用户名: 密码: 验证码:
无油涡旋压缩机腔内流场建模仿真及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涡旋压缩机没有往复运动机构,体积小、重量轻、易损件少,在中小容量的压缩机中具有很大的性能优势,是高性能压缩机的主要发展方向之一。无油涡旋压缩机在结构上排除了工作介质接触润滑油的可能,可以满足医疗、食品等行业的特殊需求,但是排气量大、使用寿命长的无油涡旋压缩机制造尚存在困难。为了深入了解涡旋压缩机的运行机理,从原理上指导涡旋压缩机的设计,分析无油涡旋压缩机的内部流动过程显得非常重要。本课题运用热力学理论和计算流体力学方法研究了涡旋压缩机的内部流动过程,获得了涡旋压缩机压缩腔内压力、温度、流速的瞬态分布,为高性能涡旋压缩机的设计提供参考。
     本文首先介绍了无油涡旋压缩机的结构和工作原理,根据压缩腔的几何形状,将热力学和传热学作为理论基础,用质量守恒和能量守恒等定律,分析了无油涡旋压缩机压缩腔的容积变化过程和热力工作过程,建立了一种全面考虑了压缩过程中的换热和泄漏现象且适用于无油涡旋压缩机的实用热力学仿真模型,并用实验验证了该数学模型的准确性。
     然后通过分析涡旋压缩机流场模拟的数学模型和数值计算方法,将涡旋压缩机排气过程视为准静态过程,用计算流体力学的稳态方法来分析涡旋压缩机。选定了合理的排气过程几何模型,检验了网格的无关性,用湍流模型模拟了排气流动过程。该模拟给出了无油涡旋压缩机压缩腔内不同轴向截面内的速度场、不同涡旋转角时的速度场及包含排气管在内的三维速度场。
     再将涡旋压缩机进行几何简化,用二维模型研究了压缩腔内部的动态流动过程。克服了涡旋压缩机压缩腔几何形状复杂的困难,获得了适合涡旋压缩机内流场仿真的网格形式。该模拟采用了基于局部弹性变形与网格重划的CFD动网格技术,以理想气体为工作介质,满足流体控制方程及气体状态方程,采用了RNG κ-ε湍流模型。该模拟详细展示了二维涡旋压缩机吸气、压缩、排气过程的压缩腔内压力、温度、速度的分布情况,对比了不同转速时的温度、压力、速度的变化规律。用实验数据验证了数值模拟的正确性,保证了结果的真实有效。
     最后,设计了涡旋压缩机的三维简化几何模型,通过网格性能对比获得了适合三维涡旋压缩机内流场模拟的三棱柱网格,利用动网格技术及交界面技术完成了涡旋压缩机的三维瞬态模拟。该模拟形象地揭示了三维涡旋压缩机的内部流动规律,给出了温度、压力、流速在每个转角位置的变化过程。与实验值及二维仿真值进行了对比,分析了误差原因。
     无油涡旋压缩机内流场仿真形象地揭示了涡旋压缩机的内部流动规律,为深入研究无油涡旋压缩机机理,解决无油涡旋压缩机使用寿命短、排气量难以提高等问题提供了理论参考。同时,动网格技术在涡旋压缩机内流场动态模拟中的应用,探索了计算流体力学技术应用的一个新领域,拓宽了动网格技术的工程应用范围。
Scroll compressors are small size, light weight, less wearing parts and without reciprocating mechanism and own. They have great performance advantages in small and medium capacity compressors. They are main development direction of high performance compressors. The structure of oil-free scroll compressor precludes the possibility that working medium contacts with lubricants, which meet the specific needs of medical, food and other industry. However, the manufacturer of large displacement, long life oil-free scroll compressor is still difficult. In order to deeply understand the operation of the scroll compressor, and guide the design of the scroll compressor based on the principle, the analysis of the flow process in scroll compressor is very important. The thermodynamic and computational fluid dynamics theory are applied to study the scroll compressor's internal flow process in this paper, and the transient distribution of pressure, temperature, flow velocity is gain for the design reference of high performance compressors.
     Firstly, the oil-free scroll compressor's structure and working principle are introduced. According to the compression chamber geometry, based on the theory of thermodynamics and heat transfer, by Laws of mass and energy conservation, the volume change and thermodynamic process in the compression chamber are analyzed in detail. In this paper, the oil-free scroll compressor thermodynamic simulation models taking full account of the heat exchanger and the compression process leaks are proposed. The accuracy of mathematical models has been verified by the actul measured value.
     Then the flow field mathematical model and numerical simulation method are analyzed. The discharge process of scroll compressor is deemed as quasi-static process and the scoll compressor is analyzed by steady-state method of computational fluid dynamics. The reasonable geometric model of exhaust model is selected. The mesh independence is verigied in tests and last the exhaust process is simulated based turbulence theory. This simulation shows the velocity field in scroll compressor at different axial cross section and different vortex angular as well as the three-dimensional velocity field including exhaust pipe.
     And then the geometric model of scroll compressor is simplified. The compression chamber internal flow simulation is realized by using two-dimensional geometric model. Althought the geomety of scroll compressor is very complex, a suitable mesh form for scroll compressor flow field simulation is found. During the simulation, local deformation coupled with remeshing in CFD dynamicmesh technique is applied, under the condition of a compressible ideal gas, and the flow governing equations as well as the equation of gas state is followed. The RNG κ-ε model is used for turbulent model. This simulation detailedly displays the distribution of the compression chamber pressure, temperature, velocity distribution in the course of suction, compression, and exhaust in two-dimensional scroll compressor. The temperature, pressure, velocity variation at different speed is compared. The experimental results verify the correctness and validity of simulation.
     Finally,three-dimensional simplified geometric model of scroll compressor is designed. The triple prism mesh that is suitable for3-D scroll compressor flow field simulation is identified by comparing other meshes. The3-D transient simulation is achieved by using dynamic mesh and interface technology. The simulation vividly reveals3-D flow law within the scroll compressor and the temperature, pressure, flow velocity at each angular are given. The3-D results are compared with both2-D results and actual values, meanwhile, the reasons for the error difference are analyzed.
     The internal flow field simulation vividly reveals the flow law in scroll compressor. It's important theoretical reference for in-depth study of the oil-free scroll compressor mechanism and solving the oil-free scroll compressor problems of short life and low displacement. Meanwhile, a new application area of CFD technique is explored due to the application of dynamic mesh technology for internal flow flield. It widens the application area of dynamic mesh technology.
引文
[1]Creux. Rotary Engine[P]. U.S. Patent,801,182,1905
    [2]强建国.涡旋压缩机几何模型与涡旋齿强度研究[D].兰州理工大学,2007.
    [3]王福军.计算流体动力学分析-CFD软件原理与应用[M].清华大学出版社,2004.
    [4]顾兆林.涡旋压缩机及其他涡旋机械[M],陕西科学技术出版社,1998.
    [5]刘振全.涡旋式流体机械与涡旋压缩机[M],机械工业出版社,2009.
    [6]E. Morishita, et al. Scroll Compressor Analytical Model[C]. Proceedings of International Compressor Engineering Conference at Purdue. Purdue, USA,1984:487-495.
    [7](日)森下悦生等.邓立文译.涡旋压缩机的几何理论[J].流体工程,1985(10):38-48.
    [8]刘振全,曹霞.任意实数圈涡旋压缩机的几何分析[J].甘肃工业大学学报,1998,24(3):44-48.
    [9]曹霞,陈芝久.非整数圈涡旋压缩机的模型特色[J].工程热物理学报,2001,22(6):709-712.
    [10]王国梁.采用双圆弧加直线单元组合型线的涡旋压缩机理论及试验研究[J].机械工程学报,2010,10(5):144-147.
    [1]]王国梁.丛于对称圆弧修正的单元组合型线涡旋压缩机特性研究[J].机械工程学报,2011,16(8):139-142.
    [12]Licun Wang, Xudong Wang, Li Du et al. A Study on Synthesis Design and Optimization Analysis on Scroll Profiles for Scroll Vacuum Pump[J]. The Open Mechanical Engineering Journal,2011,5:124-130.
    [13]Guoping Liu, Genfu Xiao, Junting Wang, et al. The Optimal Design of the Scroll Profiles Based on Chaos PSO[J]. The Open Mechanical Engineering Journal,2011,5:194-198.
    [14]J.L.Caillat, S.Ni, M.Daniels. A Computer Model for Scroll Compressors[C]. Proceedings of International Compressor Engineering Conference at Purdue. Purdue, USA,1988:47-55.
    [15]刘振全,吴伟东.全封闭涡旋压缩动态数学模型[J].甘肃工业大学学报,2000,26(3):59-64.
    [16]Winandy E, Saavedra O C, Lebrun J. Experimental analysis and simplified modeling of a hermetic scroll refrigeration compressor[J]. App Thermal Eng,2002,22:107-120.
    [17]Wang Baolong, Li Xianting, Shi Wenxing. A General Geometrical Model of Scroll Compressors Based on Discretional Initial Angles of Involute[J]. International Journal of Refrigeration,2005,28:958-966.
    [18]Chen Yu, Halm, Nils P, et al. Mathematical Modeling of Scroll Compressors-Part I: Compression Process Modeling[J]. International Journal of Refrigeration 2002,25(6):731-750.
    [19]Chen Yu, Halm, Nils P, et al. A Mathematical Modeling of Scroll Compressors-Part II: Overall Scroll Compressor Modeling[J].International Journal of Refrigeration, 2002,25(6):751-764.
    [20]Chen Yu. Mathematical modeling of scroll compressors[D]. Purdue University,2000.
    [21]王宝龙,石文星,李先庭.制冷空调用涡旋压缩机数学模型[J].清华大学学报,2005,45(6):726-729.
    [22]L Wang, Y Zhao, L Li, et al. Research on oil-free hermetic refrigeration scroll compressor[C]. Proceedings of the institution of mechanical engineers,2007,221(7):1049-1056.
    [23]Baolong Wang, Xianting Li, Wenxing Shi, et al. Design of Experimental Bench and Internal Pressure Measurement of Scroll Compressor with Refrigerant Injection[J]. International Journal of Refrigeration,2007,30:179-186.
    [24]房师毅,李连生,束鹏程.无油润滑涡旋式空气压缩机的工作过程研究[J].中国机械工程,2005,16(2):123-127.
    [25]张立群,罗友平,刘永波.涡旋压缩机工作特性的研究[J].流体机械,2003,31(3):1-5.
    [26]肖根福,刘国平,宋红滚等.无油涡旋空气压缩机压缩过程研究[J].流体机械,2011,39(5):50-53.
    [27]O Ekren, S Sahin, and Y Isler. Development and evaluation of transfer functions for a variable speed compressor[C]. Proceedings of the institution of mechanical engineers, 2011,10.
    [28]Ian H.Bell, Vincent Lemort, Eckhard A. Groll, et al. Liquid flooded compression and expansion in scroll machines-Part I:model development[J]. International Journal of Refrigeration,2012,35:1878-1889.
    [29]Ian H.Bell, Vincent Lemort, Eckhard A. Groll, et al. Liquid flooded compression and expansion in scroll machines-Part II Experimental testing and model validation[J]. International Journal of Refrigeration,2012,35:1890-1900.
    [30]Ian H.Bell, Eckhard A. Groll, James E. Braun, et al. Optimization of a scroll compressor for liquid flooding[J]. International Journal of Refrigeration,2012,35:1901-1913.
    [31]Afjei T., et al. Experimental Analysis of an Inverter-driven Scroll Compressor with Liquid Injection[C]. Proceedings of International Compressor Engineering Conference at Purdue. Pudue, USA,1992:541-550.
    [32]赵远扬,李连生,束鹏程.喷水涡旋空气压缩机工作特性的研究[J].西安交通大学学报,2004,38(9):887-590.
    [33]汀军,唐甜甜,李连生等.喷水涡旋空气压缩机压缩过程的换热特性分析[J].流体机械,2003,31(]1):7-9.
    [34]Shuaihui Sun, Yuanyang Zhao, et al. Simulation research on scroll refrigeration compressor with external cooling[J]. International Journal of Refrigeration,2010,33:897-906.
    [35]孙帅辉,赵远扬,王智忠等.涡旋制冷压缩机外部冷却的研究[J].西安交通大学学报,2012,46(1):48-52.
    [36]屈宗长,李元鹤,王开宁等.转速对涡旋压缩机性能的影响[J].陕西工学院学报,1997,13(4):32-37.
    [37]吴震宇,陶国良.燃料电池用高速单螺杆压缩机的仿真研究[J].浙江大学学报(工学 版),2006,2(40):309-312.
    [38]Kim Y C, Seo K J, Park H H. modeling on the performance of an inverter driven scroll compressor[A]. Pore Int Compressor Eng Conf at Purdue[C]. IN. USA:West Lafayett, 1998,755-760.
    [39]Park, Youn Cheol, Kim, Yongchan, et al. Thermodynamic Analysis on the Performance of a Variable Speed Scroll Compressor with Refrigerant injection[J]. International Journal of Refrigeration,2002,8(25):1072-1082.
    [40]樊灵,曹巨江,贺炜等.涡旋压缩机优化设计数学模型的探讨[J].西北轻工业学院学报,1997,15(4),1-6.
    [41]C.K Lee, H.N. Lan. A comparison of different generalised modelling approaches for a scroll refrigerant compressor[J]. International Journal of Refrigeration,2013,36:1369-1375.
    [42]李建武,熊则男.涡旋式压缩机吸气容积的变化与吸气过程分析[J].压缩机技术,2000,2:3-7.
    [43]冯健美,屈宗长,王迪生等.涡圈高度和节距对涡旋压缩机排气孔而积的影响[J].西安交通大学学报,2004,3:247-250.
    [44]T.Drost. Analytical and Experimental Investigation of a Scroll Compressor Lubrication System[C]. Proceedings of International Compressor Engineering Conference at Purdue. Purdue, USA,1992:551-560.
    [45]李超,赵荣珍,刘振全等.涡旋式空气压缩机润滑系统的研究[J].润滑与密封,2004,164(7):104-105.
    [46]王君,李超,马小礼等.涡旋压缩机工作腔润滑油密封的实验研究[J].润滑与密封,2006,3:100-103.
    [47]赵兴艳,陈明义,刘振全.涡旋式压缩机涡旋盘端面密封性能的分析[J].甘肃工业大学学报,1996,2:48-53.
    [48]李超,刘振全,赵荣珍.双端面机械密封在涡旋式天然气压缩机中的应用[J].流体机械,2005,35(7):49-51.
    [49]李力,张占收,边红卿.涡旋压缩机径向间隙的泄漏[J].河北工业科技,1999,16(1):17-23.
    [50]王焕然,周雷,金光熹.涡旋压缩机密封间隙的定量化研究[J].压缩机技术,1997,5:17-20.
    [51]Noriaki Ishii, Kenichi Bird, Kiyoshi Sano, et al. Refrigerant Leakage Flow Evaluation for Scroll Compressors[C]. Proceedings of International Compressor Engineering Conference at Purdue. Purdue, USA,1996:633-638.
    [52]江波,畅云峰,朱杰等.涡旋式压缩机内部泄漏的流态分析[J].压缩机技术,1998,2:21-23.
    [53]陈荣,王文.微型涡旋压缩机泄漏的理论计算[J].流体机械,2008,36(6):14-18.
    [54]刘兴旺,赵嫚,李超等.涡旋压缩机的径向迷宫密封研究[J].机械工程学报,2012,21(11):97-104.
    [55]Pilhyun Yoon, Donghong Kang, Cholhwan Kim et al. An experimental study on oil discharge ratio at inverter-driven high shell pressure scroll compressor using R410APVE[J]. International Journal of Refrigeration,2011,34:105-112.
    [56]Yuehju Tang, Chinghua Hung, Yuchoung Chang. Performance improvements in low side scroll compressor with extended operation speeds[J]. Applied Thermal Engineering, 2011,31:3542-3551.
    [57]屈宗长,王开宁,李元鹤等.背压平衡涡旋压缩机传热学[J].陕西工学院学报,1998,14(1):38-44.
    [58]汪军,唐甜甜,李连生等.喷水涡旋空气压缩机压缩过程的换热特性分析[J].流体机械,2003,31(11):7-9.
    [59]Kitae Jang, Sangkwon Jeong. Experimental investigation on convective heat transfer mechanism in a scroll compressor[J]. International Journal of Refrigeration, 2006(29):744-753.
    [60]黄蕾,唐景春,韩坤.温度场对动涡旋盘应力与应变的影响[J].低温与超导,2013,41(5):60-63.
    [61]Qiang Jianguo, Tao Wen. Numerical modelling of temperature distribution for orbiting scroll wrap in an air scroll compressor[J]. International Journal of Heat and Mass Transfer,2013, 67:678-689.
    [62]傅德薰,马延文编.计算流体力学.北京:高等教育出版社,2002.7.
    [63]陶国良,吴震宇.车载燃料电池用离心压缩机的仿真和实验研究[J].浙江大学学报(工学版),2008.5.
    [64]陈宗华,谷传纲,舒信伟.丛于CFD技术的离心压缩机径向进气室结构形状优化设计[J].机械工程学报,2010.7.
    [65]冀春俊,王雅君,王学军等.离心压缩机排气涡壳内部流动分析与优化[J].机械工程学报.2009.5.
    [66]郭强,竺晓程,杜朝晖等.高速离心压缩机旋转失速的全流场数值模拟[J].机械工程学报.2009.6.
    [67]Cheng Xu, Michael muller. Development and Design of a centrifugal compressor volute[J]. International Journal of Rotating Machinery,2005,3:190-196.
    [68]K. W. Cheah, T. S. Lee, S. H. Winoto, et al. Numerical flow simulation in a centrifugal pump at design and off-design conditions[J]. International Journal of Rotating Machinery,2007.
    [69]Liu Jintao, Liu Shuhong, Sun Yuekun, et al. Three dimensional flow simulation of load rejection of a prototype pump-turbine[J]. Engineering with Computers,2013,29:417-426.
    [70]Hideaki Tamaki. Study on flow field in high specific speed centrifugal compressor with unpinched vaneless diffuser[J]. Journal of Mechanical Science and Technology, 2013,27(6):1627-1633.
    [71]Makoto Yamamoto. Multi-Physics CFD Simulations in Engineering[J]. Journal of Thermal Science,2013,4:287-293.
    [72]刘金武,龚金科,钟志华等.内燃机缸内复杂空间三维动态网格生成技术.计算机辅助设计与图形学学报[J].2006.4.
    [73]王海刚,刘石.不同湍流模型在内燃机缸内流动过程数值模拟中的应用和比较[J].燃烧 利学与技术,2004.2.
    [74]施爱平,叶丽华,燕明德.柴油机缸内工作过程的数值模拟[J].农业机械学报,2009.3.
    [75]曾文,宋崇林.四气门汽油机进气与压缩过程缸内流场的大涡模拟[J].内燃机工程,2010.6
    [76]Deschamps C J, Watkins A P. Modeling of Turbulent Flow through Port/Valve assemblies with Algebraic Reynolds Stress Model[J]. COMODIA,1994:547-552.
    [77]Lebrere L, Buflat M, Le Penven L, et al. Application of Reynolds Stress Modeling to Engine Flow Calculations[J]. Transactions of the ASME,1996, Vol187:710-721.
    [78]Haworth D C, Jansen K. Large-eddy Simulation on Unstructured Deforming Meshes: Towards Reciprocating IC Engines[J]. Computers and Fluids,2000,29:493-524.
    [79]黄思,杨国蟒,苏丽娟.应用动网格技术模拟分析滚动转子压缩机的瞬态流动[J].流体机械,2010.1.
    [80]岳向吉,巴德纯,苏征宇等.丛于动网格的滚动活塞压缩机泵腔流动瞬态模拟[J].东北大学学报(自然科学版).2011.4.
    [81]龚文瑾,马一太,赵丽.C02滚动活塞膨胀机的模拟与分析[J].工程热物理学报.2010.8.
    [82]马一太,张美兰,田华等.C02双缸滚动活塞膨胀机Fluent模拟与分析.天津大学学报.2011.12.
    [83]James R L, Edward A. Application of computational fluid dynamics to compressor efficiency improvement[J]. ICEC. West Lafayette,1994:441-446.
    [84]J. O. Ban, et al. Application of Computational Fluid Dynamics to Rotary Compressor Efficiency and Noise[C]. ICEC,1998.
    [85]Wei Geng, et al. The performance optimization of rolling piston compressors based on CFD simulation[C]. ICEC,2004.
    [86]钟儒敏.棱杆式压缩机结构设计及动态流场仿真[D].哈尔滨工业大学硕士学位论文,2010.
    [87]Ahmed Kovacevic, Nikola Stosic, Ian K. Smith. Numerical Simulation of Fluid Flow and Solid Structure in Screw Compressors[C]. Proceedings of 2002 ASME Congress. New Orleans, November 2002.
    [88]Ahmed Kovacevic. Boundary adaptation in grid generation for CFD analysis of screw compressors. Int. J. Numer. Megng.2005.
    [89]王强,姜继海,袁俊超.利用流场仿真技术计算水压外啮合齿轮泵内液压径向力[J].流体机械,2008.6.
    [90]张锴,翟俊霞,陈嘉南等.微型齿轮泵内流场的动网格模拟和分析[J].兰州理工大学学报.2011.2.
    [91]A. Kovacevic, N. Stosic and I.K.Smith. The CFD Analysis of A Screw Compressor Suction Flow[C]. Proceedings of International Compressor Engineering Conference at Purdue. Pudue, USA,2000.
    [92]Chun Hui Liu, Wei Geng. Research on suction performance of two-cylinder rolling piston type rotary compressors based on CFD simulation[C]. International Compressor Engineering Conference,2004.
    [93]R.J.Rogers, R.C.Wagner. Scroll Compressor Flow Modeling:Experimental and Computational Investigation[C]. Proceedings of International Compressor Engineering Conference at Purdue. Pudue, USA,1990.
    [94]Takahide Itoh, Akoto Fujitani, Kimiharu Takeda. Investigation of Discharge Flow Pulsation in Scroll Compressors[C]. Proceedings of International Compressor Engineering Conference at Purdue. Pudue, USA,1994:683-688.
    [95]冯健美,屈宗长,李心伟.涡旋压缩机排气过程的三维数值模拟计算[J].西安交通大学学报,2004,35(11):1143-1146.
    [96]李超,罗辉,张芸豫.不同涡旋型线压缩腔流场的模拟分析.压缩机技术,2009.4.
    [97]罗辉.涡旋压缩机压缩腔内部流场的模拟分析[D].兰州理工大学硕士学位论文,2009.
    [98]肖根福,刘国平,王俊亭等.基于动网格的涡旋压缩机内部流场数值模拟[J].机床与液压,2013,1:146-149.
    [99]杨兴华,潘家祯,王吉岱等.涡旋式膨胀机内部流场的数值模拟研究[J].流体机械,2013,2:15-18.
    [100]N. Stosic, I. K. Smith, S. Zagorac. CFD Studies of Flow in Screw and Scroll Compressor[C]. Proceedings of International Compressor Engineering Conference at Purdue. Purdue, U S A,1996:181-186.
    [101]S. Pietrowicz, T.Yanagisawa, M.Fukuta, et al. Mathematical Modeling of Physical Process in the Scroll Compressor Chamber[C]. Proceedings of International Compressor Engineering Conference at Purdue. Purdue, USA,2002:183-188.
    [102]Ooi, Kim Tiow, zhu, Jiang. Convective Heat Transfer in a Scroll Compressor Chamber: A 2-D Simulation[J]. International Journal of Thermal Sciences,2004,43(7):677-688.
    [103]M. M. Cui. Investigation of Suction Process of Scroll Compressors[C]. Proceedings of International Compressor Engineering Conference at Purdue. Purdue, USA,2006.
    [104]M. M. Cui. Investigation of suction process of a large R134a scroll compressor[C]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy 2008.
    [105]M. M. Cui. Numerical Study of Unsteady Flows in a Scroll Compressor[J]. Journal of Engineering,2006,Vol.128
    [106]M. M. Cui. Investigation of the scroll compressor porting process. Part Ⅰ:global flow physics and behaviour of gas pochets[C]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy 2006.
    [107]M. M. Cui. Investigation of the scroll compressor porting process. Part Ⅱ:local characteristics of the porting process and properties of the ports[C], Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy 2006.
    [108]M. M. Cui. Comparative study of the impact of the dummy port in a scroll compressor[J]. International Journal of Refrigeration.2007(30):912-925.
    [109]李人宪.有限体积法基础[M].国防工业出版社,2008.3.
    [110]R. E. Smith, Two-boundary grid generation for the solution of the three-dimensional Compressible Navier-Stokes equations, NASA Technical Memorandum,1981, Publication No.83123.
    [111]S. L. Yang, T. I-P. Shih, An algebraic grid generation technique for time-varying two-dimensional spatial domains, Internat. J. Numer. Methods Fluid 1986(6):291-403.
    [112]T.I.-P, Shih, S.L. Yang, H.J. Schock. A Two-dimensional numerical study of the flow inside the combustion chambers of a motored rotary engine, SAE Trans.860615(1986).
    [113]陶文铨.计算传热学的近代进展[M].科学出版社,2000.
    [114]Weatherill N P. A method for generating irregular computational grids in multiply connected Planar domains. International Journal for Numerical Methods in Fluids, 8:181-197,1988.
    [115]财元峰,孙峰,王文平等.1基于局部修复的移动数据点Delaunay三角化快速更新方法.计算机辅助设计与图形学报[J].2011.12.
    [116]Lohner R, Parikh P. Generation of three-dimensional unstruetured grids by the advancing-front method. Int. J. Numer. Meth. Fluids,8(10):1135-1149,1988.
    [117]许厚谦,王兵.一种新型的阵而推进法及其数据结构的应用[J].弹道学报.2005.6.
    [118]Yerry M A, Shephard M S. Automatic three-dimensional mesh generation by the modified-octree technique. International Journal for Numerical Methods in Engineering, 20(11):1965-1990,1984
    [119]许鹏,梁国柱.四叉树法非结构网格剖分技术研究[J].中国机械工程.2006.10.
    [120]Tezduyar T E, Behr M, Liou J. A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space-time Procedure:I. The concept and preliminary numerical tests. Computer Methods in Applied Mechanics and Engineering,94;339-351,1992
    [121]Batina J T. Unsteady Euler airfoil Solutions using unstructured dynamic meshes. AIAA89-0115,1989.
    [122]Blom FJ. Considerations on the spring analogy. Int. J. Numer. Meth. Int. J. Numer. Meth. Fluids,32:647-668,2000.
    [123]孙旭,张家忠,黄科峰.基于弹簧近似的非结构化网格自适应处理方法[J].西安交通大学学报.2010,9.
    [124]霍世慧,王富生,岳珠峰.弹簧近似法在二维非结构动网格生成技术中的应用[J].振动与冲击.2011,10.
    [125]Formaggia L, Peraire J, Morgan K. Simulation of a store separation using the finite element method. Appl. Math. Modeling,12:175-181.
    [126]Lohner R. Adaptive remeshing for transient Problems. Computer Methods in Applied Mechanics and Engineering,75:195-214,1989.
    [127]Lohner R, Yang C, Baurn J D, Luo H, Pelessone D, Charman C M. The numerical simulation of strongly unsteady flow with hundreds of moving bodies. Int. J. Numer. Meth. Fluids,31:113-120,1999.
    [128]S.Z. Pirzadeh. An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, And Grid Movement. AIAA99-3255.1999.
    [129]J.Zhu, M.Gotoh. Automatic remeshing of 2Dquadrilateral elements and its application to continuous deformation simulation:part Ⅰ. remeshing algorithm. Journal of Materials Processing Technology.1999.
    [130]J.Zhu, M.Gotoh. Automatic remeshing of 2Dquadrilateral elements and its application to continuous deformation simulation:part Ⅱ. applications. Journal of Materials Processing Technology.1999.
    [131]J.P. D'Amato, M.Venere. A CPU-GPU framework for optimizing the quality of large meshes[J]. Journal of Parallel and Distributed Computing,2013,73:1127-1134.
    [132]Yasushi Ito. Challenges in unstructured mesh generation for practical and efficient computational fluid dynamics simulations[J]. Computers & Fluids,2013,85:47-52.
    [133]E.T. Ooi, M. Shi, C.Song, F.Tin-Loi, et al. Dynamic crack propagation simulation with scaled boundary polygon elements and automatic remeshing technique[J]. Engineering Fracture Mechanics,2012,106:1-21.
    [134]张来平,段旭鹏,常兴华.丛于Delaunay背景网格插值和局部网格重构的变形体动态混合网格生成技术[J].空气动力学学报,2009.2.
    [135]傅德彬,姜毅.用动网格方法模拟导弹发射过程中燃气射流流场[J].宇航学报.2007.3.
    [136]郭旭,唐硕,刘芸.基于CFD动网格的内装式空射分离研究[J].飞行力学.2013,31(8):336-340.
    [137]刘永丰,张文平,明平剑.一种动网格插值方法在内燃机CFD中的应用[J].内燃机工程,2013,34(1):87-92.
    [138]周雪漪.计算水力学[M].北京:清华大学出版社,1995.
    [139]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [140]郭鸿志.传输过程数值模拟[M].北京:冶金工业出版社,1998.
    [141]张兆顺,崔桂香,许春晓.湍流理论与模拟[M].北京:清华大学出版社.2005:163-165
    [142]V.Yakhot, S.A.Orzag. Renormalization group anlysis of turbulence:basic theory[J]. J Scient Comput.1986,1:3-11.
    [143]T.H.Shih, W.W.Liou, A.Shabbir, Z.G.Yang, J.Zhu. A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Comput Fluid.24(3),1995:227-238.
    [144]杨亮.仿金枪鱼摆动尾鳍的水动力性能与推进机理研究[D].哈尔滨工程大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700