用户名: 密码: 验证码:
不同水氮管理下日光温室黄瓜季氮素淋失研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是蔬菜种植大国,更是蔬菜消费、出口大国。为了满足不断增长的蔬菜需求,日光温室发展迅速,成为世界上设施栽培面积最大的国家。由于受到传统蔬菜种植模式的影响,我国当前蔬菜生产体系中普遍存在着大水漫灌和过量施肥的不科学种植方式,直接导致水氮资源的浪费和环境污染问题,这成为制约设施蔬菜可持续发展的关键因素。因此,研究不同水氮管理下日光温室黄瓜季生育期氮素淋失对于日光温室氮的科学利用具有重要意义。针对日光温室蔬菜种植过程中不同水氮条件下土壤中无机氮淋失的问题,在河北省辛集市马庄农场日光温室内设置分区不同处理田间试验,系统、科学的研究不同水氮管理下保护地冬春季黄瓜种植过程中土壤无机氮损失规律及对黄瓜产量和品质的影响。本研究以河北地区辛集科园农场为试验基地,通过设计2个灌水水平下的不同施氮(尿素)处理,对黄瓜季重要生育期进行土壤无机氮淋失进行研究,探讨不同水氮处理对黄瓜产量、植株干物质积累以及氮利用率的影响,从而提出最佳水氮管理模式。主要研究结论如下:
     1.灌水量增高,各土层的土壤含水量就相对越高。相比传统灌水处理(W1),节水灌溉处理(W2)在一定程度上降低了整个生育期的土壤含水量水平,这在苗期和初瓜期表现尤为明显。节水灌溉处理使黄瓜生育期0~40cm土层土壤含水量保持在20.0%左右,节水灌溉处理(W2)可以满足作物各个生育期正常生长水分需要,而节水效果明显。
     2.相同灌水量下,随施氮量增加,各土层的硝态氮含量增加。减量施氮处理的土壤硝态氮累积量相比习惯施氮处理减少了18.0%~50.8%。而不施氮的两个处理其硝态氮含量一直维持在较低水平。
     相同施氮量下,随灌水量增大,各土层土壤硝态氮含量有所降低。说明传统灌水更容易导致硝态氮的向深层流失。随着作物生长时间的延长及施肥次数的增加,各施氮处理的95cm土层深度土壤溶液硝态氮含量是平稳上升的。
     所有施氮处理中,W2N600(节水灌溉下的减氮50%处理)处理土壤硝态氮含量平均水平最低。因此推荐水氮管理W2N600(节水灌溉下的减氮50%处理)能够降低土壤硝态氮含量。
     3.相同施氮量中,习惯灌水处理的硝态氮淋失量明显高于减量灌水的硝态氮累积淋失量,其中W1N1200(习惯灌溉下的习惯施氮处理)比W2N1200(节水灌溉下的习惯施氮处理)增加了34.7%,W1N900(习惯灌溉下的减氮25%处理)比W2N900(习惯灌溉下的习惯施氮处理)增加了24.1%。这说明加大灌水量会明显增加硝态氮的整个生育期硝态氮淋失量,不施氮处理的硝态氮累积淋失量相比施氮处理明显降低。
     相同灌水量下,减量施氮处理能减少硝态氮淋失量。在苗期、初瓜期、盛瓜期、末瓜期W1N1900处理比W1N1200处理硝态氮淋失量分别降低了23.1%、22.0%、20.5%、11.2%。
     W2N600处理比W1N1200处理硝态氮淋失量分别降低了68.2%、61.6%、54.8%、46.0%,整个黄瓜生育期,节水灌溉、减量50%施氮处理(W2N600)比习惯水氮处理(W1N1200)硝态氮淋失量降低了57.8%。
     所有施氮处理中,以W2N600(节水灌溉下的减氮50%处理)处理的硝态氮累积淋失量最低,为184.3kg/hm2。
     4.黄瓜全生育期在95cm深度土壤含水量和硝态氮淋失量呈正相关,在1200kg/hm2施氮水平下,两者在盛瓜期呈显著相关;在900kg/hm2施氮水平下,在初瓜期、盛瓜期和末瓜期95cm深度土壤含水量和硝态氮淋失量呈线性显著相关。W2N600处理下,整个生长期都达到显著水平。一定施氮下,土壤含水量能显著影响硝态氮的淋失量,1200kg/hm2和900kg/hm2施氮水平下,以盛瓜期相关性系数最高。
     在黄瓜生长全生育期内土壤剖面95cm深度硝态氮淋失量随着土壤硝态氮含量增加而增加,土壤硝态氮含量与硝态氮淋失量呈线性正相关。在初瓜期、盛瓜期、末瓜期内土壤硝态氮含量与硝态氮淋失量线性相关达到显著水平且以盛瓜期相关系数最高。
     5.同一灌水量下,随着施氮量的增加,氮肥利用率逐渐降低。在所有处理中W2N600的氮素表观利用率最高。
     6.2008年W2N600处理黄瓜产量最高,与农民传统水氮管理W1N1200相比,2008年、2009年和2010年W2N600处理黄瓜产量未出现显著降低,比农民传统水氮管理节氮50%节水30%左右,黄瓜产量未出现显著降低。
     综上所述,本试验条件下,在减少用水30%、减施氮肥25%-50%的处理能够显著降低硝态氮淋洗量35.0%~57.8%,而黄瓜产量没有显著降低,氮肥利用率提高了4.92%~16.02%。氮素表观利用率提高了21.3%~27.3%。W2N600处理(节水灌溉下的减氮50%处理)在节水30%、减氮50%的条件下完全能够保证作物产量的稳定,为推荐水氮管理模式。
Our country is power in the vegetable planting, but also vegetable consumption and export power. To meet the increasing demand of vegetables, sunlight greenhouse developing rapidly, China has become the world's largest country facility culture area. Due to the influence of the traditional vegetable planting mode, there is a widespread use of water and fertilizer plant of excessive way in our current vegetable production system, it lead to the water and nitrogen waste of resources and environmental pollution, become the main facilities vegetables the key to the sustainable development of factors. Therefore, the study of leaching nitrogen of cucumber season growth period in sunlight greenhouse under different water and nitrogen management have the important meaning for sunlight greenhouse of nitrogen use science. To solve the problem of soil nitrogen leaching in sunlight greenhouse in the effects of different water and nitrogen amounts, set up different processing field experiment in a greenhouse in Xinji, Hebei province in2010, for the research of effects of different water and nitrogen management on nitrate leaching in sunlight greenhouse and the yields during cucumber growing season. The study was conducted in Xinji, Hebei province, design different nitrogen (urea) processing under two level of water, study nitrate nitrogen leaching during cucumber growing season to determine the effects of water and nitrogen management on yields, dry matter accumulation and nitrogen utilization, we can finally get the best water and nitrogen management mode. The main results were as follows:
     1. With the increase of irrigation water, the value of soil moisture content rise. The water-saving treatments reduce the soil moisture content in the whole period with the conventional water treatment, especially in seeding stage and primary fruit stage. The water-saving treatment which maintains soil moisture contents at about20%in the whole period can meet the demand of water for cucumber growth, the treatment can save water30%with the conventional water treatment.
     2. The same irrigation water, with the increase of nitrogen, the values of soil nitrate nitrogen contents were increased. The treatment with25%~50%reduction in nitrogen can reduce soil nitrate nitrogen contents by18.0~50.8%. The soil nitrate nitrogen contents maintain at low levels.
     The same nitrogen used, with the increase of irrigation water, the values of soil nitrate nitrogen contents were reduced. It show that it's easy to cause soil nitrate nitrogen into deep soils. The value of soil nitrate nitrogen contents of95cm depth in soil is rising steadily along with the growth of the crop and the increase of number of fertilization.
     All treatments of nitrogen used, the treatment is W2N600with30%reduction in water and50%reduction in nitrogen in soil nitrate nitrogen contents. It's therefore the treatment W2N600was the recommend treatment which can reduce the soil nitrate nitrogen contents.
     3. The same nitrogen used, with the increase of irrigation water, the values of nitrate nitrogen contents leaching amount were increasing. The value of W1N1200(the conventional treament) increased by34.7%than W2N1200(30%reduction in water, conventional nitrogen); The value of W1N900(conventional water,25%reduction in nitrogen) increased by24.1%than W2N900(30%reduction in water,25%reduction in nitrogen). The nitrate nitrogen contents leaching amount was increasing with the increasing of irrigation water. They are stay at low level wtth no nitrogen used.
     The same irrigation water, with the reduce of nitrogen, the values of the nitrate nitrogen leaching amount were reduced. At seeding stage、 primary fruit stage、 full fruit stage、 last fruit stage, The value of W1N900(conventional water,25%reduction in nitrogen) respectively reduced by23.1%、22.0%、20.5%、11.2%than W1N1200(the conventional treament). The value of W2N600(30%reduction in water,50%reduction in nitrogen) respectively reduced by68.2%、61.6%、54.8%、46.0%than W|N|200(the conventional treament). The nitrate nitrogen leaching amount of W2N600(30%reduction in water,50%reduction in nitrogen) is reduced by57.8%in the whole period. The lowest values of nitrate nitrogen leaching amount is184.3kg/hm2, the processing is W2N600(30%reduction in water,50%reduction in nitrogen)
     4. The nitrate nitrogen leaching amount in the depth of95cm is closely related to soil moisture during cucumber growing season, especially of the full fruit stage under1200kg/hm" nitrogen treatment and the seeding stage、 full fruit stage、 last fruit stage under900kg/hm" nitrogen treatment. With certain nitrogen amount, the soil moisture can significantly affect the nitrate nitrogen leaching amount, especially of the full fruit stage.
     The nitrate nitrogen leaching amount increase with the soil nitrate nitrogen contents in the depth of95cm during cucumber growing season, they are linear positive correlation. The nitrate nitrogen leaching amount in the depth of95cm is closely related to soil nitrate nitrogen contents during primary fruit stage、 full fruit stage、 last fruit stage, the highest values was in full fruit stage.
     5. The same irrigation water, with the increase of nitrogen amount, the loss of nitrogen was increased, the utilization of nitrogen was reduced. In all processing, the utilization of nitrogen with the treatment W2N600was top.
     6. The yields of treatments W2N600was the highest compared with the conventional treatment in2008. But, the yields of W2N600with30%reduction in water and50%reduction in nitrogen have no significantly reduced with the conventional treatment in2009、2010.
     In conclusion, the treatment W2N600was much more reasonable management approach. Because this treatment with30%reduction in water and50%reduction in nitrogen can make the nitrate nitrogen leaching amount reduced by35.0%-57.8%in the whole period without the yields'reduce. The treatment W2N600can increase the utilization of nitrogen and reduce the nitrate nitrogen leaching amounts compared with the conventional treatment. So, the treatment W2N600with30%reduction in water and50%reduction in nitrogen was the best management approach.
引文
1.安巧霞,孙三民.不同灌水量对阿拉尔垦区棉田土壤硝态氮淋失量的影响[J].干早地区农业研究.2009,27(3):154-159.
    2.卜玉涛,毛昆明,张发明.土壤氮素淋失研究进展[J].现代农业科技2010,16:285-286
    3.曹兵,贺发云,徐秋明,等.露地蔬菜的氮肥效应与氮素去向[J].核农学报,2008,22(3):343-347.
    4.曹兵,贺发云,徐秋明,等.南京郊区番茄地中氮肥的气态氮损失[J].土壤学报,2006,(01):62-68.
    5.曹红霞;康绍忠;何华,田间管理措施对土壤硝态氮迁移影响研究进展[J].灌溉排水学报,2005,24(1):72-76.
    6.陈克亮,朱晓东,朱波等.川中小流域地下水硝态氮的时空变化特征[J],农业环境科学学报.2006,25(4):1060-1064.
    7.陈新平,张福锁.北京地区蔬菜施肥的问题与对策[J].中国农业大学学报.1996,1(5):63-66.
    8.陈静生,于涛.黄河流域氮素流失模数研究[J].农业环境科学学报,2004,23(5):833-838.
    9.陈晓歌,马耀光.不同灌水和施氮对黄土性土壤中N03--N迁移和淋失的影响[J].水上保持研究.2008,15(5):109-113.
    10.陈子聪,章明清,陈防,等.氮肥对菜园土壤硝态氮淋溶流失的影响[J].生态环境,2008,17(3):1230-1234.
    11.串丽敏,赵同科,安志壮,等.土壤硝态氮淋溶及氮素利用研究进展[J].中国农学通报.2010,(11):200-205.
    12.段立珍,汪建飞,于群英.长期施肥对菜地上壤氮磷钾养分积累的影响[J].中国农学通报,2007,23(3):293-296.
    13.范丙全,胡春芳,平建立.灌溉施肥对壤质潮土硝态氮淋溶的影响[J].植物营养与肥料学报,1998,4(1):16-21.
    14.国家统计局.中国统计年鉴.北京:中国统计出版社,1970-2008.
    15.郭佩秋,李絮花,工克安等.氮肥用量对日光温室黄瓜和土壤硝态氮含量的影响[J].华北农学报,2009,24(1):185-188.
    16.何华,杜社妮,梁银丽,张成娥.土壤水分条件对温室黄瓜需水规律和水分利用的影响[J].西北植物学报,2003,23(8):1372-1376.
    17.黄丽华,沈根祥,钱晓雍等.滴灌施肥对农田土壤氮素利用和流失的影响[J].农业工程学报,2008,24(7):49-53.
    18.黄东风,王果,李卫华,丘孝煊.菜地土壤氮磷面源污染现状、机制及控制技术[J].应用生态学报,2009,20(4)991-1001.
    19.金雪霞,范晓晖,蔡贵信.菜地土氮素的主要转化过程及其损失[J].土壤,2005,37(5):492-499.
    20.李世娟,周殿玺,李建民.限水灌溉下不同氮肥用量对小麦产量及氮素分配利用的影响[J].华北农学报,2001,16(3):86-91.
    21.李晓欣,胡春胜,程一松.不同施肥处理对作物产量及土壤中硝态氮累积的影响[J].干旱地区农业研究,2003,21(3):38-42,
    22.李俊良,朱建华,张晓晟等.保护地番茄养分利用及土壤氮素淋失[J].应用于环境生物学报,2001,7(2):126-129.
    23.李银坤,武雪萍,武其甫等.不同水氮处理对温室黄瓜产量、品质及水分利用效率的影响[J].中国土壤与肥料2010(3)21-26.
    24.李银坤.不同水氮条件下黄瓜季保护地氮素损失研究.[硕士学位论文],中国农业科学院,2010.
    25.刘宏斌,李志宏,张维理,林葆.露地栽培条件下大白菜氮肥利用率与硝态氮淋溶损失研究[J].植物营养与肥料学报,2004,10(3):286-291.
    26.刘兆辉,江丽华,张文君等.氮、磷、钾在设施蔬菜土壤剖面中的分布及移动研究[J].农业环境科学学报,2006,25(增刊):537-542.
    27.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000.
    28.吕福堂,张秀省,董杰等.日光温室土壤速效养分的累积和淋移特征研究[J].水土保持学报,2009,23(5):191-194.
    29.吕殿青,杨学云,张航,等.陕西土娄土中硝态氮运移特点及影响因素[J].植物营养与肥料学报,1996,2(4):289-296.
    30.吕殿青,同延安,孙本华,OveEmteryd氮肥施用对环境污染影响的研究[J].植物营养与肥料学报,1998,4(1):8-15.。
    31.闵炬,施卫明.不同施氮量对太湖地区大棚蔬菜产量、氮肥利用率及品质的影响[J].植物营养与肥料学报,2009,15(1):151-157.
    32.宁建凤,邹献中,杨少海等.有机无机氮肥配施对土壤氮淋失及油麦菜生长的影响[J].农业工程学报,2007,23(11):95-100.
    33.潘强,黄之栋,马承伟.华北型连栋塑料温室节能对策与实践[J].农业工程学报,1999,15(2):155-158.
    34.秦巧燕,贾陈忠,曲东等.我国设施农业发展现状及施肥特点[J].湖北农学院学报,2002,22(4):373-375.
    35.孙波,工兴祥,张桃林.红壤养分淋失的影响因子[J].农业环境科学学报,2003,22(3)257-262.
    36.孙军利,赵宝龙,蒋卫杰,等.不同施肥对日光温室春茬黄瓜生长、产量和品质影响[J].石河子大学学报,2006,12(24):689-693.
    37.孙文涛,张玉龙,娄春荣等.灌溉方法对温室番茄栽培尿素氮利用影响的研究[J].核农学报,2007,21(3):295-298.
    38.孙昭荣,刘秀奇,杨守春.北京降雨和土壤下渗水中的氮素研究[J].土壤肥料,1993,2:8-11.
    39.王朝辉,刘学军,巨晓棠等.山间土壤氨挥发的原位测定-通气法[J].植物营养与肥料学报,2002a,8(2):205-209.
    40.王朝辉,宗志强,李生秀,陈宝明.蔬菜的硝态氮累积及菜地土壤的硝态氮残留[J].环境科学,2002,23(3):79-83.
    41.王兴武,于强,张国梁,李运生.鲁西北平原夏玉米产量与土壤硝态氮淋失[J].地理研究,2005,24(1):140-150.
    42.武其甫、武雪萍、李银坤等.保护地土壤N2O排放通量特征研究[J].植物营养与肥料学,2011,17(4):943-949.
    43.武其甫.不同水氮管理下保护地番茄季主要氮素损失研究,[硕士学位论文],中国农业科学院,2011.
    44.徐坤范,李明玉,艾希珍.氮对日光温室黄瓜呈味物质、硝酸盐含量及产量的影响[J].植物营养与肥料学报,2006,12(5):717-721.
    45.杨治平,陈明昌,张强,张建杰.不同施氮措施对保护地黄瓜养分利用效率及土壤氮素淋失影响[J].水土保持学报,2007,21(2):57-60.
    46.杨莉琳,胡春胜.施肥对华北高产区土壤NO3--N淋失与作物NO3--N含量及产量的影响[J].应用与环境生物学报,2003,9(5):501-505.
    47.易秀,薛澄泽.氮肥在塿土中的渗漏污染研究[J].农业环境科学学报,1993,12(6):250-253.
    48.于红梅,李子忠,龚元石.不同水氮管理对蔬菜地硝态氮淋洗的影响[J].中国农业科学,2005,38(9):1849-1855.
    49.于红梅.不同水氮管理下蔬菜地水分渗漏和硝态氮淋洗特征的研究[D].北京:中国农业大学博士学位论文,2005.
    50.于红梅,李子忠,龚元石,等.氮肥投入水平对蔬菜地硝态氮淋洗特征的影响[J].土壤,2006,(6)698-702.
    51.于红梅,李子忠,龚元石.传统和优化水氮管理对蔬菜地土壤氮素损失与利用效率的影响[J],2007,(2)54-59.
    52.宇万太,张璐,马强等.施肥进步在粮食增产中的贡献及其地理分异[J].应用生态学报,2003,14(11):1855-1858.
    53.袁新民,工周琼.硝态氮的淋洗及其影响因素[J].干旱区研究,2000a,17(4):46-52.
    54.袁新民,杨学云,同延安,等.不同施氮量对土壤N03--N累积的影响[J].干旱地区农业研究,2001,19(1):7-13.
    55.袁新民,同延安,杨学云,等.灌溉与降水对土壤N03--N累积的影响[J].水土保持学报,2000,14(3):71-74.
    56.张贵龙,任天志,李志宏等.施氮量对白萝卜硝酸盐含量和土壤硝态氮淋溶的影响[J].植物营养与肥料学报.2009,(4):877-883.
    57.张贵龙.蔬菜保护地氮素利用与去向研究.[博士学位论文],中国农业科学院,2009.
    58.张国桢.石灰性土壤硝化作用模型的研究.[硕士学位论文],西北农林科技大学,2007.
    59.张艳玲,宋述尧,工艳等.氮素营养对黄瓜生长发育及产量的影响[J].吉林农业科学,2008,33(1):43-46.
    60.张彦才,李巧云,翟彩霞,等.河北省大棚蔬菜施肥状况分析与评价[J]河北农业科学,2005,9(3):61-67.
    61.张维理,田哲序,张宁,李晓齐.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-87.
    62.张营,张学军,罗建航,等.施肥对设施番茄-黄瓜养分利用与土壤氮素淋失的影响[J].植物营养与肥料学报,2011,17(2):374-383.
    63.左海军,张奇,徐力刚.农田氮素淋溶损失影响因素及防治对策研究[J].环境污染与防治,2008,30(12):83-89.
    64.中华人民共和国国家统计局.中国统计年鉴(2008).北京:中国统计出版社,2008
    65.张志斌.关于我国设施蔬菜生产可持续发展的探讨[J].沈阳农业大学学报.2000,31(1):15-17.
    66.张瑞杰,林国林,胡正义等.氮肥减施及双氰胺施用对滇池北岸蔬菜地土壤氮素流失影响[J].水土保持学报,2008,22(5):34-37.
    67.周博,周建斌,韩东锋等.日光温室土壤剖面硝态氮在休闲期的运移研究[J].西北农业学报,2008,17(2):118-121.
    68.周凌云.土壤水分条件对尿素氮去向的影响[J].植物营养与肥料学报,1998,4(3):237-341.
    69.周建斌,翟丙年,陈竹君等.西安市郊区日光日光温室番茄施肥现状及土壤养分累积特性[J].土壤通报,2006,37(2):287-290.
    70.钟茜,巨晓棠,张福锁.华北平原冬小麦/夏玉米轮作体系对氮素环境承受力分析[J].植物营养与肥料学报,2006,12(3):285-293.
    71.朱兆良.农田氮肥的损失与对策[J].上壤与环境,2000,9(1):1-6.
    72.朱兆良,文启孝.中国土壤氮素[J].南京:江苏科学技术出版社,1992:213-249
    73.庄舜尧,孙秀廷.肥料氮在蔬菜地中的去向及平衡[J].土壤,1997,29(2):80-83.
    74. Brown PL. Water use and soil water depletion by dryland wheat as sffected by nitrogen fertilization[J]. Agron. J.,1971,63:43-46.
    75. Cooper J L. The effect of nitrogen fertilizer and irrigation frequency on a semi-dwarf wheat in South-east Australia I. Grow:h and yield[J]. Aust. J. Exp. Agric. Animal. Husb.,1980,20 (104): 359-364.
    76. Chen Q(陈清), WenX F(温贤芳),ZhengX Y(郑兴耘), Pan J R(潘家荣)Fate of fertilizer nitrogen soil $ plant system under irrigation condition 1:effect of nitrogen level. Acta A gric Nucl Sin(核农学报),1997,11(2):97-102.
    77. Emteryd O, Lu D Q, Nykvist N. Nitrate in soil profiles and nitrate pollution of drinking water in the loess region of China. A mbio,1998,27 (6):441~443.
    78. Fischer R A, TurnerN C. Plant p roductivity in the arid and semirarid zones [J]. Annual Review of Plant Physiology,1978,29:277-317.
    79. George T, Ladha J K, Buresh R Jand, Garrity D P. Nitrate dynamics during the aerobic soil phase in lowland rice based cropping system. Soil Sci Soc Am J,1993,57 (6):1526~1532.
    80. Guo R Y, Li X L, Peter C, et al. Influence of root zone nitrogen management and a summer catch crop on cucumber yield and soil mineral nitrogen dynamics in intensive p roduction systems [J]. Plant and Soil,2008,313 (1-2):55-77.
    81. Home P G, Panda R K, Kar S. Effect of method and scheduling of irrigation of water and nitrogen use effiencies of Okra (Abelmoschus esculentus) [J]. Agric. Water Manag.,2002,55:159-170.
    82. Jackson L E, Stivers L J, Warden B T, Tanji K K. Crop nitrogen-utilization and soil nitrate loss in a lettuce field. Pert Res, Chin J Appl Envi ron Biol(应用与环境生物学报)1994,37(2):93-105.
    83. Kengni L, Vachaud G, Thony J L et al. Field measurements of water and nitrogen losses under irrigated maize[J]. J. Hydrol.,1994,162:23-46.
    84. Moreno F, Cayuela J A, Fernandez J E et al. Water balance and nitrate leaching in an irrigated maize crop in SW Spain[J]. Agric. Water Manag.,1996,32:71-83.
    85. Power J E. Nitrate contamination of ground-water in north America[J]. Agric. Ecosyst. Environ., 1989,26 (1):165-187.
    86. Reynolds Vargas J S, Richter D, Borne misza E. Environ mental impacts of nitrification and nitrate adsorption in fertilized Andisols in the Valle Central of Costa Rica. Soil CI,1994,157 (5) 289-299.
    87. RAUN W R, JOHNSON G V. Soil-plant buffering of inorganic nitrogenin continuous winter wheat[J]. Agron J,1995,87 (5):827-834.
    88. SIMS J L, SIMARD R R, JOEM B C. Phosphorus loss in agricultural drainage:historical perspective and current research[J]. J Environ Qual,1998,27 (2):277-293.
    89. Viets F G. Fertilizers and the efficient use of water[J]. Adv. Agron.,1962,14:223-264.
    90. WESAERMAN R L, BOMAN R K, RAUN W R, et al. Ammonium and nitrate nitrogen in soil profile of long-term winter wheat fertilization experiments[J]. Agron J,1994,86 (1):94-99.
    91. Zhang Weili, Wu Shuxia, Ji Hongjie, et al. Estimation of agricultural non-point source pollution in China and the alleviating strategies:I. Estimation of agricultural non-point source pollution in China in early 21st century [J]. Scientia Agricultura Sinica,2004,37 (7):1008-1013.
    92. Zhou SL(周顺利),Zhang F S(张福锁),Wang X R (工兴仁)Studies on the spatio $ temporal variations of soil NO3--N and apparent budget of soil nitrogen I:winter wheat. Acta Ecol Sin(生态学报),2001,21(11):1782-1789.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700