用户名: 密码: 验证码:
无铅钎料Sn-3.5Ag多轴棘轮变形与低周疲劳研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境污染影响人类健康的问题已成为全球关注的焦点,电子封装业面临着向“绿色”无铅化转变的挑战,使用无铅钎料将是电子行业的大趋势。本文对无铅钎料Sn-3.5Ag的力学性能进行了研究,将有助于提高无铅钎料焊点寿命预测的准确性,提高电子封装的可靠性。
     在室温下对无铅钎料Sn-3.5Ag进行了单轴拉伸、纯扭、单轴棘轮效应试验以及一系列多轴棘轮效应试验;并对Sn-3.5Ag钎料进行了纯扭疲劳试验以及存在棘轮应变的多轴疲劳试验;采用扫描电镜观测和分析了钎料在疲劳前后的组织特征。研究发现,Sn-3.5Ag在较小的二次应力作用下会产生很大的棘轮应变,直到试件破坏棘轮应变累积也没有出现安定的趋势;Sn-3.5Ag钎料的棘轮行为具有很强的率相关性;加载路径对棘轮应变率没有影响;轴向应力和剪切应变幅的增大都会使轴向棘轮应变增大,疲劳寿命减小。由疲劳试样的组织和断口形貌分析可知:Sn-3.5Ag钎料是剪切型破坏材料;在疲劳失效过程中,裂纹沿着晶界萌生和扩展;在循环载荷作用下断口附近的共晶相β-Sn和Ag3Sn很容易破碎,形成许多细小的白色颗粒,从而造成材料的循环软化现象。
     运用Euler后退隐式积分法对应力进行更新,采用修正的A-F率相关统一粘塑性本构模型对恒轴力、比例加载、菱形路径和圆路径以及各种剪切应变率下的多轴棘轮效应进行预测,得到了令人满意的结果。
     利用等效应变法、临界面法和能量法对存在棘轮变形的疲劳寿命进行预测。由于上述模型没有考虑棘轮应变对疲劳寿命的影响,给出偏于危险的预测结果。考虑棘轮效应对疲劳寿命影响的Coffin模型,当棘轮变形较大时,预测结果偏于不安全。本文提出了以最大剪应变变程Δγmax和轴向棘轮应变率ε& r为损伤参量的新模型,该模型既能描述纯扭时的疲劳寿命,又能够很好的预测无铅钎料存在棘轮效应的多轴疲劳寿命,且该模型具有简洁的参数确定方法和明确的物理意义。
As environment pollution and health problem became more and more seriously concerned, the electronic packaging industry is facing the challenge of changeover to“green”, and using the lead-free materials is the trend of the electronic packaging technology. This paper will study the mechanical properties of the lead-free solder Sn-3.5Ag. It will be helpful to improve the accuracy of fatigue life prediction and the reliability of electronic packaging.
     Uniaxial tensile and pure torsional tests, in addition with some uniaxial and multiaxial ratcheting tests are carried out on lead-free solder Sn-3.5Ag at room temperature. And both torsional fatigue tests and multiaxial ratcheting fatigue tests were conducted. The scanning electron microscope (SEM) was adopted to observe and analyze the morphology of the fracture surface. It is shown that even low second stress can cause high ratcheting strain of Sn-3.5Ag. The trend of shakedown doesn’t take place when the ratcheting strain is large. By analyzing the test data, it is also concluded that there is no effect of loading paths on ratcheting strain, and the stress-strain relationship has strong strain rate-dependence. Along with the increase of axial stress and shear strain amplitude, the ratcheting strain increased while the fatigue life decreased. From the microscopical observation and morphology of the fracture surface analysis, it is found that Sn-3.5Ag is a shear mode failure and cyclic softening material. The initiation of fatigue cracks and the propagation of cracks inside the specimen occur intergranularly along Sn-dendrite boundaries. Near the broken surface, Sn-Ag eutectic phases fall to pieces under cyclic loading. Brittlness of Ag3Sn intermetallics is considered to be the cause of this small particle formation and cyclic soften.
     The Euler backward method is implemented to update the stress. The modified Armstrong-Frederick (A-F) rate-dependent constitutive model is adopted to predict the ratcheting under different shear strain rate and diverse loading paths, including axial/torsional, proportional loading, rhombic path and circle path. The results illustrate that when describing the multiaxial ratcheting the modified rate-dependent A-F model is a suitable choice.
     Since equivalent strain approach, energy approach and some critical plane approaches exclude the consideration of the ratcheting strain and mean stress, the methods for fatigue life prediction are improper for multiaxial fatigue with ratcheting strain. Coffin model, which combines ratcheting and cyclic strain, presentes the fatigue life predictions on non-conservative side if the ratcheting deformation is large. For this reason, this paper proposes the maximum shear strain range (Δγmax) and axial ratcheting strain rate (ε& r) as a new damage parameters. The new model could not only describe the fatigue life in torsion test, but also predict the multiaxial fatigue life of the lead-free solder with ratcheting. Moreover, the simple definition of parameter and explicit physical significance also make the model more applicable.
引文
[1] 中国电子学会生产技术学分会从书编委会,微电子封装技术,合肥:中国科学技术大学出版社,2003
    [2] 微电子封装产业现状与趋势,电子工业专用设备,2005,120(1):1-6
    [3] Kim J.W., Jung S. B., Characterization of the shear test method with low melting point In-48Sn solder joints, Materials Science and Engineering A, 2005, 397:145-152
    [4] Shi X. Q., Zhou W., Pang H. L. J. et al., Effect of temperature and strain rate on mechanical properties of 63Sn/37Pb solder, ASME Journal of Electronic Packaging, 1999, 121:179-185
    [5] Yoon J. W., Jung S. B., Reliability studies of Sn-9Zn/Cu solder joints with aging treatment, Journal of Alloys and Compounds, 2006, 407:141-149
    [6] Shohji I., Mori H., Orii Y., Solder joint reliability evaluation of scale package using a modified Coffin-Manson equation, Microelectronics Reliability, 2004, 44:269-274
    [7] Gomez J., Basaran C., Damage mechanics constitutive model for Pb/Sn solder joints incorporating nonlinear kinematic hardening and rate dependent effects using a return mapping integration algorithm, Mechanics of Materials, 2006, 38:585-598
    [8] Gomez J., Basaran C., Reexamination of the solder ball shear test for evaluation of the mechanical joint strength, International Journal of Solids and Structures, 2006, 43:1928-1945
    [9] Perera U. D., Evaluation of reliability of μBGA solder joints through twisting and bending, Microelectronics Reliability, 1999,39:391-399
    [10] Zeng X. Z., Thermodynamic analysis of influence of Pb contamination on Pb-free solder joints reliability, Journal of Alloys and Compounds, 2003, 348:184-188
    [11] 朱奇农,王国忠,程兆年等,复合 SnPb 焊点的形态与可靠性预测,金属学报,2000,36(1):93-98
    [12] 朱奇农,王国忠,罗乐,倒装焊中复合 SnPb 焊点形态模拟,电子学报,2000,28(5):55-58
    [13] 褚卫华,陈循,陶俊勇等,EBGA 焊点形态预测与可靠性分析,中国有色金属学报,2003,13(4):893-898
    [14] 马鑫,钱乙余,刘发,应力-应场数值模拟在微组装焊点中的应用,电子工艺技术,2001,22(2):51-55
    [15] 黄春跃,周德俭,吴兆华,基于全面析因试验的塑封球栅阵列器件焊点可靠性,西安交通大学学报,2005,39(7):753-756
    [16] 王谦,Shi-Wei, Ricky L.等,电子封装中的焊点及其可靠性,电子元件与材料,2000,19(2):24-26
    [17] Abtew M., Selvaduray G., Lead-free Solders in Micro- electronics, Materials Science and Engineering, 2000,27:95-141
    [18] 马鑫,董本霞,无铅钎料发展现状,电子工艺技术,2002,23(2):47-52
    [19] 戴家辉,刘秀忠,陈立博,无铅钎料的立法与发展,山东机械,2005,1:1-4
    [20] 贾红星,刘素芹,黄金亮等,电子组装用无铅钎料的研究进展,材料开发与应用,2003,18(5):42-46
    [21] 刘兴军,陈晓虎,电子部件封装用无铅焊接材料的研究动态,稀有金属,2003,27(6):804-808
    [22] Chaboche J. L., Nouailhas D., Constitutive modeling of ratchetting effects-Part I: Experimental facts and properties of the classical models, ASME Journal of Engineering Materials and Technology, 1989, 111: 384-392
    [23] Chaboche J. L., Nouailhas D., Constitutive modeling of ratchetting effects-Part II: Possibilities of some additional kinematic rules, ASME Journal of Engineering Materials and Technology, 1989, 111: 409-416
    [24] Chaboche J. L., On some modifications of kinematic hardening to improve the description of ratchetting effects, International Journal of Plasticity, 1991, 7: 661-678
    [25] Chaboche J.L., Modeling of ratcheting: evaluation of various approaches, European Journal of Mechanics, A/Solids, 1994, 13: 501-518
    [26] Voyiadjis G.Z., SiVakumar S.M., A robust kinematic hardening rule for cyclic plasticity with ratcheting effects, part I: Theotetical formulation, Acta Mechanica, 1991, 90: 105-123
    [27] Voyiadjis G.Z., SiVakumar S.M., A robust kinematic hardening rule for cyclic plasticity with ratcheting effects, part II: Application of non-proportional loading cases, Acta Mechanica, 1994, 107: 117-136
    [28] McDowell D. L., Description of nonproportional cyclic ratchetting behavior, Eur European Journal of Mechanics, A/Solids, 1994, 13(5): 593-604
    [29] McDowell D. L., Stress state dependence of cyclic ratcheting behavior of two rail steels, International Journal of Plasticity, 1995, 11: 397-421
    [30] Bari S., Hassan T., Anatomy of coupled constitutive model for ratcheting simulation, International Journal of Plasticity, 2000, 16: 381-409
    [31] Bari S., Hassan T., An advancement in plasticity modeling for multiaxial ratcheting simulation, International Journal of Plasticity, 2002, 18, 873-894
    [32] Hassan T., Corona E., Kyriakides S., Ratcheting in cyclic plasticity part I: Uniaxial behavior, International Journal of Plasticity, 1992, 8: 91-116
    [33] Hassan T., Corona E., Kyriakides S., Ratcheting in cyclic plasticity Part II: Multiaxial behavior, International Journal of Plasticity, 1992, 8: 117-146
    [34] Hassan T., Kyriakides S., Ratcheting in cyclically hardening and softening materials Part I: Uniaxial behavior, International Journal of Plasticity, 1994, 10: 149-184
    [35] Hassan T., Kyriakides S., Ratcheting in cyclically hardening and softening materials Part II: Multiaxial behavior, International Journal of Plasticity, 1994, 10: 185-212
    [36] Ohno N., Wang J.-D., Kinimatic hardening rules with critical state of dynamic recovery, Part I: Fornulation and basic features for ratchetting behavior, International Journal of Plasticity, 1993, 9(3): 375-391
    [37] Ohno N., Wang J.-D., Kinimatic hardening rules with critical state of dynamic recovery, Part II: Application to experiments of ratchetting behavior, International Journal of Plasticity, 1993, 9(3): 391-403
    [38] Ohno N., Wang J.-D., Kinimatic hardening rules for simulation of ratcheting behavier, European Journal of Mechanics, 1994, 13,519-531
    [39] Ohno N., Wang J.-D., Constitutive Modeling of cyclic plasticity with emphasis on ratcheting, International Journal of Plasticity, 1997, 40(3): 251-261
    [40] Jiang Y.Y., Sehitoglu H., Cyclic ratchetting of 1070 steel under multiaxial stress states, International Journal of Plasticity, 1994, 10(5): 579-608
    [41] Jiang Y. Y., Kurath P., Characteristics of the Armstrong-Frederick type plasticity models, International Journal of Plasticity, 1996, 12(3): 387-415
    [42] Jiang Y. Y., Sehitoglu H., Multiaxial cyclic ratcheting under multiple step loading, International Journal of Plasticity, 1994, 10(8): 849-870
    [43] Jiang Y. Y., Sehitoglu H., Modeling of cyclic ratcheting plasticity, part I: development of constitutive relations, ASME Journal of Applied Mechanics, 1996, 63: 720-725
    [44] Jiang Y. Y., Sehitoglu H., Modeling of cyclic ratcheting plasticity, part II: comparison of model simulations with experiments, ASME Journal of Applied Mechanics, 1996, 63: 726-733
    [45] Xia Z.H., Ellyin F., Constitutive model with capability to simulate complex multiaxial ratcheting behaviour of materials, International Journal of Plasticity, 1997, 13(1): 127-142
    [46] Kang G.Z., A visco-plastic constitutive model for ratcheting of cyclically stable materials and its finite element implementation, Mechanics of Materials, 2004, 36(4): 299-312
    [47] Kang G.Z., Gao Q., Cai L.X., et al., Experimental study on uniaxial and nonproportionally multiaxial ratcheting of SS304 stainless steel at room and high temperatures, Nuclear Engineering and Design, 2002, 216: 13-26
    [48] Kang G.Z., Gao Q., Yang X.J., A visco-plastic constitutive model incorporated with cyclic hardening for uniaxial/multiaxial ratcheting of SS304 stainless steel at room temperature, Mechanics of Materials, 2002, 34(9): 521-531
    [49] Kang G.Z, Gao Q., Yang X.J., Experimental study on the cyclic deformation and plastic flow of U71Mn rail steel, International Journal of Mechanical Sciences, 2002, 44(8): 1647-1663
    [50] Kang G.Z, Gao Q., Yang X.J., Uniaxial and non-proportionally multiaxial ratcheting of SS304 stainless steel at room temperature: Experiments and simulations, International Journal of Non-Linear Mechanics, 2004, 39(5): 843-857
    [51] Kang G.Z, Kan Q.H., Zhang J.,Sun Y.F., Time-dependent ratcheting experiments of SS304 stainless steel, International Journal of Plasticity, 2006, 22: 858-894
    [52] Chen X., Jiao R., Kim K.S., Simulation of ratcheting strain to high cycles under biaxial loading, International Journal of Solid & Structures, 2003, 40: 7449-7461
    [53] Chen X., Jiao R., Modified kinematic hardening rule for multiaxial ratcheting prediction, International Journal of Plasticity, 2004, 20(5): 871-898
    [54] Chen X., Jiao R., Kim K.S., On the Ohno-Wang kinematic hardening rules for multiaxial ratcheting modeling of medium carbon steel, International Journal of Plasticity, 2005, 21: 161-184
    [55] Yaguchi M., Takahashi Y., Ratchetting of viscoplastic material with cyclic softening, Part I: Experiments on modified 9Cr-1Mo steel, International Journal of Plasticity, 2005, 21(1): 43-65
    [56] Yaguchi M., Takahashi Y., Ratchetting of viscoplastic material with cyclic softening, Part II: Application of constitutive models, International Journal of Plasticity, 2005, 21(4): 835-860
    [57] Yang X.J., Chow C.L., Lau K.J., Time-dependent cyclic deformation and failure of 63Sn/37Pb solder alloy, International journal of fatigue, 2003, 25: 533-546
    [58] Chen X., Yu D.H., Kim K.S., Experimental study on ratcheting behavior of eutectic tin-lead solder under multiaxial loading, Materials Science and Engineering A, 2005, 406/1-2: 86-94
    [59] Armstrong P. J., Frederick C.O., A mathematical representation of the multiaxial bauschinger effect, C E G B. Report RD/B/N73, 1966
    [60] Besseling J. F., A theory of elastic, plastic and creep deformation of an initially isotropic material showing anisotropic strain hardening, Creep Recovery and Secondary Creep, Journal of Applied Mechanics, 1958, 25: 529-536
    [61] Mroz Z., On the description of anisotropic work hareding, Journal of the Mechanics and Physics of Solids, 1967, 15:163-175
    [62] Dafalias Y. E., Popov V. P., A model of nonlinear hardening materials for complex loading, Acta Mechanica, 1975, 21: 173-192
    [63] Krieg R. D., A practical two surface plasticity theory, ASME Journal of Applied Mechanics 1975, 28: 641-646
    [64] Miller A.K., An inelastic constitutive model for monotonic cyclic and creep deformation I: Equation development and anasytical procedures, ASME Journal of Engineering Materials and Technology, 1976, 98(2): 97-105
    [65] Miller A.K., An inelastic constitutive model for monotonic cyclic and creep deformation II: Application to type 304 stainless steel, ASME Journal of Engineering Materials and Technology, 1976, 98(2): 106-113
    [66] Bodner S.R., Partom Y., Constitutive equations for elastic viscoplastic strain hardening materials, Journal of Applied Mechanics, 1975, 385-389
    [67] Johnson G.R., Cook W.H., A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the Seventh International Symposium on Ballistic, The Hague, The Netherlands, 1983, 541-547
    [68] Zerilli F.J., Armstrong R.W., Dislocation-mechanics-based constitutive relations for material dynamics calculations, Journal of Applied Physics, 1987, 61(5): 1816-1825
    [69] Huang S., Khan A.S., Modeling the mechanical behavior of 1100-0 aluminum at different strain rates by the Bodner-Partom model, International Journal of Plasticity, 1992, 8: 501-517
    [70] Kashyap B.P., Murty G.S., Experimental constitutive relations for the high temperature deformation of a Pb-Sn eutectic alloy, Materials Science and Engineering, 1981, 50: 205-213
    [71] Anand L., Constitutive equations for hot working of metals, International Journal of Plasticity, 1985, 213-231
    [72] Cernocky E., Krempl E., A nonlinear uniaxial integral constitutive equation incorporating rate effects: Creep and relaxation, International Journal Non-Linear Mechanics, 1979, 14: 183-203
    [73] Liu M.C.M., Krempl E., Uniaxial viscoplastic model based on total strain and overstress, Journal of the Mechanical and Physics of Solids, 1979, 27: 377-391
    [74] Krempl E., McMahon J.J., Yao D.,Viscoplasticity based on overstree with a differential growth law for the equilibrium stress, Mechanics of Materials, 1986, 5(1): 35-48
    [75] Busso E. P., Kitano M., Kumazawa T., A visco-plastic constitutive model for 60/40 Tin-Lead solder used in IC package joints, ASME Journal of Engineering Materials and Technology, 1992, 114: 331-337
    [76] McDowell D. L., A nonlinear kinematic hardening theory for cyclic thermo -plasticity and thermoviscoplasticity, International Journal of Plasticity, 1992, 8: 695-728
    [77] McDowell D.L., Miller M.P., Brooks D.C., A unified creep-plasticity theory for solder alloys, Fatigue Testing of Electronic Materials, 1994, ASTM STP 1153: 42-59
    [78] Knecht S., Fox L.R., Constitutive relation and creep-fatigue life model for eutectic tin-lead solder, IEEE Transactions on Components, Hybrids and Manufacturing Technology, 1990, 13(2): 424-433
    [79] Darveaux R., Banerji K., Constitutive relations for tin-based solder joints, IEEE Transactions on Components, Hybrids and Manufacturing Technology, 1992, 15(6): 1013-1024
    [80] Hong B.Z., Burrell L.G., Nonlinear finite element simulation of thermo-visco -plastic deformation of C4 solder joints in high density packaging under thermal cycling, IEEE Transactions on Components, Packaging, and Manufacturing Technology Part A, 1995, 18(3): 585-591
    [81] Tanaka E., A non-proportional parameter of a visplastic constitutive model taking into account amplitude dependences and memory effects of isotropic hardening, European Journal of Mechanics, A/solids, 1994, 13: 155-173
    [82] Ohno N., Abdel-Karim M., Uniaxial ratchetting of 316FR steel at room temperature - Part II: Constitutive modeling and simulation, ASME Journal of Engineering Materials and Technology, 2000, 122: 35-41
    [83] Abdel-Karim M., Ohno N., Kinematic hardening model suitable for ratcheting with steady-state, International Journal of Plasticity, 2000, 16: 225-240
    [84] Rousselier G., Engel J.J., Masson J.C., Etude Comparative demodeles de Comportement Pour la Simulation d’essais en Traction-pression Sur Tubes en Acier Inoxydable.Document EDF-DER, Annexe du Rapport No.8 du GIS Rupture a Chaud. 1985
    [85] Chaboche J.L., Constitutive equations for cyclic plasticity and cyclic visco -plasticity, International Journal of Plasticity, 1989, 5(3): 247-302
    [86] Suresh S. Fatijue of materials. 2nd ed.Cambridge U. K.:Cambridge University Press,1998
    [87] Socie D.F. , Leese GE, Multiaxial Fatigue. SAE -14, eds,1989
    [88] Pineau A., Cailletaud G., Linley T.C., Multiaxial Fatigue and Design. ESIS, eds, Mechanical Engineering Publications, London,1996
    [89] Coffin L.F. Jr., A study of the effects of cyclic thermal stresses on a ductile metal, Transactions of ASME, 1954, 76: 931-950
    [90] Manson S.S., Behavior of materials under conditions of thermal stress, In: National Advisory Commission on Aeronautics, Report 1170, Cleveland, Lewis Flight Propulsion Laboratory, 1954
    [91] Solomon H.D., Fatigue of 60/40 Solder, IEEE Transactions on Components Hybrids and Manufacturing Technology, 1986, 9: 423-432
    [92] Pang J.H.L., Tan T., Sitaraman S.K., Thermo-mechanic analysis of solder joint fatigue and creep in a flip chip on board package subjected to temperature cycling loading. In: IEEE Proceedings of Electronic Components and Technology Conference. 1998, 878-883
    [93] Manson S. S., Halford G. R., Discussion to the Paper " Multiaxial Low Cycle Fatigue of Type 304 Stainless steel" by Blass J J and Zamrik SY, ASME J Engng Mater Tech, 1977,99 (3): 283-285
    [94] Bonacuse P. J., Kalluri S., Elevated Temperature Axial and Torsional Fatigue Behavior of Haynes 188. NASA TM 105396, 1992: 1-22
    [95] Zamrik S.Y., Mirdamadi M., Davis D.C., A Proposed Model for Biaxial Fatigue Analysis Using the Triaxiality Factor Concept. Advance in Multiaxial Fatigue, ASTM STP 1191, 1993: 85-106
    [96] Morrow J.D., Cyclic plastic strain energy and fatigue of metals, American Society for Tesing and Materials, ASTM STP-378, 1965, 45-87
    [97] Pang H.L.J., Xiong B.S., Low T.H., Low cycle fatigue models for lead-free solders. Thin Solid Films, 2004, 462-463: 408-412
    [98] Wu S.X., Chin J., Grigorich T., et al., Reliability analysis for one pitch BGA package. In: IEEE Proceedings of Electronic Components and Technology Conference, 1998, 737-741
    [99] Jung W., Lau J.H., Pao Y.H., Nonlinear analysis of full-matrix and perimeter plastic ball grid array solder joints, In: Nepcon West'97, 1997, 1076-1095
    [100] Darveaux R., Banerji K., Constitutive relations for tin-based solder joints, IEEE Transactions on Components, Hybrids and Manufacturing Technology, 1992, 15(6): 1013-1024
    [101] Brown M.W., Miller K.J., A Theory For Fatigue Under Multiaxial Stress-strain Conditions, Proc Inst Mech Engnrs, 1973, 187: 745-755
    [102] Kandil F.A., Brown M.W., Miller K.J., Biaxial Low-Cycle Fatigue of 316 Stainless Steel of Elevated Temperature, The Metals Society, 1982, 280: 203~210
    [103] Fatemi A., Socie D.F., Multiaxial fatigue: Damage Mechanisms and Life Predictions. Advances in Fatigue Science and Technology, 1989: 877-890
    [104] Socie D.F., Kurath P., Koch J., A Multiaxial Fatigue Damage Parameter,Biaxial and Multiaxial Fatigue, 1989: 535-550
    [105] Smith R.N., Watson P., Topper T.H., A Stress-Strain Parameter for the Fatigue of Metals, Journal of Materials, 1970 ,5(4): 767-778
    [106] Fatemi A., Socie D.F., A critical plane approach to multiaxial fatigue damage including out-of-phase loading, Fatigue Fract Eng Mater Struct, 1988,11:149-165
    [107] Wang C.H., Brown M.W., A Path-Independent Parameter for Fatigue under Proportional and Nonproportional Loading. Fatigue Fract Engng Mater Struct, 1989, 16: 1285-1298
    [108] Chen X., Xu S.Y., Huang D.H., Critical Plane-Strain Energy Density Criterion of Multiaxial Low-Cycle Fatigue Life , Fatigue Fract Engng Mater Struct ,1999, 22: 679-686
    [109] Coffin L. F., The deformation and fracture of fuctile metals under superposed cyclic and monotonic strain, ASTM STP467, 1970:53-76
    [110] Kang G. Z., Liu Y.J., Uniaxial ratchetting and low-cycle fatigue failure of the steel with cyclic stabilizing or softening feature, Materials Science and Engineering: A, 2007, In Press
    [111] Kang G. Z., Liu Y.J.,Zhao L., Experimental study on ratchetting-fatigue interaction of SS304 stainless steel in uniaxial cyclic stressing, Materials Science and Engineering: A, 2006, 435-436: 396-404
    [112] Isobe N., Sukekawa M., Nakayama Y., Clarification of strain limits considering the ratcheting fatigue strength of 316FR steel, Nuclear Engineering and Design, 2006, In Press
    [113] Date S., Ishikawa H., Otani T., et al., Effect of ratcheting deformation on fatigue and creep-fatigue life of 316FR stainless steel, Nuclear Engineering and Design, 2007, In Press
    [114] Tao G., Xia Z., Ratcheting behavior of an epoxy polymer and its effect on fatigue life,Polymer Testing, 2007, 26: 451-460
    [115] Xia Z., Kujawski D., Ellyin F, Effect of mean stress and ratcheting strain on fatigue life of steel. International Journal of Fatigue, 1996, 18(5): 335-341
    [116] Boussaa D., Van K.D., Labbe P., Fatigue-Seismic Ratcheting Interactions in Pressurized Elbows, ASME Trans. J. Pressure Vessel Technology, 1996, 116:396-402
    [117] Van K.D., Moumni Z., Evaluation of fatigue-ratcheting damage of a pressurized elbow undergoing damage seismic inputs, Nuclear Engineering and Design, 2000, 196:41-50
    [118] Satyadevi A., Sivakumar S.M., Bhattacharya S.S., A new failure criterion for materials exhibiting ratcheting during very low cycle fatigue, Materials Science and Engineering: A, 2007, 452-453:380-385
    [119] Yang X. J., Low cycle fatigue and cyclic stress ratcheting failure behavior of carbon steel 45 under uniaxial cyclic loading, International Journal of Fatigue, 2005, 27:1124-1132
    [120] Yang X. J., A unified time dependent model for low cycle fatigue and ratchetting failure based on microcrack growth, Nuclear Engineering and Design, 2007, 237:1381-1387g
    [121] Sinha S., Ghosh S., Modeling cyclic ratcheting based fatigue life of HSLA steels using crystal plasticity FEM simulations and experiments,International Journal of Fatigue, 2006,28: 1690-1704
    [122] Lang F.Q., Tanaka H., Munegata O., et al., The effect of strain rate and temperature on the tensile properties of Sn-3.5Ag solder. Materials Characterization, 2005, 54: 223-229
    [123] Zhu F., Zhang H. Guan R., et al., The effect of temperature and strain rate on the tensile properties of a Sn99.3Cu0.7(Ni) lead-free solder alloy, Microelectronic Engineering, 2007, 84:144-150
    [124] Zhu F., Zhang H. Guan R., et al., Effects of temperature and strain rate on mechanical property of Sn96.5Ag3Cu0.5, Journal of Alloys and Compounds, 2007, 438:100-105
    [125] Low S.R., Fields R.J., Multiaxial mechanical behavior of 63Sn-37Pb solder, Electronic Components and Technology Conference, 1991, 292-298
    [126] Shohji I., Yoshida T., Takahashi T., et al., Tensile properties of Sn-Ag based lead-free solders and strain rate sensitivity. Materials Science and Engineering A, 2005, 366: 50-55
    [127] Zhao J., Qi L., Wang X.M., et al., Influence of Bi on microstructures evolution and mechanical properties in Sn-An-Cu lead-free solder. Journal of Alloys and Compounds, 2004, 375: 196-201
    [128] Soper A., Pozza G., Igant M., et al., Mechanical response of solder joints in flip-chip type structures. Microelectronics Reliability, 1997, 37 (10): 1783-1786
    [129] Pang H.L.J., Low T.H., Xiong B.S., et al., Thermal cycling aging effects on Sn-Ag-Cu solder joint microstructure, IMC and strength. Thin Solid Films, 2004, 462-463: 370-375
    [130] Kim K.S., Yu C.H., Kim N.H., et al., Isothermal aging characteristics of Sn-Pb micro solder bumps. Microelectronics Reliability, 2003, 43: 757 -763
    [131] Skipor A.F., Harren S.V., Botsis J. On the constitutive response of 63/37/Sn/Pb eutectic solder. ASME Journal of Engineering Materials and Technology, 1996, 118: 1-11
    [132] 马鑫,王莉,方洪渊,Sn-Pb 共晶钎料合金的 Bonder-Partom 本构方程,应用力学学报,1998,15(5):87-90
    [133] 王国忠,程兆年,Sn-Pb 钎料合金的粘塑性 Anand 本构方程,应用力学学报,2000,7(3):133-139
    [134] Wilde J., Becker K., Thoben M. et al., Rate Dependent Constitutive Relations Based on Anand Model for 92.5Pb5Sn2.5Ag solder, 2000, 23(3): 408-414
    [135] 张莉,焊锡钎料温度与应变率相关拉伸性能的本构描述:[硕士学位论文],天津;天津大学,2004
    [136] Chen X., Chen G., Sakane M., Prediction of stress-strain relationship with an improved anand constitutive model for lead-free solder Sn-3.5Ag, IEEE Transactions on Components and Packaging Technologies, 2005, 28(1): 111-116
    [137] Weinbel R.C., Tien J.K., Pollak P.A.,et al., Creep fastigue interaction in eutectic lead-tin solder alloys, Journal of Materials Science letters, 1987, 6: 3091-3096
    [138] Darveaux R., Banerji K., Constitutive relations for tin-based solder joints, IEEE Transactions of Components, Hybirds, and Manufacturing Technology, 1992, 15: 1013-1024
    [139] Shi X. Q., Wang Z. P., W. Zhou, et al., A new creep constitutive model for eutectic solder alloy. Transactions of the ASME, 2002, 124(2): 85-90
    [140] Kashyap B. P., Murty G. S., Experiment constitutive relations for the high temperature deformation of a Pb-Sn eutectic alloy, Materials Science and Engineering, 1981, 50: 205-213
    [141] Yi S., Luo G.X., Chian K.S., A viscoplastic constitutive model for 63Sn37Pb eutectic solders, ASME Journal of Electronic Packing, 2002, 124(6): 91-96
    [142] Shi X.Q., Pang H.L.J., Zhou W., et al., Low cycle fatigue analysis of temperature and frequency effects in eutectic solder alloy. International Journal of Fatigue, 2000, 22: 217-228
    [143] Pang H.L.J., Xiong B.S., Low TH, Low cycle fatigue study of lead free 99.3Sn-0.7Cu solder alloy. International Journal of Fatigue, 2004, 26: 865-872
    [144] Kanchanomai C., Miyashita Y., Mutoh Y, Influence of frequency on low cycle fatigue behavior of Pb-free solder 96.5Sn-3.5Ag. Materials Science and Engineering A, 2003, 345: 90-98
    [145] Kanchanomai C., Mutoh Y., Effect of temperature on isothermal low cycle fatigue properties of Sn-Ag eutectic solder. Materials Science and Engineering A, 2004, 381: 113-120
    [146] Kanchanomai C., Miyashita Y., Mutoh Y., Low cycle fatigue behavior and mechanisms of a eutectic Sn-Pb solder 63Sn-37Pb. International Journal of Fatigue, 2002, 24: 671-683
    [147] Kanchanomai C., Yamamoto S., Miyashita Y., et al., Low cycle fatigue test for solders using non-contact digital image measurement system. International Journal of Fatigue, 2002, 24: 57-67
    [148] Kanchanomai C., Miyashita Y., Mutoh Y., Strain-rate effects on low cycle fatigue mmechanism of eutectic Sn-Pb solder. International Journal of Fatigue, 2002, 24: 987-993
    [149] Li Y.Q., Tang X.Y., Ma J.S., et al., Isothermal shear low cycle fatigue behavior of 62Sn-36Pb-2Ag surface mount solder joints. Acta Metallurgica Sinica, 1994, 30(4): 164-169
    [150] 曾秋莲,王中光,冼爱平等,无铅钎料 Sn-3.8Ag-0.7Cu 的低周疲劳行为,材料研究学报,2004,18(1):11-17
    [151] Pang H.LJ., Tan K.H., Shi X.Q., Microstructure and intermetallic growth effects on shear and fatigue strength of solder joints subjected to thermal cycling aging, Materials Science and Engineering A, 2001, 307: 42-50
    [152] Solomon H.D., Low cycle fatigue of Sn96 solder with reference to eutectic solder and a high Pb solder, Journal of Electronic Packaging, 1991, 113: 102 – 108
    [153] Andersson C., Lai Z., Liu J., et al., Comparison of isothermal mechanical fatigue properties of lead-free solder joints and bulk solders, Materials Science and Engineering A, 2005, 394:20-27
    [154] Chen X., Song J., Kim K.S., Low cycle fatigue life prediction of 63Sn-37Pb solder under proportional and non-proportional loading, International Journal of Fatigue, 2006, 28:757-766
    [155] Chen X, Song J., Kim K.S., Fatigue life of 63Sn-37Pb solder related to load drop under uniaxial and torsional loading, International Journal of Fatigue, 2006, 28:767-776
    [156] Miller K.J., Chandler D.C., High strain torsion fatigue of solid and tubular specimens, In: Proceedings of Institution of Mechanical Engineerings,1970, 2(4): 262-270
    [157] Brown M.W., Torsional Stresses in Tubular Specimens, Journal of Strain Analysis, 1978, 13(1): 23-28
    [158] Lin H., Nayeb-Hashemi H., Pelloux R.M.N., et al., Cyclic deformation and anisotropic constitutive relations of Al-6061-T6 under biaxial loading, ASME Journal of Engineer Materials And Technology, 1992, 114(3): 323-329
    [159] Chen X., Chen G., Cyclic stress-strain relationship of 63Sn37Pb solder under biaxial proportional and non-proportional loading, Materials and Design, 2007, 28:85-94
    [160] Kang G..Z., Li Y.G., Kan Q.H., Zhang JY.F., et al., Uniaxial ratcheting and failure behaviors of two steels, Theoretical and Applied Fracture Mechanics, 2005, 43: 199-209
    [161] Heiduschke K., Solder joint lifetime assessment of electronic devices, International Journal For Numerical Methods in Engineering, 1998, 41:211-231
    [162] Chandaroy R., Basaran C., Damage mechanics of surface mount technology solder joints under concurrent thermal and dynamic loading, Journal of Electronic Packaging, 1999,121:61-68
    [163] Zhang X. W., Lee S.R., Pao Y. H., A damage evolution model for thermal fatigue analysis of solder joints, Journal of Electronic Packaging, 2000,122:200-206
    [164] Wen S., Thermomechanical fatigue life prediction for several solders: [Doctor of Philosophy sissertation], Evanston Illinois; Northwestern University , 2001
    [165] Stolkarts V., M.Keer L., Fine M.E., Damage evolution governed by microcrack nucleation with application to the fatigue of 63Sn-37Pb solder, J. Mech. Phys. Solids, 1999, 47:2451-2468
    [166] ASTM E606. Standard practice for strain-controlled fatigue testing. American Society for Testing and Materials, 1998: 525-539
    [167] Solomon H.D., Strain-life behavior in 60/40 solder, ASME Journal of Electronic Packaging, 1989,111: 75–82
    [168] Lissenden C.J., Doraiswamy D., Arnold S.M., Experimental investigation of cyclic and time-dependent deformation of titanium alloy at elevated tempeture, International Journal of Plasticity, 2007, 23:1-24
    [169] Manson S.S., Halford G.R., Discussion to the Paper " Multiaxial Low Cycle Fatigue of Type 304 Stainless steel" by Blass J. J. and Zamrik. S.Y., ASME J Engng Mater Tech, 1977,99 (3): 283-285.
    [170] Bonacuse P.J., Kalluri S., Elevated Temperature Axial and Torsional Fatigue Behavior of Haynes 188. NASA TM 105396, 1992: 1-22.
    [171] Zamrik S.Y., Mirdamadi M., Davis D.C., A Proposed Model for Biaxial Fatigue Analysis Using the Triaxiality Factor Concept., Advance in Multiaxial Fatigue, ASTM STP 1191, 1993: 85-106.
    [172] 李鑫,焊锡钎料的多轴力学性能与低周疲劳寿命研究:[硕士学位论文],天津;天津大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700