用户名: 密码: 验证码:
高河能源矿井通风系统优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿井通风系统是矿井生产系统的重要组成部分,它对矿井的稳产高产、防灾抗灾能力和矿井的经济效益有着重大的影响。但是随着自然条件、生产能力和生产布局的变化,矿井通风系统逐渐复杂,人工解算难度越来越大,为使矿井通风系统稳定可靠,就必须借助现代技术手段对通风系统进行优化,以保证安全生产。
     高河能源矿井为高瓦斯矿井,通风系统复杂。本文采用现场实测、理论分析和计算机模拟相结合的方法,从高河能源矿井通风系统现状出发,主要研究了以下两个方面的内容:
     (1)运用网络解算等手段,对矿井通风系统并联进风大巷之间的往返风问题进行了优化,降低了系统阻力,提高了矿井的供风能力。通过对高河能源矿井通风系统进行分析可知,矿井西翼盘区进风大巷间存在往返风的现象,针对这一现象提出了减少往返风的优化方案,运用通风网络解算对优化方案进行模拟,由模拟结果可知,优化后中央风井主扇风压降低了14.87Pa,风量增加了0.53m3/s,小庄风井主扇风压降低了83.37Pa,风量增加了2.97m3/s,从而降低了西翼盘区进风系统的阻力,使矿井的供风能力增强。
     (2)对矿井某盘区隔离后通风系统进行优化。矿井通风系统是一个动态系统,当矿井某盘区发生威胁邻近盘区乃至全矿的重大灾害时,需要关闭事故盘区的隔离门,保护矿井其它盘区与主要进回风大巷、井筒的安全。但隔离门关闭后会改变矿井通风系统、改变主扇风机的工况点,可能给矿井带来次生灾害。为提高矿井的抗灾和救灾能力,本文分别提出了高河能源矿井北翼、西翼、东翼盘区隔离后通风系统的优化方案,并运用通风网络解算对优化方案进行了模拟分析,针对各方案的主要通风机工况点、巷道风流稳定性的安全隐患,采取措施进行优化调整,确定了各个盘区隔离后的通风系统的优化方案。
Mine ventilation system is an important part of the mine production system, which has a major impact on high and stable yield, disaster prevention and resilience and economic benefits. However, with the changes of natural conditions, production capacity and production layout, mine ventilation systems became more complex, and artificial calculation became more difficult. Therefore, modern techniques must be used to optimize the mine ventilation system to ensure the reliability of the system and safe production.
     Gaohe energy coal mine is a high-methane coal mine, the ventilation system is complex. Based on the status of the ventilation system of the Gaohe energy coal mine and by the method of a combination of field measurement, theoretical analysis and computer simulation, the thesis mainly focused on the following two aspects:
     (1) The roundtrip wind in the parallel intake roadway of the mine ventilation system has been optimized using network calculation, which has reduced the resistance of the system and improved the capacity of the mine for wind.The analysis result showed that the roundtrip wind exist in main intake air roadways in the mine west wing mining panel.The thesis proposed the optimization scheme to solve this problem,then simulated the scheme by use of the network calculation.The simulation results showed that pressure of the main fan in the central well dropped14.87Pa, whereas the air volume increased0.53m3/s, and pressure of the main fan in the Xiaozhuang well droped83.37Pa while the air volume increased2.97m3/s after the optimization, which reduced the resistance of the air intake system of the west wing mining panel and enhanced the capacity of the wind supply.
     (2)To optimize the ventilation system in the mine when the mining panel was isolated. Mine ventilation system is a dynamic system. When major disaster occurs, it's necessary to close the accidents in mining area to prevent the expansion of the disaster and to protect the safety of the other mining panel, the main return air roadway and the shaft. But close the isolation gates maybe change the mine ventilation system and the operating point of the main fan, it may bring secondary disaster to mine. In order to improve the capacity to prevent disaster and disaster relief. The thesis proposed to set the optimization scheme in the mining panel of east wing, west wing and north wing in Gaohe energy mine, then simulated the isolated ventilation system by network calculation. In addition, the thesis put forward the optimization measures to ensure the appropriate scheme of optimization of the ventilation system in terms of the hidden danger of fan operating point and airflow stability in the schemes.
引文
[1]吴中立等.矿井通风与安全[M].徐州:中国矿业大学出版社,1989.
    [2]郭贤平,赵梓成.矿井通风节能新技术的研究与应用[J].有色冶金设计与研究,1996(2):19-21.
    [3]傅昆岚,司春风.优化矿井通风系统实现节能降耗[J].矿业安全与环保,2000(6):49-50.
    [4]王勤芝,钱泽兵,吴如根.矿井通风系统节能的途径[J].煤矿安全,2001(2):3—5.
    [5]S. A. Mumma and Yu-Pei Ke. Field Testing of Advanced Ventilation Controls for Variable Air Volume Systems[J]. Environment International,1998, Vol.24:439-450.
    [6]施式亮,王海桥.矿井安全非线形性动力学评价[M].煤炭工业出版社,2001.9:1—3.
    [7]Li, Bingrui. Development of management system for mine ventilation and safety Information.Proceeding in Mining Science and Safety Technology,2002.10(6):309-314.
    [8]刘剑,贾进章,郑丹.流体网络理论[M].北京:煤炭工业出版社,2002.
    [9]赵梓成.矿井通风理论与技术进展评述[J].云南冶金,2002,31(3):29-31.
    [10]谢本贤.铜绿山铜铁矿矿井通风系统优化改造设计研究[D].长沙:中南大学,2002.
    [11]张惠忱.计算机在矿井通风中的应用[M].徐州:中国矿业大学出版社,1992.
    [12]徐瑞龙.通风网路理论[M].北京:煤炭工业出版社,1993.
    [13]赵梓成.矿井通风复杂网路的解算[J].昆明理工大学学报(理工版),1998(04):103—106.
    [14]Wang, YJ, Murmansky, Jan M Modeling mine ventilation networks using five basic network elements[J].Mining Engineering,1997,49(3):65-69.
    [15]陈开明.非线性规划[M].上海:复旦大学出版社,1991.
    [16]黄翰文.多风井复杂通风系统方案选优[J].煤矿安全,1983(10):1—10.
    [17]刘承思.矿井通风网路中空气分配的理论基础与解法研究[J].煤矿安全,1982(3):1—10.
    [18]黄光球,陆秋琴,郑彦全.存在固定风量分支的通风网络解算新方法[J].安全与环保,2004(10):52—54.
    [19]张国枢.通风安全学[M].北京:中国矿业大学出版社,2007.
    [20]章壮新,谢旭阳.一种新颖的矿井通风阻力测定数据处理系统[J].煤,1999(02):13—14.
    [21]吕庆刚,王月军.用Excel实现矿井风网动态管理[J].江苏煤炭,1997(01):22-23.
    [22]陈开岩,陈发明.矿井通风测量数据数据处理方法的集成与应用.中国矿业大学学报,2002,31(6):600-604.
    [23]陈宙,赵恩平,蒋仲安等.矿井通风阻力测定数据平差处理方法及应用[J].中国矿业,2006(10):105—108.
    [24]王国臣.矿井通风阻力测定及微机处理系统研究[J].中国矿业,2007(5):107—109.
    [25]盖文妹,倪文耀.基于气压计法的矿井通风阻力测定数据处理系统的程序设计[J].华北科技学院学报,2011(01):5—9.
    [26]杨志强,赵千里等.矿井通风三维仿真模拟理论与矿用空气幕理论[M].北京:冶金工业出版社,2008.
    [27]华宁,陈喜山,曹娥等.矿井通风网络解算软件研究综述[J].青岛理工大学学报,2011(01):63—67.
    [28]魏连江,王德明.基于构件的矿井通风安全管理系统的开发研究[J].中国矿业,2006(12): 25—27.
    [29]马云东.矿井通风系统可靠性分析理论研究[J].阜新矿业学院学报,1995,14(3):5-14
    [30]魏威,孙和平.计算机通风网络解算在矿井安全生产中的应用[J].煤炭科技,2007(3):80-81
    [31]魏连江,王德明等.矿井通风安全管理系统的开发模式[J].安全生产与监督,2006(3):50-52.
    [32]高旭.矿井通风网路解算及其可视化研究[D].广西大学,2005.
    [33]Patton Susan Bren-nan.Quantitative Study of the Benefits to Mine Ventilation of Coalbed Methane Degasifieation[D].University of Falabama,1993.
    [34]XinTan Chang, Linneas WLaage, Rudolf EGreuer. A user's manual for MFIRE:a computer simulation program for mine ventilation and Fire Modelling[M].IC925,USA,1990.
    [35]林增勇.矿井通风可视化系统研究与应用[D].武汉:中国地质大学,2008.
    [36]苏清政,刘剑.矿井通风仿真理论与实践[M].北京:煤炭工业出版社,2006.
    [37]李雨成.成庄矿矿井通风仿真系统应用研究[D].阜新:辽宁工程技术大学,2005.
    [38]苟红松.基于Eclipse RCP的煤矿通风信息系统研究[D].焦作:河南理工大学,2010.
    [39]姜雪英.基于Web Service的煤矿通风网络解算系统结构与实现研究[D].西安:西安科技大学,2008.
    [40]袁梅MATLAB在矿井通风网络解算中的应用[J].矿业工程,2009,(10):63—65.
    [41]谭国运.矿井通风网路分析及电算解法[M].北京:煤炭工业出版社,1991.
    [42]贾进章.矿井火灾时期通风系统可靠性研究[D].辽宁工程技术大学,2004.
    [43]程磊,杨运良,景国勋.鹤壁四矿通风系统优化改造[J].河南理工大学学报,2005,24(6):426-429.
    [44]贾进章,欧进萍,赵千里.矿井通风系统抗灾变能力分析[J].中国安全科学学报,2006(6):25-29.
    [45]武卫东,景国勋,魏建平.灰色关联分析法在平六矿通风系统方案(近期)优化中的应用[J].煤炭学报,2001,26(3):290-293.
    [46]S. Tate, Auxiliary and District Recirculation of Air in British Coal Mines[R]. IME, November,1992.
    [47]王慧.矿井通风系统的可靠性分析[D].西安科技大学,2011.
    [48]Bingrui.Development of management system for mine ventilation and safety Information.Proceedings in Mining Science and Safety Technology,2002.10(6):309-314.
    [49]陈开岩,王超.矿井通风系统可靠性变权综合评价的研究[J].采矿与安全工程学报,2007,24(1):37-41.
    [50]王从陆,吴超.耗散结构理论在矿井通风优化中的应用[J].安全与环境学报.2003.6:61—63.
    [51]DorigoM, ManiezzoV, ColorniA.AntSystem:Optimization by a colony of cooperating agents[J]. IEEE Trans.on SMC,1996,26(1):29-41.
    [52]DorigoM,Bonabeaub E,Theraulaz G. Ant algorithms and stigmergy[J].Future Generation Computer Systems,2000,16:851-871.
    [53]高玮.蚁群算法在矿井通风系统优化设计中的应用[J].矿业研究与开发,2004(6):92—94.
    [54]许树柏.层次分析法原理[M].大津人学出版社.1988.
    [55]曾宪禄.基于灰色关联分析的矿井通风系统优化评判[J].矿业工程,2005(05):54-56.
    [56]王志亮,周心权,徐景德.多目标决策法在矿井通风系统优化改造中的应用[J].矿业安全与环保,2005,(3):46—48.
    [57]程根银,朱锴,石建军等.晋普山煤矿通风系统阻力测定与分析[J].中国安全科学学报,2005,15(9):67-72.
    [58]曲方,刘克功,李迎业等,气压计基点法测定矿井通风阻力的误差分析及基点位置的选择[J].煤矿安全,2004(6):10-12.
    [59]王永安,李永怀.矿井通风[M].北京:煤炭工业出版社,2004.
    [60]国家安全生产监督管理总局,国家煤矿安全监察局,煤矿安全规程[M].北京:煤炭工业出版社,2010.
    [61]王云主编.矿井火灾预防与处理[M].北京:煤炭工业出版社,1992.
    [62]方裕璋,王家棣,杨立兴.矿井通风技术改造[M].北京:煤炭工业出版社,1994.
    [63]宋凯成.浅析生产矿井通风系统技术改造及应用[J].煤炭技术,2003.Vol.22 No.21.
    [64]Robinson, R. and Picketing, A. J. Applications of Controlled Air Recirculation to Auxiliary Ventilation Systems and Mine District Ventilation Circuits. Mine Ventilation. Third International Congress, Harrogate 1984,10(6):315-322.
    [65]焦宇,周心权,谭国庆.煤矿特别重大瓦斯爆炸事故应急救援及决策实施效果评价原则[J].煤矿安全,2009(8):116-119.
    [66]孟凡绥.轴流式风机喘振分析[J].华北电力技术,2001(12):48-49.
    [67]王洪德,马云东.矿用通风的工况范围及调节方法[J].煤炭学报,2005(01):122-125.
    [68]傅源方.通风机安全经济运行工况控制系统研究[D].山东:山东科技大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700