用户名: 密码: 验证码:
渗透胁迫下水稻体内多胺代谢及其生理功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以水稻品种旱116、嘉早935和湘早籼32号为材料,不同浓度的PEG6000模拟自然干旱及自然干旱对水稻进行渗透胁迫处理,添加多胺及多胺合成抑制剂等外源物质,研究了渗透胁迫下水稻生长,多胺代谢,活性氧及相关酶活性的变化及多胺在渗透胁迫信号转导过程中的地位,探讨了多胺在水稻适应渗透胁迫过程中的生理调节功能,主要研究结果如下:
     1、渗透胁迫促进水稻幼苗根系干物质的积累和根冠比的增大,在渗透胁迫下水稻幼苗体内的Put、Spd和Spm含量明显上升,且抗旱性强的旱116的上升幅度明显大于湘早籼32号,Put、Spd和Spm含量与根冠比呈一定的正相关,表明Put、Spd和Spm参与了水稻幼苗对渗透胁迫的适应性代谢。外源Spm处理增加了水稻体内Put、Spd和Spm的含量,减缓渗透胁迫对水稻的伤害,而多胺合成抑制剂MGBG和D-Arg处理则明显抑制水稻体内Put、Spd和Spm含量的上升,加重渗透胁迫的伤害程度,外源Put能明显逆转D-Arg的抑制效应。渗透胁迫下水稻幼苗体内Put、Spd和Spm含量的变化可作为苗期抗旱性的鉴定指标。
     2、渗透胁迫诱导水稻胚芽鞘和幼根中的Put、Spd和Spm含量的上升,对抗旱性强的旱116和嘉早935的促进作用更明显,外源MGBG和D-Arg抑制渗透胁迫下水稻体内Put、Spd和Spm含量的上升,加重渗透胁迫对胚芽鞘和幼根的伤害程度,而外源Spd处理明显促进胚芽鞘中Put、Spd和Spm含量的升高,减轻渗透胁迫的伤害。外源Spd处理虽明显促进幼根中Put、Spd和Spm含量的升高,但却加重渗透胁迫的伤害程度。渗透胁迫下胚芽鞘中PAs含量的变化可作为水稻芽期抗旱性鉴定的生理指标。
     3、对分蘖期进行渗透胁迫主要影响水稻的分蘖数,进而影响后期的产量。在渗透胁迫,外源Spm及MGBG的处理下,旱116叶片中Put、Spd和Spm的含量与分蘖数的变化率及抗旱系数呈极显著的正相关,表明在渗透胁迫下Put、Spd和Spm含量的上升有利于提高分蘖期水稻的抗旱性,与苗期的试验结果相一致。渗透胁迫下水稻叶片中Put、Spd和Spm含量的变化可作为分蘖期抗旱性的鉴定指标。
     4、渗透胁迫下水稻体内PAO活性随Put、Spd和Spm含量的变化而变化,且呈一定的正相关,细胞壁结合态PAO活性明显高于游离态PAO,是游离态PAO活性的9.8-15.65倍,且具一定的相关性(R=0.952),表明水稻体内PAO绝大部分定位于细胞壁上。
     5、在渗透胁迫,外源Put和MGBG的处理下,水稻幼苗叶片中SAMDC、ADC活性的变化与Put、Spd和Spm含量变化趋势基本一致,而ODC活性基本上没有明显变化,表明渗透胁迫下水稻幼苗叶片中Put的合成主要是经ADC的脱羧而形成。
     6、渗透胁迫诱导水稻叶片中Put、Spd和Spm含量的上升,促进叶片中SOD、POD的活性的升高及Vc的含量的增加来降低H_2O_2和丙二醛的水平,降低活性氧对水稻幼苗的伤害。
     7、渗透胁迫下水稻幼苗根中Put、Spd和Spm的积累受ABA、NADPH氧化酶产生的活性氧和Ca~(2+)的调节,Put、Spd和Spm可调节质膜NADPH氧化酶活性,表明可能存在Osmotic Stress→ABA→PAs→NADPH oxidase→H_2O_2→Ca~(2+)的信号转导途径,Put、Spd和Spm与NADPH氧化酶产生的活性氧及Ca~(2+)水平之间可能存在有交叉对话,Ca~(2+)与活性氧也存在交叉对话。
Rice cultivars of Han 116,Jiaozao935 and Xiangzaoxian32 were used as experimental materials, treated rice cultivars with different concentration PEG-6000 and natural drought,followed by treatment of polyamine,polyamine synthesis inhibitor to the solution.Then studied on growth,polyamine metabolism,active oxygen and change of some related enzymes activity and signal transduction of rice under osmotic stress.Physiological regulation role of polyamine in its adaptation to osmotic stress was explored.Main reseach results were as follows:
     1. Accumulation of dry weight in roots,R/S and contents of Put,Spd and Spm of rice seedlings were significantly increased under osmotic stress,and Han116 increased more markedly than Xiangzaoxian32,positive correlation between Put,Spd and Spm contents and R/S ,which showed that Put,Spd and Spm were involved in adaptation metabolism.Exogenous Spm treatment could significantly promote Put,Spd and Spm contents and alleviate harm of osmotic stress,but MGBG and D-Arg treatment significantly inhibited Put,Spd and Spm contents and aggravated it.Exogenous Put could reverse inhibitory effect of D-Arg.Change of Put,Spd and Spm contents of seedlings would be regarded as an indicator of identifying drought -resistance at seedling stage under osmotic stress
     2.Osmotic stress led to notable increase of Put,Spd and Spm contents in coleoptiles and young roots of rice,and Han116 and Jiaozao935 increased more markedly than Xiangzaoxian32. Exogenous MGBG and D-Arg inhibited Put,Spd and Spm contents and aggravated harm on coleoptiles and young roots under osmotic stress,while exogenous Spd treatment remarkably enhanced Put,Spd and Spm contents in coleoptiles and mitigated harm degree of osmotic stress. Though exogenous Spd treatment could increase Put,Spd and Spm levels in young roots , aggravate harm degree of osmotic stress on young roots. Change of PAs contents in coleoptiles could be considered as a physiological indicator of identifying drought - resistance at bud stage under osmotic stress .
     3. Osmotic stress mainly effected tillering number at tillering stage and then effected yield . Significantly positive correlation between Put,Spd and Spm contents and change rate of tillering numbers and yield maintenance ratio under exogenous Spm and MGBG treatment demonstrated that increase of Put,Spd and Spm levels helped improve drought - resistance of rice at tillering stage,which agreed with experimental results at seedling stage.It manifested that change of Put,Spd and Spm levels could be believed as an indicator of identifying drought - resistance at tillering stage under osmotic stress.
     4.PAO activity changed with the change of Put,Spd and Spm levels under osmotic stress.It found there was some correlation between PAO activity and Put,Spd and Spm contents. Cell wall-localized PAO activity was notably higher than free PAO,which was 9.8-15.65 times higher than that of free PAO.There was also certain correlation between binding PAO activity and free PAO activity (R=0.952) ,which illuminated that PAO of rice largely located cell wall.
     5.There was nearly the same tendency between the change of SAMDC,ADC activity and Put,Spd and Spm contents under osmotic stress, exogenous Put and MGBG treatment while ODC activity essentially remained unchanged. It declared that synthesis of Put mainly went through decarboxylation of ADC
     6.Osmotic stress induced to raise contents of Put,Spd and Spm , encouraged to enhance activity of SOD,POD and increase content of Vc in order to decrease levels of MDA and H_2O_2-Then reduced harm of active oxygen on rcie seedlings.
     7.The osmotic stress-induce accumulation of Put,Spd and Spm in roots of rice seedlings was regulated by ABA,H_2O_2 and Ca~(2+),while Put,Spd and Spm might regulate the activity of plasma membrance-bound NADPH oxidase.The results implied that there might be a signaling pathway which include osmotic stress→ABA→PAs→PM NADPH oxidase→H_2O_2→Ca~(2+),and there might be cross-talk between PAs and NADPH oxidase-induces ROS and Ca~(2+),and there might be alsocross-talk between ROS and Ca(2+).
引文
[1]. 余叔文,汤章和主编.植物生理与分子生物学.北京:科学出版社,1998
    [2].景蕊莲.作物抗旱研究的现状与思考.干旱地区农业研究.1999,17(2):79-85
    [3].康绍忠.新的农业科技革命与21世纪我国节水农业的发展.干旱地区农业研究,1998,16(1):1-17
    [4]. Zhang SH,Outlaw WH.Gardual long-term water stress results in abscisic acid accumulation in the guard-cell symplast and guard-cell apoplast of intact Vicia faba L.plants.Plant Growth Regul,2001,20:300-307
    [5]. Liu FL.Andersen MN,Jensen CR.Loss of pod set caused by drought stress is associated with water status and ABA content of reproductive structures in soybean. Func Plant Biol,2003,30:271-280
    [6].刘友良.植物水分逆境生理.北京:农业山版社,1992
    [7]. Turner NC.Further progress in crop water relations.Adv Agric, 1997,58:293-339
    [8]. Levitt J. Response of plant to environment stress. New York: Academic press, 1980
    [9]. Zaharieva M,Gaulin E,Havaux M,Acevedo E,and Monneveux P.Drought and heat responses in the wild wheat relative Aegilops geniculata roth:potential interest for wheat improvement.Crop Sci,2001 (6),41:1321-1329
    [10]. Begg JE,Turner NC. Crop Deficits. Adv. Agron, 1976,28: 161-217
    [11]. Pei ZM,Murata Y,Beaning G,et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 2000, 406: 731-734
    [12].朱志]梅,杨诗.沙漠化过程中植物的变化和适应机理研究概述.内蒙古大学学报(自然科学版),2003,34:103-114
    [13].田佩古.大豆品种根系生态类型的研究.作物学报,1984.103(3):173-178
    [14].王晨阳.不同土壤水分条件下小麦根系生态生理效应的研究.华北农学报,1992,7(4):128
    [15].刘殿英,石立岩,董庆裕.不同时期施肥水对冬小麦根系活性和植株性状的影响.作物学报,1993,19(2):149-155
    [16].汤章城.植物对水分胁迫的反应和适应性.Ⅱ.植物对干旱的反应和适应性.植物生理学通迅,1983.(4):1-7
    [17].吴强盛,夏仁学,张琼华.果树对水分胁迪反应研究进展.亚热带植物科学,2003,32:72-76
    [18].王小彬,蔡典雄,高绪科.作物的缺水反应及其抗旱生理适应性的调节.七壤,1997,1:6-12
    [19]. De Datta SK,Malabuyae J,Agragon E,etal. A field screening technique for evaluating rice germplasm for drought tolerance during the vegetative stage. Field Crops Res, 1988,19:123-134
    [20].张燕之,周毓珩,曾佯宽.不同类型稻抗旱性鉴定指标研究.沈阳农业大学学报,2002,33(2) 90-93
    [21]. Nobel PS. Adaption of plants to water and high temperature stress. New York: John Wiley& Sons'. 1980,43-45
    [22]. O'Toole JC,Chang TT. Drought resistance in cereals-Rice: a case study.In: Mussell H W acid Staples R C eds, Stress Physiology of Crop Plants, New York: John Wiley&Sons' Inc, 1979, 374-405
    [23]. Sheela KR,Alexander VT. Physiological response of rice vareties as influenced by soil moisture and seed hardening.Indian Plant Physiol,1995,38:269-271
    [24].杨建昌,乔纳圣·威尔斯,朱庆森.水分胁迫对水稻叶片气孔频率、气孔导度及脱落酸含量影响.作物学报,1995,21(5):533-539
    [25].刘丽霞,程红卫.水稻叶片气孔分布与气孔密度的研究.沈阳农业大学学报,2000,31(4) 313-317
    [26].台培东,郭书海,宋玉芳,孙铁珩,李培军,姜恕.草原地区不同生态类型的植物生理特性的比较研究.应用生态学报,2000,11:53-56
    [32].Singh S,Singh TN. Morphological chemical and environmental factors affecting leaf rolling in rice during water stress. Indian Plant Physiol., 2000,5:136-141
    [33].Singh S,Singh TN. 2000 Significance of leaf rolling in rice during water stress.Indian Plant Physiol., 20005:214-218
    [34]. 候彩霞,汤章程,细胞相溶性物质的生理功能及其作用机制.植物生理学通讯,1999,35:1-7
    [35].陈少良,李金克,毕望富,等.盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化.植物学通报,2001,18(5):587-596
    [36].Wang YM,Meng YL,Nii N. Changes in glycinebetaine and related enzyme contents in Amaranthus tricolor under salt stress . Plant Physiol Mol Biol,2004,30(5):496-502
    [37].Wyn JRG,Storey R.Betaines.In:Paleg LG,Aspinall D(eds).The physiology and biochemistry of drought -resistance in plant.Sydney:Academie Press, 1981,171-204
    [38].张士功,高吉寅,宋景芝.甜菜碱对NaCl胁迫下小麦细胞保护酶活性的影响.植物学通报,1999,16:429-432
    [39].孙文越,王辉,黄久常.外源甜菜碱对干旱胁迫下小麦幼苗膜脂过氧化作用的影响.西北植物学报,2001,21:487-491
    [40].赵博生,衣艳君,刘家尧.外源甜菜碱对干旱/盐胁迫下的小麦幼苗生长和光合功能的改善.植物学通报,2001,18:378-380
    [41].许雯,孙梅好,朱亚芳,苏维埃.甘氨酸甜菜碱增强青菜抗盐的作用.植物学报,2001,43:809-814
    [42].李芸瑛,梁广坚,李永华,叶庆生.外源甜菜碱对黄瓜幼苗抗冷性的影响.植物生理学通讯,2004,40(6):673-676
    [43].孟凤,郁松林,郊强卿,刘冬冬,李鹏程,何娟.外源甜菜碱对葡萄幼苗抗高温胁迫能力的影响.果树学报,2008,25(4):581-584
    [44].杜栋,王有年,于继洲,谷继成,杨爱珍.水分胁迫下外源甜菜碱对桃叶片光合作用的影响.北京农学院学报,2004,19(2):1-4
    [45].刘瑞冬,王有年,于同泉,路苹,谷继成.水分胁迫下外源甜菜碱对仁用杏叶片光合作用的影响.北京农学院学报,2004,19(1):10-13
    [46].赵华,曹云英,周蓉,季本华.外源甜菜碱对盐胁迫下水稻幼苗光合功能的改善.华北农学报,2006,21(6):72-74
    [47].张士功,高吉寅,宋景芝.甜菜碱对NaCl胁迫下小麦幼苗体内ATP含量的影响.河北农业科学,1999,3(2):21-23
    [48].刘俊,刘怀攀,刘友良.外源甜菜碱对盐胁迫下大麦幼苗体内多胺和离子含量的影响.作物学报,2004,30(11):1119-1123
    [49].衣艳君,刘家尧,骆爱玲,张其德,马德钦,五学臣,梁峥.转BADH基因烟草的光系统Ⅱ和呼吸酶活性的变化.植物学报,1999,41:993-996
    [50].贾庚祥,朱至清,李银心.甜菜碱与植物耐盐基因工程.植物学通报,2002,19:272-279
    [51]. ManetasY.A reexamination of NaCl effeets on phosphoenol pyruvate earboylase at high (physiological) enzyme concentrations.Physio Plant, 1990,78:225-229
    [51]. Hayashi H,Alia M,Deshnium L,et al. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase: accumulation of glycine betaine and enhanced tolerance to salt and cold stress. Plant, 1997,12:133-142
    [52]. Manabu I,Toshihide N.Seung, et al. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol. Biol, 1995,27:307-315
    [53]. Rathinasabapathi B,Burnet M,Russell B, et al. Choline monooxygenase,an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci USA, 1997,94:3454-3458
    [54].郭岩,张莉,肖岗.甜菜碱醛脱氢酶基因在水稻中的表达及转基因植株耐盐性的研究.中国科学(C辑),1997,27(2):151-155
    [55].刘凤华,郭岩,谷冬梅.转甜菜碱醛脱氢酶基因植物的耐盐性研究.遗传学报,1997,24(1):54-58
    [56]. 郭北海,张艳敏,李洪杰.甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达.植物学报,2000,42(3):279-283
    [57].赵福庚,刘友良.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展.植物学通报,1999,16:540-546
    [58]. Sudha G, Ravishankac GA. Putrescine facilitated enhancement of capsaicin production in cell suspension cultures of Capsicum frutescens. Plant Physiol. 2003, 160(4):339-347
    [59].孙军伟,孙世贤,杨国航,齐华,邹种楠,张振平,白向历,刘明.玉米苗期抗旱性鉴定指标的研究.华北农学报,2008,23(增刊)114-117
    [60].陈钰,郭爱华,姚延梼,张乃明.杏品种花蕾细胞膜透性和脯氨酸含量与抗寒性的关系.云 南农业大学学报,2008,23(2):211-214
    [61].张金林,王锁民,陈托兄,徐震,严学兵,陆妮.烯效唑(S3307)对大麦整株水平Na+、K+选择性和游离脯氨酸分配的影响.麦类作物学报,2008,28(4):655-660
    [62].谢田富,焦凤红.对不同品种草地早熟禾受干旱胁迫影响研究.辽宁林业科技.2008,4:25-29
    [63].蒋明义.水分胁迫下植物体内·OH的产生与细胞的氧化损伤.植物学报,1999,41:229-234
    [64]. Alia,Prasad KVSK,Saradhi PP.Effeet of zine on radieals and prolie in Brassiea and Cajanus. Phytoehemist, 1995,39:45-47
    [65]. Larkindale J,Knight MR.Proteetion against heat stress indueed oxidative damage in Arabidopsis involves caleium,abseisie acid,ethylene,and salieylic acid.Plant Physiol,2002, 128:682-695
    [66]. Xiong L,Ishitani M,Lee H,Zhu JK.The Arabidopsis LOSS/ABA3 locus encodes a molybdenum cofaetor sulfurase and modulates cold stress and osmotic stress-responsive gene expression.Plant Cell,2001,13:2063-2083
    [67]. Liotenberg S,North H,Marion-Poll A.Moleeular biology and regulation of abscisic acid biosynthesis in plants.Plant Physiol Bioehem,1999,37:341-350
    [68]. Koomneef M,Leon-Kloosterziel KM,Schwartz SH, Zeevaart JAD.The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis.Plant Physiol Biochem, 1998,36:83-89
    [69]. Gomes MA,Lagoa AM,Machdao EC, etal..Gas exehnage and assessment of baseisic acid contents in two upland rice cultivasr subjected to water stress.Revisata Barsileiar de Fisiologia Vegetal, 1997,9:177-183.
    [70]. Yang J ,Zhang J,Wang Z,et al.Homronal chnages in the grains of rice subjected to water stress during grain filling.Plant Physiol.,2001,127:315-323
    [71]. Swamy PM,Smith BN.Role of baseisic acid in panlt srtess tolerancre.Current Sci.,1999,76: 1220-1227
    [72].杨建昌,王志琴,朱庆森.水稻在不同土壤水分状况下脯胺酸的累积与抗旱性关系.中国水稻科学,1995,9(2):92-96
    [73]. Aruna T,Naernder K,Sairam RK,et al. Efficacy of RWC membrane stability osmotic potential,endogenous ABA and root biomasas indices for selection against water stress in rice.lndina.Plant Physiol., 1999,4:302-306
    [74]. 张正斌. 作物抗旱节水的生理遗传育种基础. 北京:科学出版社,2003
    
    [75].AIpert P.Constraints of tolerance:why are desiccation-tolerant organisms so small or rare?J Exp Biol,2006,209(9): 1575-1584
    [76]Bowler C,AUiotte T,de Loose M,van Montagu M,Inze D.The induction of manganese superoxide dismutase in response to stress in Nicotiana phumbaginifolia.EMBO J,1989,8:31-38
    [77].Mckersie BD,Chen Y,de Beus M,Bowley SR,Bowler C,Inze D,Botterman .Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago saliva L).Plant Physiol,1993,103:1155-1163
    [78].AIlen RD. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol, 1995,107:1049-1054
    
    [79].Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD. Increased resistance to oxidative stress in transgentic plants that over express chloroplastic Cu/Zn superoxide dimutase. Proc Natl Acad Sci USA, 1993, 90:1629-1633
    [80].Bowler C,Slooten L,Vandenbranden S,de Rycke R,Botterman J,Sybesma C,van Montagu M, InzeD. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO, 1991,10: 1723-1732
    [81].Camp W, Willekens H. Bowler C. Van Montage M, Inze D,Samdermann .IRH. Langebar-tels C.Elevated levels of superoxide dismutase protects transgenic plants against ozone damage. Biotechnology, 1996, 12: 165-168
    [82].Breusegem FV,Slooten L,Stassart .IM, Moens T, Botterman J,Moens T, Montagu MV, Inze D. Effects of over exproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress. J Exp Bot, 1999, 50(330): 71-78
    [83]. McKersie BD,Bowley SR,Harjanto E,Leprince O. Water-Deticit Tolerance and Field Performance of Transgenic Alfalfa Overexpressing Superoxide Dismutase. Plant Physiol. 1996,111(4):1177-1181.
    [84]. IngramJ,BartelsD.The moleeular basis of dehydration tolerance in plant.Annu Rev Plant Physiol Plant Mol Biol, 1996,47:377-403
    [85].Yamaguchi-Shinozaki.Stress response of photosynthetic organisms.NewYork:Academic Press, 1998,13-163
    
    86. 颜华,贾良辉,王根轩. 植物水分胁迫诱导蛋白的研究进展. 生命的化学,2002,22:165-168
    [87]. Dure L, Crouch M, Developmental biochemistry of cotton seed embryogenesis and germ ination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry, 1981,20:4161-4168
    [88]. Dure L. Response of plants to culullar dehydration during environmental stress. Rockville: American Society Physiologists,1993,91-103
    [89]. Xu D,Duan X,Wang B,Hong B. Expression of a late embryogenesis abundant protein gene, HVAI from barley confers tolerance to water deticit and salt stress in transgenic rice. 1996,1 10:249-257
    [90].赖钟雄,张妙霞,李冬梅,车建美,王风华,赖呈纯,郭志雄,吴金寿,冻振光.植物LEA蛋白与Lea基因表达.福建农林大学学报(自然科学版),2002,31(4):463-46
    [91]. Marttila S,Tenhola T,Mikkonen A.A barley (Hordeum vulgare L.) LEA 3 protein, HVA1 is abundant in protein storage vacuoles. Planta, 1996,199 (4):602-611
    [92].赵福庚,刘友良.高等植物体内特殊形态多胺的代谢及调节.植物生理学通讯,2000,36(1):1-6
    [93]. Athwal GS, Huber SC. Divalent cations and polyamines bind to loop 8 of 14-3-3 proteins, modulating their interaction with phosphorylated nitrate reductase. Plant, 2002, 29:119-130
    [94].王汉忠,赵福庚,张国珍.多胺延缓植物衰老的机制.山东农业大学学报,1995,26(2):227-232
    [95]. Hamana K, Niitsu M, Samejima K. Occurrence of tertiary branched tetraamines in two aquaticplants. Can. J. Bot, 2000,78:266-269
    [96]. Aziz A,Larher F.Chandes in Polyamine titer sassoeiated with the proline response and osmotic adjustment of rape leaf discs submitted to osmotic stresses.Plant Sci,1995,112:178-186
    [97]. Santanen A,Liisa KS.Catabolism of prtrescine and spermidine in embryogenie and non-embryogenie eallus lines of picae abies.Physiol Plant, 1994,90:125-129
    [98]. Baehraeh U.Fundation of Naturally OccurringPolyamine.NewYork,London:Academic Press lnc,1983
    [99]. Smith TA.The di-and polyamine oxidases of higher plants.Bioehem Trans, 1985,13:319-322
    [100]. Cristina B, Alexandra C, Alcozar R et al. Localization of arginine decarboxylase in tobacco plants.Physiol Plant,2004,120:84-92
    [101].Rerez-Amador A,Carbonell J,Granell A.Expression of arginine decarboxylase is induced during early fruit development and in young tissue of Pisum Sativum(L.).Plant Mol Bio, 1995,28:997-1009
    [102].Watson MB,Malmberg RL.Regulation of Arabidopsis thaliana Heynh arginine decarboxylaes by potassium deficiency stress. Plant Physiol.1996, I I 1:1077-1083
    [103].Walden R,Cordriro A,Tiburcio AF. Polyarciines: small molecules Triggering pathways in plant growth and development. Plant Physioi, 1997,113: 1001-1013
    [104]. Bell E,Melmberg RL. Analysis of a cDNA encoding arginine decarboxylase and evidence of protein processing. Mol Gen Genet, 1990, 224:431-436
    [105].Malmberg RL,Cellino ML.Arginine decarboxylase of oats is activated by enzymatic cleavage into two polypetides. Bio Chem, 1994; 269:2703-2706
    [106].Rostogi R,DulsonJ,Rothstein SJ.Cloning of tomato(Lycopersicon esculentum Mill).Arginine decarboxylase gene and its expression during fruit ripening. Plant Physiol, 1993 103:829-834
    [107]. Mo H, Pua EC. Up-regulation of arginine decarboxylase gene expression and accumulation of polyamines in mustard(brassiea juneea) in response to stress. Physioi Plant,2002,l 14:439-449
    [108].Borrell A,Culianez-Mania FA,Altabella Terosa et al. Arginine decarboxylase of is localized in chloroplasts. Plant Physioi, 1995, 109:771-776
    [109].Colin H.,Susanne S.Mayer MJ,et at.Arabidopsis polyamine biosythesis:absense of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J.2001, 27:551-560
    [110].Tiburcio AF,Kaur-Sawhney R,Galston AW.Polyamine metabolism.In:Miflin BJ(Ed), Intermediary nitrogen metabolism.Bio Plants, 1990, 16:283 -325
    [111]. Alabadi D,Carbonell J. Expression of ornithine decarboxylase is transiently increased by pollination 2,4-D. Dichlorophenoxyacetic acid and gibberellic acid in tomato ovaries. Plant Physioi, 1998, 118:323-328
    [112].Tiburcio AF, Dumorotier FM,Galston AW. Polyamine metabolism and osmotic stress. Plant Physioi, 1986, 82:369
    [113].Borrell A,Culianez-acid FA,Altabella T,Besford RT,Flores D,Tiburcio AF. Arginine decarboxylase is localized in chloroplasts. Plant Physioi, 1995, 109: 771-776
    [114].Hanfrey C,Sommer S,Mayer MJ, Burtin D, Michael AJ. Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant, 2001.27:551-560
    [115]. Lepri O,Bassie L,Safwat G,et al.Over-expression of a cDNA for human ornithine decarboxylase in transgenic rice plants alters the polyamine pool in a tissue-sepecific manner.Mol Gene,2001,266:303-312
    [116]. Elisabeth T,Martin-Tanguy J. Floral induction and floral development of strawberry. Plant Growth Regul, 1995, 17: 157-165
    [117]. Martin-Tanguy J,Carre M. Polyamines in graperine microcuttings cultivated in vitro. Effect of amines and inhibitors of polyamine biosynthesis on polyamine levels and microcutting growth and development. Plant Growth Regul, 1993, 13: 269-280
    [118]. Martin-Tanguy J,Aribad M. IDC-mediated biosynthesis and DA-mediated cababolism of putrescine involved in rooting of Chrysanthemum exphants in vitro. Plant Physiol, 1997, 35 (8): 595-602
    [119]. Scott EA, Dhundy RB. Metabolism of Polyamines in transgenic cells of carrot expressingf a mouse ornithine decarboxylase cDAN. Plant Physiol, 1998, 116: 299-307
    [120]. Stanley BA,Shantz LM,Pegg AE. Expression of mammalian S-adenosylmethionine decarboxylase in Escherichia Coil. Bio Chem, 1994,269:7901-7907
    [121]. Richard W,Alexandra C. Polyamine: small molecules triggering in plant growth and development. Plant Physiol, 1997, 113: 241-248
    [122]. Song J,Nada K,Tachibana S. Suppression of S-adenosylmethionine decarboxylase activity is a major cause for high-temperature inhibition of pollen germination and tube growth in tomato(Lycopersicon esculentum Mill.). Plant Cell Physiol, 2002, 43: 619-627
    [123]. Tiburcio AF,Altabella T,Borrell A. Polyamine metabolism and its regulation. Physiol Plant, 1997, 100:664-674
    [124].何生根,黄学林,傅家瑞.植物的多胺氧化酶.植物生理学通讯,1998,34:213-218
    [125].布坎南BB,格鲁依森姆W,琼斯莱特行列式RL.植物生物化学与分子生物学.北京:科学出版社,2004,74-746
    [126].苏国兴,刘友良.高等植物体内的多胺分解代谢及其主要产物的生理作用.植物学通报,2005,22:408-418
    [127].苏国兴,董必慧,刘友良,王春春.γ-氦基丁酸在高等植物体内的代谢和功能.植物生理学通讯,2003.6:670-676
    [128]. Bhatnagar P,Glasheen BM,Bains SK. Transgenic manipulation of the metabolism of polyamine in poplar cells .Plant Physiol, 2001,125: 2139-2153
    [129]. Shelp BJ,Bown AW,McLean MD. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci,1999, 4: 446-452
    [130]. De Rosa M,De Rosa S,Gambacorta A,Carteni-Farina M. The biosynthetic pathways of new polyamines in Caldariella acidophila. Biochem , 1978,176: 1-7
    [131]. Rodriguez-Garay B,Phillips GC,.Knehn GD. Detection of norspermidine and norspermine in Medicago saliva L .Plant Physiol, 1989,89: 525-529
    [132]. Kuehn GD,Rodriguez-Garay B,Bagga S,Phillips GC. Novel occurrence of uncommon polyamines in higher plants. Plant Physiol, 1990, 94: 855-857
    [133]. Malabika R,Ghosh B. Polyamine, both common and uncommon under heat stress in rice callus. Physiol Plant, 1996, 98: 196-200
    [134]. Del Duca S,Beninati S,Serafini-fracassini D. Polyamines in chloroplasts: identification of their glutamyl and acetyl derivatives. Biochem , 1995,305: 233-237
    [135]. De Agazio M, Zacchinio M, Federico R. Grego S. Putrescine accumulation in maize roots treated with spermidine :evidence for spermidine to putrescine conversion. Plant Sci, 1995,111: 1814-1815
    [136]. Bouchereau A,Aziz A,Larher F,Martin-Tanguy J. Polyamines and environmenyal challenges: recent development. Plant Sci, 1999,140: 103-125
    [137]. Tassoni A,Buuren MV,Franceschetti M,Fornale S. Polyamine content and metabolism in Arobidopsis thaliana and effect of spermidine on plant development. Plant Physiol Biochem, 2000, 38:383-393
    [138]. Claire D,Guillaume G,David G,Francois L. The conversion of spermidine to puttescine and 1.3-diaminopropane in the roots of Limonium tataricum. Plant Sci,2003, 163: 639-647
    [139].张木清,陈如凯,余松烈.水分胁迫下叶片多胺代谢变化及其同抗旱性关系.植物生理学报,1994,22:327-332
    [140].关军锋,刘海龙,李广敏.干旱胁迫下小麦幼苗根、叶多胺含量和多胺氧化酶活性的变化植物生态学报,2003,27(5):655-660
    [141].徐胜利,陈青云,陈小青.盐胁迫下嫁接伽师甜瓜植株生长与多胺以及多胺氧化酶活性的关系.果树学报,2006,23(2):260-265
    [142].刘俊,刘友良.盐胁迫下大麦幼苗多胺的种类和状态与多胺氧化酶活性的关系.植物生理与分子生物学报,2004,30(2):141-146
    [143]. Walters D.Resistance to plant pathogens:Possible roles for free polyanines and polymaine catabolism.New Phytol,2003,159:109-115
    [144]. Seiler N,Delcros JG, Moulinoux JP. Polyamine transport in mammalian cells update. Intern J Biochem Cell Biol, 1996, 28: 843-861
    [145]. Seiler N,Dezeure F. Polyamine transport in mammalian cell. Intern Biochem,990,22: 211-218
    [146]. Khan NA,Quemener V,Moulinoux JP .Polyamine membrane transport regulation. Cell Biol Intern Rep, 1991, 15:9-24
    [147]. Mitchell JLA,Diveley RR,Bareyal-Leyser A. Feedback repression of polyamine uptake into mammalian cells requires cative protein synthesis. Biochem Biophys Res Commun, 1992, 186: 81-88
    [148]. Mitchell JLA,Judd GG, Bareyal-Leyser A. Feedback repression of polyamine transport is mediated by antizyme in mammalian tissue-culture cells. Biochem J, 1994,299: 19-22
    [149]. Hayashi S,Murakami Y. Rapid and regulated degradation of ornithine decarboxylase. Biochem J, 1995,306: 1-10
    [150].张木清,陈如凯,余松烈.多胺对渗透胁迫下甘蔗愈伤组织诱导和分化的作用.植物生理学通讯,1996,32(3):175-178
    [151]. 孙存普,张建中,段绍瑾主编.自由基生物学导论.合肥:中国科学技术大学出版社,1999
    [152]. Dumbroff E.Lecture course on polyamines as modulators of plant development. 1991,257: 62-66
    [153]. Li CZ, Jiao J,Wang GX.. The important roles of reactive oxygen species in the relationship between ethylene and polyamines in leaves of spring wheat seedlings under root osmotic stress.Plant sci, 2004, 16:303-316
    [154]. Galston AW. Polyamines as modulators of plant development. Bioscience, 1983,33:382-388 [155]. Fuhrer J.Kaur SR, Shih LM,et al. Inhibition of ethylene biosynthesis by polyamines shunts label from C14-methionine into spermidine in aged orange peel discs. Plant Physiol, 1982, 69: 385-388.
    [156]. Serrano M,Martinez MC, Romojaro F. Ethylene biosynthesis and polyamine and ABA level in cut carnat ions t reated with aminotriazole. Society Hortic Sci, 1999, 124: 81- 85
    [157]. Cohen E, Kende A. The effect of submergence,ethylene and gibberellin on polyamines and their biosynthetic enzymes in deep water rice internodes.Planta, 1986, 169: 498- 504
    [158].杨洪强,黄天冻.赤霉素和多效唑对苹果叶片内源游离多胺含量的影响.山东农业大学学报(自然科学版),1993.2:24-29
    [159].曾新萍,苏明华,赖,瑞云,陈淳,谢志南.6-BA+B9对龙眼花芽生理分化期内源多胺含量变化的影响.亚热带植物科学,2006,35(4):19-21
    [160].桂仁意,曹福亮,沈惠娟,谢寅峰.多胺代谢对石竹试管苗成花中内源激素含量的影响.南京林业大学学报(自然科学版),2003,27(4):27-30
    [161].尹骆明.PA与KT对稀脉浮萍离体叶状体衰老的影响.植物学报1994,36(7):1-8
    [162]. Lee TM, Lur HS, Chu C. Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings.Ⅱ. Modulation-of free polyamine levels. Plant Sci, 1997,126:1-10
    [163]. Lee TM, Lur HS,Chu C. Abscisic acid and putrescine accumulation in chill ing-tolerant rice cultivars. Crop Science, 1995, 35:502-508
    [164]. Chu C,Lee TM.Regulation of chilling tolerance in rice seedlings by plant hormones. Korean Journal of Crop Science, 1992, 37:288-298
    [165]. Lee TM,Lur HS,Lin YH,Chu C. Physiological and biochemical changes related to methyl jasmonate-induced chilling tolerance of rice (Oryza sativa L.) seedlings. Plant Cell and Environment, 1996,19:65-74
    [166]. Songstad DD, Duncan DR,Widholm JM. Proline and polyamine involvement in chilling tolerance of maize suspension cultures. Journal of Experimental Botany, 1990, 41:289-294
    [167]. Nadeau P, Delaney S,Chouinard L. Effects of cold hardening on the regulation of polyamine levels in wheat (Triticum aestivum L.) and Alfalfa (Medicago sativa L.). Plant Physiology, 1987,84:73-77
    [168]. Naidu BP,Gunawardena TA,Fukai S. Increasing cold tolerance in rice. Farmers's News Irrigation Research&Extension Committee of CSIRO Griffith, NSW. 2004, 165:66-67
    [169]. Racz I,Kovacs M,Lasztity D,Veisz O,Szalai G,Paldi E. Effect of short-term and long-term low temperature stress on polyamine biosynthesis in wheat genotypes with varying degrees of frost tolerance. Journal of Plant Physiology, 1996, 148:368-373
    [170]. PilIai MA, Akiyama T. Differential of an S-adenosyl-L-methionine decarboxylase gene involved in polyamine biosynthesis under low temperature stress in japonica and indica rice genotypes. Molecular Genetics and Genomics Mol. Gen. Genomics, 2004, 271:141-149
    [171]. WangCY .Changes of polyamines and ethylene in cucumber seedling in response to chilling stress.Physiologia Plantarum, 1987, 69:253-257
    [172]. He LX,Nada K,Tachibana S. Effects of spermidine pretreatment through the roots on growth and photosynthesis of chilled cucumber plants (Cucumis sativus L.) Journal of the Japanese Society for Horticultural Science, 2002, 71:490-498
    [173]. Kwon SW, Ko BR, Bai DC.Changes in antioxidant enzymes and polyamines in response to low temperature chilling in watermelon plants. ISHS Acta Horticulturae, 2003, 620:111-117
    [174]. Tiburcio AF, Kaur-Sawhney R, Galston AW.Polyamine metabolism and osmotic stress. Plant Physiol ,1981, 8:375-378
    [175]. Guerrier G. Oranic solutes protect drought-tolerant populus X euramericand against reactive oxygen species. Plant Physiol ,2000, 156: 93-99
    [176]. Gu YMG,Vigh L,Queiroz Q.Changes in polyamine and precursor content during drought induced induced adaptive morphogensis in rape. Francaised' Actralite Botanique, 1984, 131:
    [177]. Goicoechea N,Szalai G,Antolin MC,Sanchez-Diaz M,Paldi E.Influence of arbuscular mycorrhizae and Rhizobium on free polyamines and proline levels in water-stressed alfalfa. Plant Physiol, 1998,153(5):706-711
    [178].黄久常,王辉,夏景光.渗透胁迫和水淹对不同抗旱性小麦品种幼苗叶片多胺含量的影响.华中师范大学学报(自然科学版),1999,33(2):259-262
    [179]. Tiburcio AF,Dumorotier FM,Galston AW. Polyamine metabolism and osmotic stress. Plant Physiol, 1986,82:369
    [180]. Van DMA,De RJA,Van DMT,Rossouw FT.Changes in free proline concentrations and polyamine levels in potato leaves during drought stress.South African J Sci, 1998,94:347-350
    [181]. Pedrol N,Ramos P,Reigosa MJ.Phenotypic plasticity and acclimation to water deficits in velvet-grass:A long-term greenhouse experiment.Changes in leaf morphology,photosynthesis and stress-induced metabites.Plant Physiol,2000,157:383-393
    [182].陈坤明,张承烈.干旱期间春小麦叶片多胺含量与作物抗旱性的关系.植物生理学报,2000,26(5):381-386
    [183]. Liu HP,Dong BH ,Zhang YY,Liu ZP, Liu YL.Relationship between osmotic stress and the levels of free,conjugated and bound polyamines in leaves of wheat seedlings.Plant Science,2004,166:1261 -1267 .
    [184].李璟,胡晓辉,郭世荣等.外源亚精胺对根际低氧胁迫下黄瓜幼苗根系多胺含量和抗氧化酶活性的影响.植物生态学报,2006,30(1):118-123
    [185]. Krishnamurthy,R,Bhagwat KA. Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiol,1989, 91:500-504
    [186]. Tattini M, Heimler D, Traversi ML et al. Polyamine analysis in salt stressed plants of olive (Olea europaea L.) Hort Sci,1993,68:613-617
    [187].赵福庚,张国珍,张正钫.花生幼苗体内精氨酸脱羧酶的初步研究.山东农业大学学报,1997,28:21-26
    [188].徐胜利,陈青云,陈小青.盐胁迫下嫁接伽师甜瓜植株生长与多胺以及多胺氧化酶活性的关系.果树学报,2006,23(2):260-265
    [189].刘俊,刘友良.盐胁迫下大麦幼苗多胺的种类和状态与多胺氧化酶活性的关系.植物生理与分子生物学报,2004,30(2):141-146
    [190]. Maiale S,Sanchez DH,Guirado A,et al. Spermipe accumulation under salt stress. Plant,2004,161:35-42
    [191].江行玉,赵可夫,窦君霞,史仁玖.NaCl胁迫下外源亚精胺和二环己基胺对滨藜内源多胺含量和抗盐性的影响.植物生理学通讯,2001,2:6-9
    [192]. Reggiani R, Zaina S and Bertani A: Plasma lemma ATPase in rice coleoptit:esatimulation by putrescine and polyamines. Phytochem, 1992,31:417-419
    [193]. Lee MM,Lee SH, Park K Y. Characterization and expression of two members of the S-adenosymethionine: Plant Mol Biol,1997, 34:371-382
    [194]. Guo Shi Rong,Nada K, Katoh H,Tachibana S. Differences between tomato and cucumber in ethanol, lactate and malate metabolisms and cell sap pH of roots under hypoxia. Japan. Soc. Hort. Sci. 1999, 68(1):152-159
    [195].李璟,胡晓辉,郭世荣,贾永霞,杜长霞.D-精氨酸对低氧胁迫下黄瓜幼苗根系多胺含量和无氧呼吸代谢的影响.应用生态学报,2007,18(2):376-382
    [196].汪天,胡晓辉,郭世荣,王素平.外源多胺对低氧胁迫下黄瓜幼苗根系活性氧及保护酶活性变化的影响.农业工程学报,2005,21(增刊):67-71
    [197].周国贤,郭世荣 ,王素平.外源多胺对低氧胁迫下黄瓜幼苗光合特性和膜脂过氧化的影响. 植物学通报,2006,23(4):341-347
    [198].汪天,李娟,郭世荣,高洪波,王素平.外源多胺对低氧胁迫下黄瓜幼苗根系生长及H+-ATP酶和H+-焦磷酸酶活性的影响.植物生理与分子生物学学报,2005,31(6):637-642
    [199].王玮,邹琦.胚芽鞘长度作为评价小麦抗旱性指标的研究.作物学报,1997,23:459-467
    [200].周广生.水稻抗旱性早期鉴定指标筛选与节水机理的研究.华中农业大学博士学位论文.2006
    [201]. Waskabayashi K,Hoson T,Kamisaka S.Osmotic stress-induced growth suppresson of dark-grown wheat(Trticum aestivum L.) coleoptiles. Plant and Cell Physiology, 1997, 38: 297-303
    [202].王玮,邹琦.胚芽鞘长度作为评价小麦抗旱性指标的研究.作物学报,1997,23:459-467
    [203].王玮,邹琦.渗透胁迫对不同抗旱性小麦品种胚芽鞘生长的影响.植物生理学通讯 1997,33(3):168-171
    [204].王玮,邹琦.胚芽鞘长度作为冬小麦抗旱性鉴定指标的研究.作物学报,1997,23(4):459-467
    [205].王玮,邹琦,杨军.水分胁迫条件下抗旱性不同小麦品种芽鞘生长的动态分析.植物生理学通讯,1999,35(5):359-362
    [206].王玮,邹琦,杨兴洪.冬小麦抗旱性鉴定的新方法——低水势下胚芽鞘长度法.中国农学通报,2000,16(5):23-28
    [207].关军锋,郑桂珍,李广敏.干旱胁迫下CaM与小麦胚芽鞘和幼根生长的关系.作物学报,2004,30(10):1042-1046
    [208]. Martin-Tanguy J.Metabolism and function of polyamines in plants: recent development(new approaches).Plant Growth Regul,2001,34(1):135-148
    [209]. Bagni N,Torrigiani P.Polyamines: a new class of growth substances. In: Karssen CM,Van Loon LC,Vreugdenhil D(eds). Progress in Plant Growth Regulation. Dordrecht: Kluwer Academic Publishers, 1992.264-275
    [210].杨建昌,张亚洁,张建华,王志琴,朱庆森.水分胁迫下水稻剑叶中多胺含量的变化及其与抗早性的关系.作物学报,2004,30(11):1069-1075
    [211]. Yang JC,Zhang JH,Liu K,Wang ZQ,LiuLJ. Involvement of polyamines in the drought resistance of rice. Journal of Experimental Botany,2007,58(6):1545-1555
    [212]. Kiriakos K,Maria D,Christakis H,Kalliopi A,Roubelakis A. A narrow-pore HPLC method for the identification and quantitation of free,eonjugated,and bound polyamines.Anal Bioehem, 1993,214:484-489
    [213].牛明功,陈龙,王贤,杨光宇,刘怀攀.水分胁迫对小麦幼苗叶片多胺含量的影响.热带亚热带植物学报,2004,12(6):501-505
    [214]. Santa -gru ZA,Bolar NC. Changes in free polyamine levels induced by salt stress in leaves of cultivated and wild tomato species. Physiol Plant, 1997,1:341-346
    [215].汪天,王素平,郭世荣,高洪波.低氧胁迫下黄瓜根系细胞壁结合态多胺氧化酶活性变化及测定方法的确立.西北植物学报,2005,25(3):503-506
    [216].赵旌旌,王隆华.植物细胞壁蛋白的提取和测定.中国科学院上海植物生理研究所,上海高植物生理学会编.现代植物生理学实验指南.北京科学出版社,1999,258-259
    [217]. Verma S, Mishra SN. 2005. Putrescine alleviation of growth in salt stressed B rassica juncea by inducing and tioxidative defense system. Journal of Plant Physiology, 162: 669 - 677
    [218]. Kaur SR, Flores HE, Galston AW. Polyamine oxidase in oat leaves: A cell wall-localized enzyme. Plant Physiol, 1981, 68:494-498
    [219].覃广泉,何生根,王明祖,林启彬.大豆初生幼苗多胺氧化酶活性的细胞化学定位.热带亚热带植物学报,2006,14(4):327-332
    [220].刘俊,刘友良.盐胁迫下大麦幼苗多胺的种类和状态与PAO活性的关系.植物生理与分子生物学学报,2004,30(2):141-146
    [221].高洪波,刘艳红,郭世荣,孙艳军.低氧胁迫下钙对网纹甜瓜幼苗多胺含量及多胺氧化酶活性的影响.植物生态学报,2005,29(4):652-658
    [222].汪天,王素平,郭世荣,高洪波.低氧胁迫下黄瓜幼苗根系多胺代谢的变化.园艺学报,2005,32(3):433-437
    [223].汪耀富,张瑞霞.渗透胁迫下烤烟内源多胺含量及其代谢酶活性变化.干旱地区农业研究.2005,23(6):88-92
    [224].汪沛洪.植物多胺代谢的酶类与胁迫反应.植物生理学通讯,1990,26(1):1-7
    [225]. Smith TA. Polyamines . A nn Rev Plant Physiol, 1985,36: 117- 143.
    [226].韩锦峰,汪耀富,钱晓刚.烟草栽培生理.北京:中国农业出版社,2003:270-275
    [227].杜秀敏,殷文璇,赵彦修.植物中活性氧的产生及清除机制.生物工程学报,2001,17(2):121-125
    [228]. Guerrier G,Brignolas F,Thierry C,Courtois M,Kahlem GOrganic solutes protect drought-tolerant populus X euramericana against reaetive oxygen species.Plant physiol,2000,156:93-99
    [229]. Farriol M,Segovia-Silvestre T,VenereoY,Orta X.Antioxidant effeet of polyamines on erythrocyte cell membrane.Phytotherapy Res,2003,17:44-47
    [230]. Jung lL,Kim IG.Polyamines reduce paraquat-indueed soxS and its regulon expression in E.Coli.Cell Bio Tox,2003,19:29-41
    [231]. Li CZ,Jiao J,Wag GX,The important roles of reactive oxygen species in the relationship between ethylene and polyamines in leaves of spring wheat seedlings under root osmotic stress.Plant Sci,2004,166:303-315
    [232]. He L,Nada K,Tachibana S.Effeet of spermidine pretreatment through the roots on growth and photosynthesis of chilled cucumber plant(Cucumis sctlivus L.).Japan Soc Hort Sci,2002,71:490-498
    [233]. Heath RL,Packer L. Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatted acid peroxidation. Arch Biochem Biophys, 1986,125:189-198
    [234].陈贻竹,B.帕特森.低温对植物超氧物歧化酶、过氧化物酶和过氧化氢水平的影响.植物生理学报,1988,14(4):323-328
    [235].李合松.植物生理生化实验原理和技术.高等教育出版社,2000,7:248
    [236]. Dat J,V andenabeele E,V ranovva M ,et al. Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci, 2000, 57: 779-795
    [237].邵玺文,张瑞珍,齐春艳.拔节孕穗期水分胁迫对水稻生长发育及产量的影响.吉林农业大学学报,2004,26(3):237-241
    [238].赵正宜,迟道才,刘中琦.水分胁迫对水稻生长发育影响的研究.沈阳农业大学学报,2000(2):214-217
    [239].王绍华,曹卫星,姜尔.水稻强化栽培对植株生理与群体发育的影响.中国水稻科学,2003,17(1):31-36
    [240].朱庆森,邱泽森,姜长鉴.水稻各生育期不同土壤水势对产量的影响.中国农业科学,1994,27(6):15-22
    [241].邵玺文,阮长春,赵兰坡,胡耀辉,孙长古.分蘖期水分胁迫对水稻生长发育及产量的影响.吉林农业大学学报,2005,27(1):6-10
    [242].韩龙植,魏华兴.水稻种质资源描述规范和数据标准.中国农业出版社,2006
    [243].陈勋基,阿不来提,郑军,葛峰,王冬梅,危晓薇,梁晓玲,黄全.玉米不同自交系抗旱性综合评价研究.新疆农业科学,2008,45(2):317-322
    [244].曲延英,穆平,李雪琴,田玉秀,文峰,张洪亮,李自超.水、旱栽培条件下水稻叶片水势与抗旱性的相关分析及其QTL定位.作物学报,2008,34(2):198-206
    [245]. Bagni T,Torrihiani P. Polyamines : a new class of growth substances.In : Karssen CM, van Loon LC, Ureugdenhil D,eds. Progress in Plant Growth Regulation. The Netherlands : Kluwer Academic Publishers ,1992 , 13 : 264 - 275
    [246]. Apelbaum A ,Burgoon AC,Anderson JD, Lieberman M, BeirArie R ,Matto AK. Polyamines inhibit biosynthesis of ethylene in higher plant issue and fruit protoplasts. Plant Physiol ,1981,68: 453-456
    [247]. Drolet G,Dumbroff EB,Legge RL,Thompson JE. Radical scavenging properties of polyamines. Phytochemistry , 1986 , 25 : 367 - 371
    [248]. Kim TE, Kim SK, Han TJ et al. ABA and poLyamines act independently in primacy leaves of cold stressed. tomato( Lycopersicora eseutentum). Plant Physiol,2002,l 15:370-376
    [249]. Chamnongpol. Defense activation and enhanced pathogen to lerance induced by H_2O_2 in transgenic tobacco . Proc Natl A cad Sci, 1998, 95: 5818-5823.
    [250]. Jiang Mingyi, Zhang Jianhua. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves . Journal of Experimental Botany,2002, 53 (379) : 2401-2410
    [251]. Anna-Chiara ,Mustilli, Sylvain Merlot, Alain V avasseur, et al. A rabid op sis OS 1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts up stream of reactive oxygen species production . The Plant Cell, 2002, 14:3089-3099
    [252].安国勇,宋纯鹏,张驻,荆艳彩,阳冬梅,黄美娟,周培爱,吴才宏.过氧化氢对蚕豆气孔运动和质膜K~+通道的影响.植物生理学报,2002,26:458-464
    [253]. Zhang X,Zhang L,Dong F,gao J,Jalbraith DW,Song CP.Hydrogen peroxide is involved in abscisic acid-indueed stomatal closure inViciafaba.Plant Physiol,2001,126:1438-1448
    [254]. Chen CT,Kao CH. Senescence of rice leaves: levels of endogenous polyamines and dark induced senescence of rice leaves. Plant Cell Physiol, 1991, 32: 935-941
    [255]. Chen SL,Wang SS.Xylem abscisic acid accelerates leaf abscission by modulating polyamine and ethylene synthesis in water-stressed intact poplar. Trees, 2002,16:16-22
    [256]. Suresh MR, Ramakrishna S, Adiga PR. Regulation of arginine decarboxylase and putrescine levels in Cucumis sativus cotyledons. Phytochem, 1978;17, 57-63
    [257]. Zeevaart JAD,Creelman RA.Metabolism and Physiology of abscisic acid.Ann Rev Piant Physiol Plant Mol Bio, 1988,39:439-473
    [258].刘俊.植物体内多胺代谢的调节与抗盐性的关系及多胺在其信号传导中的地位.南京农业大学博士学位论文,2004
    [259]. Liu K,Fu HH,Bei QX,Luan S.Inward potassium channel in guard cells as target for polyamine regulation of stomatal movements.Plant Physiol,2000,124:1315-1325
    [260]. Shen WY,Kazuyoshi N,Shoji T.Involvement of polyamines in the chilling tolerance of cucumber cultivars.Plant Physiol,2000,124:431-439
    [261].刘怀攀.渗透胁迫下小麦幼苗体内多胺形态、定位与功能.南京农业大学博士学位论文,2004
    [262].蔺万煌,肖浪涛,彭克勤等.湖南农业大学植物激素重点实验室编写的《植物生理学研究技术实验指导》,2001:37-40
    [263]. Jiang M,Zhang J.Cross-talk between calcium and reactive oxygen species originated from NADPHoxidase in abscisis acid-induced antioxidant defence in leaves of maiz seedlings.Plant Cell Environ,2003,26:9299-939
    [264]. Bradford MM.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dyebinging.Anal Biochem, 1976,72:248-254
    [265]. Drolet G. Radical scavenging properties of polyamines.Phytochem,1986,25:367-371
    [266]. Walden R,Cordriro A,Tiburcio AF. Polyarciines: small molecules triggering pathways in plant growth and development. Plant Physiol, 1997,113: 1001-1013
    [267]. Wi SJ,Park RY .Antisense expression of carnation cDNA encoding ACC synthesis or ACC oxidase enhances polyamine content and abiotic stress tolerance in transgenic tobacco plants. Mol Cells,2002, 13:209-220

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700