海应用技术学院学报, 2008, 8(1): 25-28.
    [30]白玉兴,等.焦化生物脱酚水深度综合治理的工业试验研究.工业水处理, 1997, 17 (11):24 -27.
    [31]张昌鸣,等.焦化废水净化及回用技术研究.环境工程, 1999, 17(1): 16-l9.
    [32]蒋文新,张巍,常启刚,等.强化活性炭吸附技术深度处理焦化废水的可行性研究.环境污染与防治, 2007, 29(4): 265-270.
    [33] Saugkil N, Paul G T. Reduction of Azo Dyes With Zero valent Iron. Water Res., 2000, 34(6): 1837-1844.
    [34]欧阳玉祝,等.铁屑处理床处理工业废水的研究动态和应用前景.吉首大学学报(自然科学版). 2001, 22(2): 67-70.
    [35]赵永才,等.微电解法脱除水溶性染料废水色度的研究.环境污染与防治, 1994, 16(1): 8-21.
    [36]赵庆祥等.生物难降解有机污染物的治理对策.北京环保, 1995, 15(5): 376~379.
    [37]单明军,闽玉国,沈雪,等.微电解法进行焦化废水脱氮的研究.燃料与化工, 2007, 38(1): 38-41.
    [38]赖鹏,赵华章,王超,等.铁炭微电解深度处理焦化废水的研究.环境工程学报, 2007, 1(3): 15-20.
    [39] Peng Lai, Hua-zhang Zhao, Chao Wang, etal. Advanced treatment of coking wastewater by coagulation and zero-valent iron processes. Journal of Hazardous Materials, 2007, 147(1-2): 232-239.
    [40]黄霞,等.固定化细胞技术在废水处理中的应用.环境科学, 1993, 14(1): 41-48.
    [41]黄霞,等.同定化优势菌种处理焦化废水中几种难降解有机物的试验研究.中国环境科学, 1995, 15(1): l-4.
    [42]刘金泉,王凯,王发珍,等.几种高级氧化技术在焦化废水深度处理中的应用比选.水处理技术, 2009, 35(1): 112-115.
    [43]周培国,傅大放.微电解工艺研究进展.环境污染治理术与设备, 2001, 2(4): 18-24.
    [44]王永广,杨剑锋.微电解技术在工业废水处理中的研究与应用.环境污染治理技术与设备, 2002, 3(4): 6-9.
    [45]汤心虎,甘复兴,乔淑玉.铁屑腐蚀电池在工业废水处中的应用.工业水处理, 1998, (6): 4-7.
    [46] Janda V., Vasek P., Bizova J., eta1. Kinetic models for volatile chlorinated hydrocarbons removal by zero-valent iron. Chemosphere, 2004, 54(7): 917-925.
    [47] Feitz A. J., Joo S. H., Guan J., eta1. Oxidative tranformation of contaminants usi- ng colloidal zero-valent iron Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, 265(1-3): 88-94.
    [48]李德生,王宝山.曝气铁炭微电解工艺预处理高浓有机化工废水.中国给水排水, 2003, 19(10): 58-60.
    [49]陆斌,韦鹤平.内电解强化处理腈纶废水的试验研究.同济大学学报, 2001,29(11): 1294-1298.
    [50]张子间.微电解—生物法处理含铬电镀废水的研究.环境污染治理技术与设备, 2004, 5 (12): 79-81.
    [51]侯爱东,王月娟,张群峰.微电解—UBF—CASS工艺处理制药废水.江苏环境科技, 2005, 18 (4): 16-18.
    [52]程沧沧,胡德文,周菊香.微电解—光催化氧化法处理印染废水.水处理技术, 2005, 31(7): 46-47.
    [53]张文艺.微电解—混凝—SBR法处理焦化废水.中国给水排水, 2003, 19(7): 58-59.
    [54] Eary L E, Rai D. Chromate removal from aqueous by reductive with ferrous iron. Environ. Sci., 1998(22): 972-977.
    [55]严煦世,范瑾初.给水工程.北京:中国建筑工业出版社, 1999, 254-271.
    [56]汤鸿霄.无机高分子絮凝剂的基础研究.环境化学, 1990, 9(3), 1-12.
    [57]常青.水处理絮凝学.北京:化学工业出版社, 2003, 26-65.
    [58] Yong H. Huang, Tian C. Zhang.Effects of low pH on nitrate reduction by iron powder.Water Research, 2004, (38): 2631-2642.
    [59]苏莹,单明军,沈雪,等.短程硝化—铁炭微电解工艺处理焦化废水.化工环保, 2009, 29(1): 47-50.
    [60] Johnson T L. Knitics of halogenated organic compound degradation by iron metal. Environ Sci. Technol., 1996, 30(8), 2634-2640.
    [61] Chi Paohuang, Huang Wenwang, Chu Peichun. Nitrate reduction by metallic iron. Water Res, 1998, 32(8): 2257-2264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700