用户名: 密码: 验证码:
Me~(2+)-NH_4~+-SO_4~(2-)-H_2O体系相平衡及直接法制备锰锌软磁粉料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对“陶瓷法”和“共沉淀法”存在的问题,我们将无机化工、湿法冶金和磁性材料等学科进行交叉,成功开发出“直接法”制备锰锌软磁铁氧体材料新技术。本论文通过三元Me~(2+)-NH_4~+-SO_4~(2-)-H_2O体系(Me代表Fe、Mn及Zn,以下同)相平衡的研究,奠定了直接法制备锰锌软磁铁氧体材料技术的关键步骤——溶液深度净化的理论基础,据此开发成功硫酸盐溶液体系中Me~(2+)的深度净化方法——复盐沉淀净化法,从而将直接法的产品质量提升一个档次。经过实验室小试、扩大试验及工业性试验,实现了直接法的工业应用,可生产出质量与日本TDK公司PC30产品相当的锰锌软磁粉料。
     1.三元体系Me~(2+)-NH_4~+-SO_4~(2-)-H_2O相平衡研究
     1) 用等温溶解平衡法,研究了三元体系Me~(2+)-NH_4~+-SO_4~(2-)-H_2O 298K的溶解度,并绘制其平衡相图。实验结果表明,在Mn~(2+)-NH_4~+-SO_4~(2-)-H_2O体系中,有MnSO_4·H_2O,(NH_4)_2Mn(SO_4)_2·6H_2O和(NH_4)_2SO_4的三条饱和曲线,组成为MnSO_4·H_2O和(NH_4)_2Mn(SO_4)_2·6H_2O,(NH_4)_2Mn(SO_4)_2·6H_2O和(NH_4)_2SO_4的两个共饱和点,以及平衡固相为(NH_4)_2SO_4,(NH_4)_2Mn(SO_4)_2·6H_2O和MnSO_4·H_2O的三个纯盐结晶区。在Zn~(2+)-NH_4~+-SO_4~(2-)-H_2O体系中,有(NH_4)_2Zn(SO_4)_2·6H_2O,ZnSO_4·7H_2O与(NH_4)_2SO_4的三条饱和曲线,组成为(NH_4)_2Zn(SO_4)_2·6H_2O和ZnSO_4·7H_2O,(NH_4)_2SO_4和(NH_4)_2Zn(SO_4)_2·6H_2O的两个共饱和点,以及平衡固相为(NH_4)_2Zn(SO_4)_2·6H_2O,ZnSO_4·7H_2O和(NH_4)_2SO_4的三个纯盐结晶区。在Fe~(2+)-NH_4~+-SO_4~(2-)-H_2O体系中,有(NH_4)_2Fe(SO_4)_2·6H_2O,FeSO_4·7H_2O和(NH_4)_2SO_4的三条饱和曲线,组成为(NH_4)_2Fe(SO_4)_2·6H_2O和FeSO_4·7H_2O,(NH_4)_2Fe(SO_4)_2·6H_2O和(NH_4)_2SO_4的两个共饱和点,以及平衡固相为(NH_4)_2Fe(SO_4)_2·6H_2O,FeSO_4·7H_2O和(NH_4)_2SO_4的三个纯盐结晶区。研究成果可为Me~(2+)-NH_4~+-SO_4~(2-)-H_2O体系中的Me~(2+)的复盐沉淀深度净化提供理论指导。
     2) 研究了Me~(2+)-NH_4~+-SO_4~(2-)-H_2O三元体系的饱和溶液密度、pH值和折光率,绘制了密度-组成、折光率-组成和pH-组成图。实验结果表明,随着溶液组分的变化,饱和溶液的密度和折光率在其共饱和点处均产生突变;但溶液组分的变化,对pH的影响不大。饱和溶液物化性质的研究成果,可为复盐沉淀深度净化工艺条件控制提供了理论依据。
In order to overcome the disadvantages of ceramics method and co-precipitation method on the preparation of Mn-Zn soft magnetic ferrite materials, we combined hydrometallurgy and inorganic chemical engineering with ferrite technology, and the direct-method on the preparation of Mn-Zn soft magnetic ferrite has been successfully developed. In this thesis, through the studies on the phase equilibrium in the ternary Me~(2+)-NH_4~+-SO_4~(2-)-H_2O systems, the basic theories being the key factors of the simultaneous deep purification process of Fe~(2+), Mn~(2+) and Zn~(2+) in the leached solution containing Fe~(2+), Mn~(2+), Zn~(2+), Pb~(2+), Ca~(2+), Mg~(2+) and et al were resolved. Therefore, a novel purification method of double salt precipitation method having the capacity of purification for many kinds metal ions in solution was developed. And when the double salt precipitation technology is applied in the deep purification process of direct method, the qualities of Mn-Zn soft magnetic ferrite samples can be improved greatly. After the table and bench and industry scale experimental studies, the direct method on the preparation of Mn-Zn soft magnetic ferrite has been successfully industrialized and soft magnetic powders being similar to PC30 produced by Japan TDK company can be produced by the direct method.
    1. Studies on solubility phase equilibrium in the ternary Me~(2+)-NH_4~+-SO_4~(2-)-H_2O systems.
    1) The phase equilibrium in the ternary system of Me~(2+)-NH_4~+-SO_4~(2-)-H_2O at 298 K was studied by isothermal equilibrium method and many significant experiment results were obtained. In the ternary system of Mn~(2+)-NH_4~+-SO_4~(2-)-H_2O, there were three saturation curves given by MnSO_4·H_2O, (NH_4)_2Mn(SO_4)_2·6H_2O and (NH_4)_2SO_4, respectively. There were two co-saturation points A having the composition of MnSO_4·H_2O and (NH_4)_2Mn(SO_4)_2·6H_2O and B given by (NH_4)_2Mn(SO_4)_2·6H_2O and (NH_4)_2SO_4. There were three purification crystal areas given by MnSO_4·H_2O (NH_4)_2Mn(SO_4)_2·6H_2O, and (NH_4)_2SO_4, respectively. In the ternary system of Zn~(2+)-NH_4~+-SO_4~(2-)-H_2O, there were three saturation curves given by ZnSO_4-7H_2O (NH_4)_2Zn(SO_4)_2·6H_2O, and (NH_4)_2SO_4, respectively. There were two co-saturation points C having the composition of (NH_4)_2Zn(SO_4)_2·6H_2O and ZnSO_4·7H_2O and D given by (NH_4)_2SO_4 and (NH_4)_2Zn(SO_4)_2·6H_2O, respectively. There were three purification crystal areas given by (NH_4)_2Zn(SO_4)_2·6H_2O, ZnSO_4·7H_2O and (NH_4)_2SO_4, respectively. In the ternary system of Fe~(2+)-NH_4~+-SO_4~(2-)-H_2O, there were three saturation curves given by (NH_4)_2Fe(SO_4)_2·6H_2O, FeSO_4·7H_2O and (NH_4)_2SO_4,
引文
[1] 陈志君,傅正义,王皓,等.铁氧体材料研究进展[J].陶瓷科学与工艺,2003,37(3):31-35.
    [2] 宛德福.磁性物理[M].北京:电子工业出版社,1987.
    [3] 都有为.磁性材料进展[J].物理,2000,29(6):323-332
    [4] J L Snook. New developments in ferromagnetic materials [M]. New York: Elsevier, 1947.
    [5] T Hiraga. Ferdtes [M]. Process ICF1, 1979, 179.
    [6] 都有为.铁氧体[M].南京:苏科学技术出版社,1996年,298-360.
    [7] S Smit, H P J Wijn. Ferrites [M]. Eindhoven (Holland), 1959年.
    [8] 艾树涛,胡国光.高磁导率Mn-Zn铁氧体的配方和烧结工艺的研究[J].安徽大学学报,1999,37(1):31-36.
    [9] 黄永杰,李世堃,兰中文.磁性材料[M].北京:电子工业出版社,1994,43-95.
    [10] J.斯密特,H.R J.威因.铁氧体[M].北京:国防工业出版社,1966,305-328.
    [11] E.Wgorter, Saturation magnetization and evystal chemistry of Ferdmagnetic oxides[M]. Philips Res. Repts, 1964.9, 295-302, 321-365,403-443.
    [12] G.Blasse, Crystal chemistry and some magnetic properties of mixed metal oxides with spinel structure[J]. Philips Res. Repts, Suppl. 1994, (3): 1-139.
    [13] T. Smit. Ion distribution in spinels[J]. Solid State Comm. 1968, (6): 745-746.
    [14] 陆岳明.MnZn铁氧体最新进展及发展趋势[J].磁性材料及器件,2001,32(5):27-33.
    [15] 何水校.锰锌软磁铁氧体材料的未来发展动向[J].磁性材料及器件,2001,32(6):27-30.
    [16] Ott, G.; Wrba, J.; Lucke, R. Recent developments of Mn-Zn ferrites for high permeability applications [J]. Journal of Magnetism and Magnetic Materials, 2003, (254-255): 535-537.
    [17] 王耕福.软磁铁氧体生产、应用和市场预测[J].磁性材料及器件,1995,26(2):11-14.
    [18] 韩杰才,杜善义.软磁铁氧体材料的应用、发展现状与市场前景[J].电子材料与电子技术,1998,25(3):4-12.
    [19] 李东风,贾振斌.软磁铁氧体的发展历程及展望[J].化工时刊,2002,16(8):12-15.
    [20] R.S.特贝儿,D.J.克雷克.磁性材料[M].北京:科学出版社,1979,279-281.
    [21] 大森翼明.磁性材料手册[M].北京:机械工业出版社,1985,187-189.
    [22] 艾树涛,胡国光.高磁导率Mn-Zn铁氧体的配方和烧结工艺的研究[J].安徽大学学报,1999,37(1):31-36.
    [23] 黄永杰,李世堃,兰中文.磁性材料[M].北京:电子工业出版社,1994,43-95.
    [24] C. R. Bowen and B. Derrby. Self-propagating High Temperature Stythesis of Ceramic Materials [J]. British Ceramic Transaction, 1997, 96(1): 25-26.
    [25] A. G. Merzhanov. Self-propagating High Temperature Synthesis: Twenty Years of Search and Finding.1-53, Combustion and Plasma Synthesis of High-Temperature Materials. Z.Munir and J.B.Holt. VCH. New York, 1990.
    [26] S.Castro. M.Gayoso, et al. Structural and Magnetic Properties of Barium Hexaferrite Nanostructured Particles Prepared by the Combustion Method[J]. Journal of Magnetism an Magnetic Materials, 1996, (152): 61-69.
    [27] S.Castro. M.Gayoso, et al. A study of Combustion Method to Prepare Fine Ferrite Particles[J]. Journal of Solid State chemistry. 1997, (134): 227-231.
    [28] Z. X. Tang, C. M. Srensen, K. J. Klabunde, G. C. Hadjipahayis. Size-dependent magnetic properties of manganese ferrite free particles [J]. J. Appl. Phys, 1980, 69(8): 5279-5281.
    [29] P. B. Pandya, H. H. Joshi, R. G. Kulkarni. Magnetic and structural properties of CuFe_2O_4 prepared by the co-precipitation method [J]. Journal Materials Science Letters, 1991, (10): 474-476.
    [30] 杨新科.锰锌软磁铁氧体粉制备研究进展[J].宝鸡文理学院学报(自然科学版),2001,21(2):125-127.
    [31] 丁明.尖晶石型铁氧体微粉的液相合成及应用[J].广东化工,1992,(4):17-20.
    [32] 曾华铣,刘兴芬,杨正.碳酸盐—氢氧化物共沉淀软磁铁氧体的制备、微观结构及磁性[J].兰州大学学报(自然科学版),1985,21(2):24-32.
    [33] 冉均国,郑昌琼,尹光福,等.碳酸盐共沉淀法制取锰锌铁氧体超细粉末的热力学分析[J].成都科技大学学报,1993,(2):1-6.
    [34] 禹长清,张武.共沉淀法制备超细锰锌铁氧体前驱体粉末[J].中国锰业,2000,18(3):37-38.
    [35] 杨正,左同生,曾华铣,等.草酸盐共沉淀法制备软磁铁氧体的研究[J].兰州大学学报(自然科学版),1980,16(2):29-40.
    [36] 郑昌琼,冉均国,杨云志,等.草酸盐共沉淀法制取优质锰锌铁氧体微细粉末的热力学分析[J].稀有金属,1997,21(2):101-104.
    [37] 余忠,兰中文,王京梅,等.溶胶—凝胶法制备高性能功率铁氧体[J].功能材料,2000,31(s1).34-35.
    [38] 余忠,兰中文.溶胶—凝胶法制备高性能功率铁氧体[J].功能材料,2000,31(5):484-485
    [39] Wen-Jiunglee, Tsang-Tse Fang. The effect of the molar ratio of barium ferrite using a citrate process [J]. Journal of Materials Science, 1995, 30(17): 4349-4354.
    [40] William J Dawson. Hydrothermal synthesis of advanced ceramic powders [J]. America Ceramic society Bulletin, 1988, 67(10): 1673-1678
    [41] Marko Rorman, Miha Drofenik. Hydrothermal synthesis of manganese zinc ferrites [J]. Journal of America Ceramic society, 1995, 78(9): 2449-2455
    [42] 胡嗣强,黎少华.水热法合成(Mn,Zn)Fe_2O_4磁性晶体粉末[J].化工冶金,1997,18(1): 32-37
    [43] 刘素琴,左晓希,桑商斌,等.锰锌铁氧体纳米晶的水热制备研究[J].磁性材料及器件,2000,31(2):12-16
    [44] 桑商斌,古映莹,黄可龙.锰锌铁氧体纳米晶的水热法制备及热动力学研究[J].功能材料,2001,32(1):27-29
    [45] GU Yingyin, SANG Shangbin, HUANG Kelong, et al. Synthesis of MnZn ferrite nanoscale particles by hydrothermal method[J]. Journal of Central South University Of technology, 2000, 7(1): 37-39
    [46] Me Grath P J, Lalne R M. Theoretical Process Development for freeze drying spray frozen aerosols[J]. Journal of America Ceramic society, 1992, 75(5): 1123
    [47] 姚志强,王琴,钟炳.超临界流体干燥法制备MnZn铁氧体超细粉末[J].磁性材料与器件,1998,29(1):24-28
    [48] 姚志强,王琴樊,颜珍,等.超临界流体干燥法制备MnZn铁氧体超细粉末—Ⅰ.制备参数对粉末织构的影响[J].材料科学与工程,1998,16(04):33-36
    [49] 姚志强,王琴,钟炳.超临界流体干燥法制备MnZn铁氧体超细粉末—Ⅱ.物相结构的研究[J].磁性材料与器件,1999,30(1):28-31
    [50] 姚志强,王琴,钟炳.超临界流体干燥法制备MnZn铁氧体超细粉末—Ⅳ.磁性能的研究[J].磁性材料及器件,1999,30(1):32-35
    [51] 陈国华.21世纪软磁铁氧体材料和元件发展趋势[J].磁性材料及器件,2001,32(4):34-36
    [52] 林其壬.铁氧体工艺原理[M].上海:上海科技出版社,1987
    [53] 姚礼华.氧化物法制Mn-Zn铁氧体颗粒料[J].磁性材料及器件,1999,(2):39-43
    [54] 陆明岳.高磁导率MnZn的氧本TL13材料的研制[J].磁性材料及器件,1999,30(2):34-38
    [55] 易晓俊.氧化物法生产高磁导率铁氧体磁芯[J].有线通信技术,1995,(1):42-44,48
    [56] 何水校.软磁铁氧体材料的应用与市场[J].磁性材料及器件,1998,29(1):44-47
    [57] 杨新科.锰锌软磁铁氧体粉制备研究进展[J].宝鸡文理学院学报(自然科学版),2001,(2):126-128.
    [58] 李垚,赵九蓬,韩杰才,等.铁氧体粉料制备工艺的新进展.粉末冶金技术,2000,18(1):51-55.
    [59] 张保平,唐谟堂.锰锌软磁铁氧体微粉的液相合成研究进展.中国锰业,2003,(4):200-203.
    [60] 欧阳明.兰坪锌氧化矿冶金新工艺研究[D].长沙,中南工业大学冶金系,1994
    [61] 甘婉林.利用铅烟化炉氧化锌生产活性氧化锌的研究[J].株冶科技,1997,25(1):12-17
    [62] 李天文.过硫酸铵在铁锰杂质脱除中的应用[J].无机盐工业,1998,(3):26-28
    [63] 刘承宪.高铁碳酸锰矿石的铁锰分离研究[J].金属矿山,1990,19(12):41-46
    [64] 刘永和,易佑华.贫锰矿制取软磁铁氧体用碳酸锰的工艺研究[J].化学世界,1992,33(11):490-493
    [65] 李朋恺,刘萱念.贫锰矿制备高纯微晶碳酸锰的研究[J].无机盐工业,1994,(6):4-7
    [66] 唐冬秀.贫锰矿生产高纯碳酸锰的研究[J].中国矿业,1998,7(4):16-18
    [67] 梅光贵.湿法制取活性氧化锌与化学二氧化锰新工艺研究(上)[J].中国锰业,1993,11(6):26-30
    [68] 唐华雄.湿法制取活性氧化锌与化学二氧化锰新工艺研究(下)[J].中国锰业,1994,12(1):38-41
    [69] 张传福,佘旭,梅光贵,等.湿法制取活性氧化锌与重质碳酸锰新工艺[J].中南工业大学学报(自然科学版),1999,(4):382-385
    [70] 黄小忠,唐谟堂.由软锰矿,闪锌矿,铁屑直接制取锰锌铁氧体软磁材料新工艺研究[J].中国锰业,1996,14(1):42-44
    [71] 唐谟堂,彭长宏,杨声海,等.钢铁厂烟尘直接制取低功耗软磁铁氧体[J].中南工业大学学报,2003,34(3):242-244
    [72] 唐谟堂,杨声海,张保平,等.矿物共沉法制取低功耗软磁铁氧体扩大试验研究[J].磁性材料及器件,2003.34(6):23-25,29
    [73] 杨声海,唐朝波,张保平,等.“直接-共沉法”生产低功耗锰锌软磁铁氧体粉料[J].矿冶工程,2004,24(2):61-64
    [74] Freeth F A. Study on the system Na_2CO_3-NaCl-H_2O [J]. Phil. Trans. Roy. Soc. Ser A, 1922, 223:35-87
    [75] 任开武,宋彭生.含锂水盐体系Li,Mg//Cl,SO_4-H_2O(25℃);Li,K//Cl,SO_4-H_2O(50℃,75℃)相平衡及物化性质研究[D].硕士论文,中国科学院青海盐湖研究所,1992
    [76] Sborgl V, Franco C. Study on the system Na_2B_4O_7-NaCl-H_2O[J]. Gazz.Chim. Ital., 1921,51(2): 1-57
    [77] Schlesinger N A, Feigelson I B, et al. Study on the system Na_2B_4O_7-NaCl-H_2O[J]. Compt.Rend.Acad.Sci.USS R, 1938,20:141-143
    [78] Vmeda Y. Study on the system NaCO_3-Na_2B_4O_7-H_2O[J]. J.Chem.Soc.Japan, 1945, 66:49-50
    [79] Antonovo V.I, Polynteseva N.K., Study on the system NaCO_3-Na_2B_4O_7-H_2O [J], Trudy Inst Khim. Nauk, Akad. Nauk. Kazakh. SSR, 1957, (1):71-85
    [80] Bekturov A B, Naemushuna P.F. et al., Study on the system NaCO_3-Na_2B_4O_7-H_2O [J]. Tr.Inst.Khim, Nauk, Akad. Nauk. Kaz. SSR, 1967, (16):137-165
    [81] Teeple J.E. The industry development of Searles Lake Brines with equilibrium data. ACS. New York, 1929
    [82] 李冰,王庆忠.三元体系Li_2SO_4-K_2SO_4-H_2O 25℃相平衡和溶液物化性质研究[J].盐湖研究,1991,(3):10-13
    [83] 李冰,房春晖.三元体系Li~+,Mg~(2+)/SO_4~(2-)-H_2O 25℃相关系及溶液物化性质的研究[J].盐湖研究,1993,1(3):1-5
    [84] 李冰,王庆忠.三元体系Li~+,K~+(Mg~(2+))/SO_4~(2-)-H_2O 25℃相关系和溶液性质的研究[J].物理化学学报,1994,10(6):536-542
    [85] 房春晖,李冰.四元体系Li~+,K~+,Mg~(2+)/SO_4~(2-)-H_2O 25℃系和溶液物化性质的研究[J].化学学报,1994,52(10):954-959
    [86] 王继顺,高世扬.H~+,Li~+,Mg~(2+)/Cl~--H_2O四元水盐体系10℃时的平衡溶解度相图[J],盐湖研究.1993,1(2):11-1
    [87] 李亚红,宋彭生.盐酸.碱金属氯化物.水三元体系和HCl-LiCl-MgCl_2-H_2O四元体系热力学性质研究综述[J].盐湖研究,2000,8(3):69-72
    [88] 李飞飞,姚燕.323.15K下LiCl-Li_2SO_4-H_2O体系热力学性质的等压研究[J].盐湖研究,200.4,12(1):37-42
    [89] 李飞飞,姚燕.273.15K时LiCl-Li_2SO_4-H_2O体系热力学性质的等压研究[J].化学研究与应用,2004,16(1):33-36
    [90] 任开武,宋彭生.四元交互体系Li~+,Mg~(2+)/Cl~-,SO_4~(2-)-H_2O 25℃相平衡及物化性质研究.无机化学学报,1994,10(1):69-74
    [91] 张契.含锂水盐体系Li-Mg-Cl-SO_4-H_2O多温下热力学性质的等压研究[C].硕士论文,中国科学院青海盐湖研究所,1996
    [92] 李冰,孙柏.五元体系Li~+,Na~+,Mg~(2+)/Cl~-,SO_4~(2-)-H_2O 25℃相关系的研究[J].化学学报,1997,55(6):545-552
    [93] 孙柏,李冰.五元交互体系Li~+,K~+,Mg~(2+)/Cl~-,SO_4~(2-)-H_2O 25℃相关系和溶液物化性质[J].盐湖研究,1995,3(4):50-56
    [94] 桑世华,殷辉安.Li~+,Na~+//CO_3~(2-),B_4O_7~(2)-H_2O四元交互体系288 K的相平衡[J].物理化学学报,2002,18(9):835-838
    [95] 殷辉安,郝丽芳.Li~+,Na~+//CO_3~(2-),B_4O_7~(2-),Cl~--H_2O五元体系298 K相平衡及平衡液相物化性质的研究[J].高校化学工程学报,2003,17(1):1-5
    [96] 宋彭生,杜惠宪.三元体系Li_2B_4O_7-Li_2Cl-H_2O相关系及溶液物化性质研究.科学通报,1983(2):106-110
    [97] 宋彭生,杜惠宪.四元体系Li~+//Cl~-,SO_4~(2-),B_4O_7~(2-)-H_2O相关系及溶液物化性质研究.科学通报,1986,(3):209-213
    [98] 孙柏,宋彭生.盐湖卤水体系Li~+,Mg~(2+)/Cl~-,SO_4~(2-),B_4O_7~(2-)-H_2O的研[J].盐湖研究,1994,2(4):26-28
    [99] 曹吉林,白鹏.25℃ Na~+,K~+/Cl~-,SO_4~(2-) H_3BO_3-H_2O体系相平衡研究[J].海湖盐与化 工,1999,28(4):25-27
    [100] 曾英.五元体系Li~+,Na~+,K~+/CO_3~(2-),B_4O_7~(2-)-H_2O298k相平衡及相应平衡液相物化性质研究[C].四川大学博士学位论文,1999
    [101] 邓天龙.五元体系Li~+,Na~+,K~+/Cl~-,B_4O_7~(2-)-H_2O298k相平衡及相应平衡液相物化性质研究[C].成都理工学院博士学位论文,1999
    [102] 张爱云,姚燕.Li_2B_4O_7-MgCl_2(B)-H_2O体系热力学性质的等压研究[J].化学学报,2004,62(12):1089-1094
    [103] 宋彭生,杨家振.硼酸盐水溶液热力学研究:Ⅱ.H_3BO_3-LiB(OH)_4-LiCl-Mgcl_2体系[J].化学学报,1995,53(10):985-991
    [104] 宋彭生,傅宏安.四元交互体系Li~+,Mg~(2+)//SO_4~(2-),B_4O_7~(2-)H_2O 25℃相关系研究[J].无机化学学报,1991,7(3):344-348
    [105] Li Jun, Gao,Shi-yang, et al., Thermochemistry of hydrated magnesium borates[J], J. Chem. Thermodynamics. 1997, 29(4): 491-497
    [106] Li Jun, Gao,Shi-yang, et al., Thermochemistry of hydrated calcium borates[J], J. Chem. Thermodynamics. 1997,29(10): 1071-1075
    [107] Li Jun, Li Bing, et al., Thermochemistry of hydrated potassium borates[J], J. Chem. Thermodynamics. 1998, 30(4): 425-430
    [108] Li Jun, Li Bing, et al., Thermochemistry of hydrated lithium borates[J], J. Chem. Thermodynamics. 1998, 30(6): 681-688
    [109] K. S. Pitzer. Thermodynamics of electrolytes. Ⅰ. Theoretical basis and general equations [J]. J. Phys. Chem, 1973, 77(2): 268-277
    [110] K. S. Pitzer. Thermodynamic of electrolytes Ⅱ. Activity and osmotic coefficients for strong electrolytes with one or both ions Univalent[J]. J. Phys. Chem, 1973, 77(19): 2300-2308
    [111] K. S. Pitzer, Roy, R. N, et al. Thermodynamics of eleetrolytes.7.sulfuric acid [J]. J. Amer. Chem. Soc., 1977 (99): 4930-4934
    [112] K. S. Pitzer, Silvester. L. F., Thermodynamics of eleetrolytes.Ⅵ. weak electrolytes including H_3PO_4[J]. J. Solu. Chem, 1976, (5): 269-279
    [113] K. S. Pitzer, Silvester. L. F. Thermodynamics of electrolytes. Ⅱ. Properties of 3: 2, 4:2 and Other high Valence Types[J], J. Phys. Chem., 1978, (11): 1239-1242
    [114] Bradley, D. J, K. S. Pitzer.. Thermodynamics of electrolytes.12.Dieleetric properties of water and debye [J]. J. Phys. Chem., 1979, (83): 1599
    [115] Silvester, L. F, K. S. Pitzer.. Thermodynamics of electrolytes.8.High-Temperature Properties, Including Enthaipy and Heat capacity, with applications to Sodium Chloride[J]. J. Phys. Chem., 1977, 81(19): 1822-1828
    [116] Whitefield, M.. An improved specific interaction model for seawater at 25℃ and 1 atmosphere total pressure[J], Marine Chemistry, 1974, 3(3): 197-213
    [117] Whitefield, M. Extension of chemical models for seawater to include trace components at 25℃ and 1 atmosphere total pressure[J]. Geochim. Comochim. Acta., 1975, 39(11):1545-1557
    [118] Harvie C. E., Weare J. H., The prediction of mineral solubility in natural water: the Na~+, Mg~(2+), K~+, Ca~(2+)/Cl~-, SO_4~(2-)-H_2O system from zero to high concentration at 25℃ [J], Geochim. Comochim. Acta., 1980, 44(7): 981-997
    [119] Harvie C. E., Moiler N. and Weare J. H. The prediction of mineral solubilities in natural water: The Na-K-Mg-Ca-H /Cl-SO_4- OH-HCO_3-CO_3-CO_2-H_2O system to high ionic strengths at 25℃ [J], Geochim. Comochim. Acta., 1984, (48): 723-751
    [120] Harvie, C. E, Weare, J. H. Mineral equilibria in six-component seawater system Na-K-Ca-Mg-Cl-SO_4-H_2Oat25℃. Geochim. Comochim. Acta., 1980, (44): 1335-1347
    [121] Harvie,C.E. Eugster H.P et al.. Mineral equilibria in six-component seawater system Na-K-Ca-Mg-Cl-SO_4-H_2O at 25℃ Ⅱ. Composition of the saturated solutions., Geochim. Comochim. Acta., 1982, 46:1603-1618
    [122] Harvie,C.E, Weare,J.H. The prediction of Mineral solubilities in natural water Na-K-Ca-Mg-Cl-SO_4-H_2O system to high strength at 25℃. Geochim. Comochim. Acta., 1984, 48:723-751
    [123] K.S.Pitzer, Kim.J.J. Thermodynamics of electrolytes: Activity and osmotic coefficients for mixed electrolytes [J], J. Amer. Chem. Soc., 1974, (96): 5701-5706
    [124] Kim,H-T, Frededck,W.J. Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25℃. Ⅰ. Single salt parameters[J]. J. Chem. Eng. Data., 1988, 33(2): 177-184
    [125] Kim,H-T., Frederick.W.J. Evaluation of Pitzer ion interaction parameters of aqueous electrolytes solution at 25℃. Ⅱ. Ternary mixture parameter[J], J. Chem. Eng. Data., 1988, 33(3): 278-283
    [126] W.J.Hamer, Yung-chi Wu.. Osmotic coefficients and mean activity coefficients of Uni-univalent electrolytes in water at 25℃[J]. J. Phys. Chem. Ref. Data., 1972, 1(4): 1047-1099
    [127] R.N.Goldberg, R.L.Nattall. Evaluated activity and osmotic coefficients for aqueous solutions: The Alkaline Earth Metal Halides[J]. J. Phys. Chem. Ref. Data., 1978, 7(1): 263-310
    [128] R.N.Goldberg, R.L.Nattall and B.R.Staples. Evaluated activity and osmotic coefficients for aqueous solutions: iron chloride and Bi-univalent compounds for nickel and cobatt[J]. J. Phys. Chem. Ref. Data., 1979, 8(4): 923-1003
    [129] R.N.Goldberg., Evaluated activity and osmotic coefficients for aqueous solutions: Bi-Univalent compounds of lead, copper, manganese and uranium[J]. J. Phys. Chem. Ref. Data., 1979, 8(4): 1005-1050
    [130] R.N.Goldberg, Evaluated activity and osmotic coefficients for aqueous solutions: Bi-univalent compounds of zinc, cadmium, and ethylene Bis(Trimethy lammonium)chloride and codide[J]. J. Phys. Chem. Ref. Data., 1981, 10(1): 1-55
    [131] Bert R.Staples. Activity and osmotic coefficients for aqueous alkali metal. Nitrites[J]. J. Phys. Chem. Ref. Data.. 1981, 10(3): 765-778
    [132] 宋彭生.电解质的Pitzer参数及其获得[J].盐湖研究,1989,(1):15-22
    [133] Yao Yan, Song Peng-sheng, et al. Thermodynamics of Concentrated Electrolyte Mixture and the prediction of Solubilities for Li-K-Mg-Cl-SO_4-H_2O system at 25℃[P], Abstracts of Papers, 5 th International Symposium on Solubility Phenomena. Moscow, Russia, July, Session 5189, 1992
    [134] 张吕正,陆小华.水盐体系相图的计算[J].高校化学工程学报,1997,(2):113-118
    [135] 李亚红,宋彭生.碱金属氯化物-盐酸-水体系25℃溶解度预测[J].无机化学学报,1999,15(4):467-474
    [136] 李亚红,宋彭生.含HCl四元水盐体系溶解度预测及其在工艺上的应用:HCl-LiCl-H_2O体系0℃和20℃的溶解度预测[J].盐湖研究,2000,8(4):37-43
    [137] 李亚红,宋彭生.含HCl四元水盐本系溶解度预测及其在工艺上的应用Ⅰ:HCl的Pitzer参数的获得[J].盐湖研究,1998.6(1):28-33
    [138] 黄子卿.电解质溶液理论导论(修订本)[M].北京:科学出版社,1983
    [139] Mc Millan, W.G.. The statistical thermodynamics of multi-component systems[J], J. Chem. Phys., 1945, (13): 276-283
    [140] P. S. Z.Groes, Pitzer K.S. High temperature thermodynamic properities of the aqueous solution of sodium sulfates solution [J]. J. Phys. Chem, 1981, 85:2886-2895
    [141] H. F. Holmers, R. E. Mesmer. Thermodynamics of aqueous solution of the Alkal metal sulfates [J]. J. Solu. Chem, 1986, 15(5): 495-518
    [142] Pabalan R T, Pitzer K S. Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na~+, K~+, Mg~(2+)//Cl~-, SO_4~(2-), OH~--H_2O [J]. Geochim. Comochim. Acta., 1987, 51: 2429-2443
    [143] Moiler N. The prediction of mineral solubilities in natural water: A chemical model for Na~+, Ca~(2+)//Cl~-, SO_4~(2-),-H_2O system to high temperature and concentrates[J]. Geochim. Comochim. Acta., 1988, 52:821-837
    [144] Greenberg J.P, Moiler N. The prediction of mineral solubilities in natural water: A chemical equilibrium model for the Na~+, K~+, Ca~(2+)//Cl~-, SO_4~(2-)-H_2O system to high concentrates from 0 to 250℃ [J]. Geochim. Comochim. Acta., 1989, 53:2053-2018
    [145] Spencer R J, Moller N, et al. The prediction of mineral solubilities in natural water: A chemical equilibrium model for the Na~+,K~+,Ca~(2+),Mg~(2+)//Cl~--H_2O system at temperatures below 25℃ [J]. Geochim. Comochim. Acta., 1990, 54:575-590
    [146] G.M.Morion, R.E Faren. The mineral solubilities in the Na~+,K~+,Ca~(2+),Mg~(2+)//Cl~-, SO_4~(2-)H_2O system:A re-revaluate of the sulfate chemistry in the Spencer- Moller-Wearemodel[J]. Geochim. Comochim. Acta., 1999, 63(9): 1305-1318
    [147] Shi-liang He, J.W.Morse. Prediction of Halite, Gypsum, and Anhydrite solubility in natural brines and subsurface conditions. Computer & Geosciences, 1993, 19(1): 1-22
    [148] Xia-hua Lu, and G Maurer., Model for describing activity coefficients in mixed electrolyte aqueous solution[J]. J. AICHE., 2000, 39(9): 1527-1538
    [149] 张吕正,陆小华.电解质溶液相平衡预测系统的建立[J].计算机与应用化学,1995,12(3):199-202
    [150] Song Pengsheng, Yao Yan. Thermodynamics and phase diagram of the salt lake brine system at 298.15 K V. Model for the system Li~+, Na~+, K~+, Mg~(2+)/Cl~-, SO_4~(2-)-H_2O and its applications[J]. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2003, 27(4):343-352
    [151] Song Pengsheng, Yao Yan. Thermodynamics and phase diagram of the salt lake brine system at 25℃ I. Li~+, K~+, Mg~(2+)/Cl~-, SiO_4~(2-), -H_2O system[J]. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2001, 25(3): 329-341
    [152] 裘端.电解质水溶液相平衡的热力学研究[D].硕士论文,河北工业大学,2002
    [153] 赵天源,曾之平.水盐体系相图[M].北京:化学工业出版社,1995
    [154] 梁保民.水盐体系相图原理及运用[M].北京:轻工业出版社,1986
    [155] 牛自得,程芳琴.水盐体系相图及其应用[M].天津:天津大学出版社,2002
    [156] 吴辉全,郭志琴.相平衡中传统湿渣法分析的改进[J].无机盐工业,1989,(5):40-43
    [157] 宋彭生.湿渣法在水盐体系相平衡研究中的应用[J].盐湖研究,1991,(1):15-23
    [158] Kumar A. Prediction of densities of concentrated brines by Pitzer theory[J]. J. Chem. Eng. Data., 1986, 31:19-20
    [159] Kumar A. Densities and apparent molal volumes of aqueous KCl-CaCl_2 mixtures at 298.15K[J]. J. Chem. Eng. Data., 1986, 31:21-23
    [160] Monnin C. An ion interaction model for the volumetic properties of natural waters: Density of the solution and partial molal volumes of electrolytes to high concentrations at 25℃ [J]. Geochim.Comochim.Acta., 1989, 53:1177-1185
    [161] Duan xuechen, Zhao Tiancong. Preparation of arsenic oxide and high purity ultrafine antimony compounds from flue dust containing arsenic and antimony. Chinese Journal of Chemical Engineering. 1999, 7(3): 278-282.
    [162] Narasimha M, Yadav R and Syamsundar S. Preparation of high-purity zirconia from zircon. An anion-exchange purification process. Separation Science and Technology. 1994, 29(2): 249-259.
    [163] Gu Da, He Bi and Hu Liming. Study on the preparation of ultrafine TiO_2 powders of high purity by using the phase transfer method. Yadian Yu Shengguang(Chinese). 1995, 17(5): 45-48.
    [164] Tanistra I and Bodzek M. Preparation of high-purity sulphate lignin from spent black liquor using ultratiltration and diafiltration processes. Desalination. 1998, 115(2): 111-120.
    [165] 马全红,邹宗柏,朱向宏.废氧化铝催化剂制高纯超细氧化铝[J],化工时刊,2000,(11):40-42.
    [166] Tepavitcharova, St., Balarew, Chr., Tzvetkova, Chr.. Double Salts in the Systems MeX-MeX_2-H_2O (Me~+=K~+, NH_4~+, Rb~+, Cs~+; Me2~+ = Mn~(2+), Co~(2+), Ni~(2+); X~- = Cl~-, Br~-) [J]. J. Solid State Chem., 1999, 143(1): 16-23.
    [167] Lainer, Yu. A.; Yampurov, M. L.; Syzdykova, A. O. Physicochemical properties of solutions and solid phases in the Al_2(SO_4)_3-Fe_2(SO_4)_3-FeSO_4-H_2SO_4-H_2O system [J]. Tsvetn. Metall., 2000, (5): 20-26.
    [168] Linke W F, Seidel A. Solubilities of Inorganic and Metal-organic Compounds [M]. Washington DC: American Chemical Society, 1965
    [169] Silcock H L. Solibilities of Inorganic and Organic Compounds [M]. Vol. 3, Pergamon Press, Oxford. 1979:1149
    [170] Smith R M, Matted A H. Critical Stability Constants (Vol 4) [M]. New York: Plenum Press, 1979, 1, 37, 40
    [171] 李小斌,刘志强,彭志宏,等.从硫酸铝溶液中制取高纯超细氧化铝过程中杂质的行为及控制[J],轻金属,1998,(17):14-17.
    [172] 邓淑华,郑文裕.制取高纯氧氯化锆过程中絮凝剂对“二次除硅”的影响[J].稀有金属,2005,24(3):191-194.
    [173] 张保平.锰锌软磁铁氧体用前驱体碳酸盐共沉淀过程基础理论及工艺研究[PhD].湖南长沙,中南大学,2004.
    [174] 梅光贵.湿法冶金新工艺[M].长沙:中南工业大学出版社,1994,395.
    [175] 华中师范大学编.分析化学[M].北京:高等教育出版社,1986,449.
    [176] 武汉大学编.无机化学[M].北京:高等教育出版社,1992,439-440,456-457.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700