用户名: 密码: 验证码:
多壁碳纳米管增强M140DSP砂浆的力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文立足普通市售材料、工程实用的养护工艺,展开了M140DSP砂浆的配制及性能研究,提出了新的搅拌方法—TSMT(three-speed mixing technics)法。为了降低M140DSP砂浆的脆性,本文探索性地应用多壁碳纳米管作为增强相,在普通力学试验机上进行了单轴直接拉伸和压缩性能的实验研究;在电子万能试验机上进行了三点弯曲性能的实验研究;应用SEM、EPMA和ESEM分析了其增强机理。结果表明:
     1 TSMT法配制的DSP砂浆流动性好,28天抗压强度可达150MPa。在配比和养护工艺相同的条件下TSMT法配制的DSP砂浆较CT(conventional tecnnics)法配制的DSP砂浆不仅强度提高了41.2%而且浆体的流动性也较好。宏观楔入劈拉断面结构和微观ESEM分析表明TSMT法配制的材料均匀度高、孔结构得到了优化,结构致密。二者的热重曲线有明显的不同,前者的重量损失小。
     2 TSMT法配制的M100以上的DSP砂浆的强度越高断裂能越小。
     3以往学者研究的超高强混凝土(C100~150)的破坏形态为劈裂炸飞,只剩下上下部锥体,破坏面平整光滑(即Ⅰ型两端被限制型破坏)。本文的M140DSP砂浆棱柱体的压缩有三种有效的破坏形态:Ⅰ型两端被限制;Ⅱ型一端被限制,另一端劈裂破坏;Ⅲ型劈裂破坏。劈裂破坏可能体现了压缩破坏的本质。
     4添加0.02%水泥质量的A-MWNTs(定向多壁碳纳米管)后,A-MWNTs羰基化分散体-M140DSP砂浆复合材料的抗折强度、抗压强度分别比相同条件下制得的M140DSP砂浆的增加了5.4%、8.4%。而A-MWNTs水分散体-M140DSP砂浆复合材料的抗折强度、抗压强度分别比相同条件下制得的M140DSP砂浆的增加了20.7%,15.9%。
     5在破坏形态和位置相同的情况下,掺入水泥质量0.02%的PVA纤维后M140DSP砂浆棱柱体抗压和弯曲性能的提高不明显;抗拉强度提高了39.3%,极限拉应变提高了101.7%。而掺入水泥质量0.02%的长多壁碳纳米管L-MWNT-1030后使得M140DSP砂浆的棱柱体抗压强度和极限压应变分别提高了68.7%和24.9%;弯曲荷载和弯曲挠度分别提高了35.8%和14.9%;抗拉强度和极限拉应变分别提高了72.7%和73.8%,而且拉伸应力-应变曲线出现了非线性特征。
     但是在制作工艺相同的情况下,随着长多壁碳纳米管掺量(最大掺量为0.2%wt水泥)的增加没有出现复合材料的性能提高幅度正向增大。
     6碳纳米管的增强增韧机制为:拔出与脱粘、桥联和钉扎与显微填充作用;碳纳米管在基体中发挥增强增韧效果最好的方式是在基体的缺陷部位发挥拔出与脱粘、桥联和钉扎与网状填充作用,从而与基体形成最佳的组合,优势互补。
This paper studied the production and properties of M 140DSP mortar based on commercially acceptable materials and field-curing,and proposed a new mixing technics—TSMT(three-speed mixing technics).In order to decrease the brittleness of M140DSP mortar,multi-walled carbon nanotubes(MWNTs) was added into it as a reinforcement.Appling the ordinary mechanical test machines,uniaxial tensile and compress properties were studied.And the electronic mechanical test machine was applied to study the three-point bending properties.The SEM,EPMA and ESEM examinations of fracture surface showed the main re-inforcing mechanisms.The results shown:
     1 The mixtures mixed by TSMT have better workability and at 28-day age,the compressive strength reaches 150MPa.At the same mix proportion and curing,the CT mixed paste is denser than the TSMT mixed paste,and the flow uniformity of the CT mixed paste is worse than that of the TSMT mixed paste.At 28-day age,the compressive strength of the DSP mortar mixed by TSMT reaches 146MPa,showed 44.2%higher than that of the DSP mortar mixed by CT.By the wedge-splitting sections photos and ESEM images,it can be observed that TSMT fines the pore size distribution and decreases the porosity of the DSP mortar not only in macroscale but also in microscale.The TG curves are also different,the weight loss of DSP mortar mixed by TSMT is less than that of DSP mortar mixed by CT.
     2 The higher the strength of DSP mortar above 100MPa is,the less the fracture energy is.
     3 The failure modes of ultra-high strength about C100~150 obtained by other researchers is splitting and exploding(Ⅰtype,two ends restricted).In this paper the compressive failure modes of M140 mortar prism are:Ⅰtype,two ends restricted;Ⅱtype,one end restricted and the other splitted;Ⅲtype,splitting failure.Splitting failure may be the true failure mode of prism under pure compressive load.
     4 With the addition of two different A-MWNTs dispersions including carbonyl disper-sions of A-MWNTs(C-A-MWNTs) and aqueous dispersions of A-MWNTs (A-A-MWNTs) with the addition of 0.01 wt%A-MWNTs were utilized to obtain enhanced mechanical properties with respect to plain M140.The results indicated that the use of A-MWNTs dispersions allows increasing compressive strength and flexural strength by 8.4% and 5.4%,respectively for the C-A-MWNTs-M140,and by 15.9%and 20.7%for the A-A-MWNTs-M140,respectively.
     5 At the same failure mode and position,with the addition of 0.02wt%(cement weight) PVA fiber,the reinforcement of PVA fiber on the bending properties and the prism compressive stress are not distinct.PVA fiber only makes the uniaxial tensile stress and strain improved 39.3%and 101.7%with respect to plain M140DSP mortar.But for long walled multiwalled-carbon nanotubes L-MWNT-1030,not only makes the prism compressive stress and ultimate strain improved 68.7%and 24.9%respectively,and the bending load and displacemen improved 35.8%and 14.9%respectively,but also makes the uniaxial tensile stress and ultimate strain improved 72.7%and 73.8%,and the stress-strain curve has a non-linear segment.
     But applying the same production technics,the increments of the strengthes and strains of the L-MWNT-1030-M140DSP mortar composites do not increase with the fiber content(the maximum L-MWNT-1030 content is 0.2%wt cement) increased.
     6 The re-inforcing mechanisms of carbon nanotubes are:fiber pullout and debond;fiber bridge;fiber pin and microfilling effect.In order to make full use of the re-inforcing mechanisms of carbon nanotubes,carbon nanaotubes should be well distributed in the form of net in the defects of matrix.
引文
[1]J.Francis Young.The chemical and microstructure basis for high performance concrete[C].High performance concrete-workability.Strength and durability.Edited by Christopher K.Y.Leung.Zongjin Li et al.Hong Kong,China,December,2000:87-104
    [2]M.Jamal Shannag and Will Hansen.Tensile properties of fibre-reinforced very high strength DSP mortar[J],Magazine of Concrete Research,2000,52,No.2,Apr.:101-108
    [3]Bache H.H.Compact reinforced concrete composite,basic principles[C].Aalborg Portland,Aalborg,1981,CBL Report No.41
    [4]陈美祝,何真,陈胜宏.水泥基材料(工艺)高性能化原理及存在的问题[J].中国水泥,2004,1:33-37.
    [5]乔英杰,李家和.特种水泥与新型混凝土[M].哈尔滨:哈尔滨工程大学出版社,1997.
    [6]陆平.水泥材料科学导论[M].上海:同济大学出版社,1991
    [7]杨嘉震.超微粒子掺和料在水泥混凝土中的应用[J].硅酸盐建筑制品,1999,90(2):25-30.
    [8]贺爱军.用超细粉煤灰取代硅灰制备DSP水泥的可行性研究[D],南京:东南大学,1993,3.
    [9]Prijatmadi Tjiptobroto,Will Hansen.Mechanism for Tensile Strain Hardening in High Performance Cement-based Fiber Reinforced Composites[J].Cement & Concrete Composites 1991,13:265-273.
    [10]Prijatmadi Tjiptobroto,Will Hansen.Tensile Strain Hardening and Multiple Cracking in High-Performance Cement-Based Composites Containing Discontinuous Fibers[J].ACI Materials Journal,1993,90(1):16-25.
    [11]D.Lange-Kornbak,B.L.Karihaloo.Design of Fiber-Reinforced DSP Mixes for Minimum Brittleness[J].Advn Cem Bas Mat,1998,7:89-101
    [12]M.Jamal Shannag,Will Hansen.Tensile Properties of Fiber-reinforced Very high strength DSP Mortar[J].Magazine of Concrete Research,2000,52(2):101-108
    [13]W.Sinclair,G.W.Groves.The Microstructure of Portland Cement-Silica Fume Pastes [J].Journal of Materials-Science letters,1986,5:101-102.
    [14]Guo-kang Sun,J.Francis Young.Quantitative Determination of Residual Silica Fume in DSP Cement Pastes by 29-SI NMR[J].Cement and Concrete Research,1993,23:480-483
    [15]胡昂,方永汉.湿度对DSP水泥基材料介电常数的影响[J].硅酸盐学报,1995,23(2):190-194
    [16]Roy,D.M.,Advanced Cement Systems,Including CBC,DSP,MDF[C].In 9th International Congress on the Chemistry of the Cement,New Delhi,India,1992,1:357-380
    [17]G.L.Guerrini.Applications of High-Performance Fiber-Reinforced Cement-Based Composites[J].Applied Composite Materials,2000,7:195-207
    [18]Densit(?) patents-their background and importance.http://www.densit.dk/Admin/Public/Download.aspx?file=Files%2fFiler%2fpdf_files %2fTechnology%2fbeton-teknik-uk.pdf
    [19]Iijima S.Helical microtules of graphitic carbon[J].Nature,1991,354:56-58
    [20]Iijima S,Ichihashi T.Single-shell carbon nanotube of 1-nm diameter[J].Nature,1993,363:603-605
    [21]Bethume D S,Kiang C H,de Vries M S.Et al.Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls[J].Nature,1993,363:605-607
    [22]Dethume D S,Kiang C H,de Vires M S,et al.C obalt-catalysed growth of carbon nanotubes with single-atomic-layer walls[J].Nature,1993,363:605-607
    [23]Young Chul Choi,Dong Jae Bae,Young Hee Lee,et al.Low temperature synthesis of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition[J].Synthetic Metals,2000,108:159-163
    [24]G.W.Ho,A.T.S.Wee,J.Lin,W.C.Tjiu.Synthesis of well-aligned multiwalled carbon nanotubes on Ni catalyst using radio frequency plasma-enhanced chemical vapor deposition[J].Thin Solid Films,2001,388:73-77
    [25]N.He,Y.Kuang,Q.Dai,et al.Growth of carbon nanotubules on Fe-loading zeolites and investigation of catalytic active center[J].Materials Science and Engineering:C,1999,8-9:151-157
    [26]Murakami Y,Shibata T,Okuyama K,et al.Structural,magnetic and superconducting properties of graphite nanotubes and their encapsulation compounds.Journal of Physics Chemical Solids,1993,54(12):1861-1870
    [27]朱宏伟,吴德海,徐才录.碳纳米管.[M],北京:机械工业出版社,2003,1
    [28]De Heer W A,Bacsa W S,Ugarte D.Gerfin T,Humphreybaker R,Forro L,Ugarte.Aligned carbon nanotubes films:production and optical and electrical properties.Scienct,1995,268:845-847
    [29]李勇,王万录,廖克俊等.碳纳米管膜的压阻效应.科学通报(J),2003,48(1):26-28
    [30]张毅.碳纳米管膜的压阻效应及其相关力学性质研究[D].重庆:重庆大学,2005
    [31]万步勇 王万录 廖克俊等.多壁碳纳米管气敏性质的研究[J].真空科学与技术,2003,23(5):323-327
    [32]吴子华,王万录,廖克俊等.多壁碳纳米管膜湿敏特性的研究[J].物理学报,2004,53(10):3462-3466
    [33]Cheol Jin Lee, Kwon Hee Son, Jeunghee Park, et al. Low temperature growth of vertically aligned carbon nanotubes by thermal chemical vapor deposition [J]. Chemical Physics Letters, 2001, 338: 113-117
    [34]Qian Dong, Wagner Gregory J, Liu Wing Kara, et al. 徐志平, 王立峰,郑泉水译. 碳纳米管的软科学[J].力学进展.2004, 34(1):97-138
    [35]Yakobson B I, Brabec C J, Bernhole J. Nanomechanics of carbon tubes: Instabilities beyond linear response [J]. Physical Review Letters, 1996, 76 (14): 2511-2514
    [36]Timoshenko S, Gere J. Theory of elastic stability. New York: McGraw-Hill, 1998
    [37]Lourie O, Wagner H D. Evaluation of yang' s modulus of carbon nanotubes by micro-raman spectroscopy [J]. Journal of Material Research, 1998, 13 (9): 2418-2422
    [38]W. A. D. Heer, W. S. Bacsa, A. Chatelain, T . Gerf in, R. Humphrey-Baker, L. Fo rro , D .Ugarte, Science, 1995,268,845
    [39]Yu M F, Lourie O, Dyer M J, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load [J]. Science, 2000, 287(5453): 637-640
    [40]Yakobson B I, Smalley R E. Fullerene nanotubes: C-1000000 and beyond [J]. American Science, 1997, 85(4): 324-337
    [41]Yakobson B I, Avouris P. Mechanical properties of carbon nanotubes [J]. Carbon nanotubes, 2001, 287-327
    [42]Yakobson B I, Campbell M P, Brabec C J, et al. High strain rate fracture and c-chain unraveling in carbon nanotubes [J]. Computational Material Science, 1997, 8(4): 341-348
    [43]Belytschko T, Xiao S P, Schatz G C, et al. Atomistic simulation of the fracture of nanotubes [J]. Physical Review B, 2002, 62: 235-430
    [44]Walters D A, Ericson L M, Casavant M J, et al. Elastic strain of freely suspended single-walled carbon nanotube ropes [J]. Applied Physics Letters, 1999, 74(25): 3803-3805
    [45]Lourie O, Cox D M, Wagner H D. Buckling and collapse of embedded carbon nanotubes [J]. Physical Review Letters, 1998, 81(8): 1638-1641
    [46]Brigitte V, Alain P, Claude C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes[J]. Science,2000,290:1331-1334
    
    [47]Y.F.Zhu, R .Q.Tan, J. Feng, et al. Appl. Catal. A-Gen. 2001,209, 71
    [48]Bernholc J, Brabec C, Nardelli M B, et al. Theory of growth and mechanical properties of nanotubes [J]. Applied Physics A: Material Science Process, 1998,67(1): 39-46
    [49]Qian D, Liu W K, Ruoff R S. Bent and kinked multi-shell carbon nanotubes-treating the interlayer potential more realistically. In: 43rd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Denver CO, 2002
    [50]Iijima S, Brabec C, Maiti A, et al. Structural flexibility of carbon nanotubes [J]. Journal of Chemics and Physics, 1996,104(5):2089-2092
    
    [51]Ruoff R S, Lorents D C, Laduca R, et al. Proc Electrochem Soc, 1995, 10: 557-562
    [52]Subramoney S, Ruoff R S, Laduca R, et al. In: Kadish K M, Ruoff R S, eds. Proc Electrochem Society. Electrochemical Society, 1995, 95(10):563-569
    [53]Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes [J]. Science, 1997, 277(5334):1971-1975
    [54]Antonio Pantano, David M. Parks, Mary C. Boyce. Mechanics of deformation of single- and multi-wall carbon nanotubes [J]. Journal of the Mechanics and Physics of Solids, 2004, 52:789-821
    [55]Poncharal P., Wang Z. L., Ugarte D., et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes [J].Science, 1999, 283 (5407): 1513-1516
    [56]Falvo M., Clary G., Taylor R., et al. Bending and buckling of carbon nanotubes under large strain [J]. Nature, 1997, 389 (6651): 582-584
    [57]Lourie O., Cox D. M., Wagner H. D. Buckling and collapse of embedded carbon nanotubes [J]. Physical Review Letters, 1998, 81(8):1638 - 1641
    [58]Hertel T., Martel R., Avouris P. Manipulation of individual carbon nanotubes and their interaction with surfaces [J]. Journal of Physics and Chemistry B, 1998a, 102 (6) :910 -915
    [59]Hertel T., Walkup R., Avouris P. Deformation of carbon nanotubes by surface van der Waals forces[J]. Physical Review B, 1998b, 58 (20): 13870-13873
    [60]Bower C., Rosen R., Jin L., et al. Deformation of carbon nanotubes in nanotube - polymer composites [J]. Applied Physics Letters, 1999, 74 (22): 3317 - 3319
    [61]Peigney A, Laurent Ch, Flahaut E, et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes [J]. Carbon, 2000, 39: 507-514
    [62]Mintmire J W, Dunlap B I, et al. Are fullerene tubules metallic? [J]. Physical Review Letters, 1992, 68: 631-634
    [63]Hamada N, Sawada S, et al. New one-dimensional conductors: graphitic microtubules [J]. Physical Review Letters, 1992, 68: 1579-1581
    [64]Ebbesen T W, Lezec H J, Hiura H. Electrical conductivity of individual carbon nanotubes [J]. Nature, 1996, 382: 54-56
    
    [65]Dresselhaus M S. New tricks of nanotubes [J]. Nature, 1998, 391: 19-20
    [66]Wildoer J W G, Venema L C, et al. Electronic structure of atomically resolved carbon nanotubes [J]. Nature, 1998, 391: 59-62
    [67]Odom T W, Huang J L, et al. Quantum interface in electron collision [J]. Nature, 1998, 391: 263-265
    [68]Carbon Nanotubes and the Electrical,Thermal,Mechanical and Other Useful Properties of Carbon Nanotubes by Cheap Tubes.http://www.azonano,com/Details,asp?ArticleID=1564
    [69]Youichi Shimizu,Nami Yamashita,Solid electrolyte CO2 sensor using NASICON and perovskite-type oxide electrode[J].Sensors and Actuators B:Chemical,2000,64:102-106
    [70]G.W.Ho,A.T.S.Wee,J.Lin,W.C.Tjiu.Synthesis of well-aligned multiwalled carbon nanotubes on Ni catalyst using radio frequency plasma-enhanced chemical vapor deposition[J].Thin Solid Films,2001,38 8:73-77
    [71]Valentin N.Popov.Carbon nanotubes:properties and application[J].Materials Science and Engineering R,2004,43:61-102
    [72]杨志.碳纳米管复合材料的制备及其性能研究[D].兰州:兰州大学化学化工学院,2005.
    [73]施冬莉.碳纳米管及其复合材料的力学性能研究[D].北京:清华大学航天航空学院,2005
    [74]Erik T.Thostenson,Chunyu Li,Tsu-Wei Chou.Nanocomposites in context[J].Composites Science and Technology,2005,65:491-516
    [75]Saez de Ibarra Y,Gaitero J J,Campillo I.Analysis by atomic force microscopy of the effects on the nanoindentation hardness of cement pastes by the introduction of nanotube dispersions.TNT2005 29 August-02 September,2005 Oviedo-Spain
    [76]Park,Cheol;Ounaies,Zoubeida;Watson,Kent A.,et.al.Dispersion of single wall carbon nanotubes by in situ polymerization under sonieation.Chemical Physics Letters[J].October 4,2002,364(3-4):303-308
    [77]Sennett M,Welsh E,Wright J B,et al.Dispersion and alignment of carbon nanotubes in polycarbonate[J].Applied Physics A-Materials Science & Processing,2003,76:111-113
    [78]Biercuk M J,Llaguno M C,Radosavljevic J K,et al.Carbon nanotube composites for thermal management[J].Applied Physics Letter,2002,80:2767-2769
    [79]Pirlot C,Willems I,Fonesca A,et al.Preparationand characterization of carbon nanotube/polyacrylonitrile composites[J].Advanced Engineering Materials,2002,4:109-114
    [80]M.Kingsuk,D.C.Dhar,M.G.Narayan.Conversion of carbon nanotubes to carbon nanofibers by sonication[J].Carbon,2002,40(8):1373-1376
    [81]Kearns J C,Shambaugh R L.Polypropylene fibers reinforced with carbon nanotubes [J].Journal of Applied Polymer Science,2002,86,2079-2084
    [82]Saito T,Matsushige K,Tanaka K.Chemical treatment and modification of multi-walled carbon nanotubes[J].Physica B-Condensed Matter,2002,323:280-283
    [83]D.M.Delozier,D.M.Tigelaar,K.A.Watson,et al.Investigation of ionomers as dispersants for single wall carbon nanotubes[J].Polymer,2005,46:2506-2521
    [84]阴强.碳纳米管增强酚醛树脂石墨双极板复合材料的制备与性能研究[D].济南:山东大学,2008
    [85]晋卫军,孙旭峰,王煜.碳纳米管溶解性及其化学修饰[J].新型炭材料,2004,19(4):312-318
    [86]余荣清,程大典,詹梦熊.液相化学腐蚀法用于碳纳米管的纯化及顶端开口研究[J].化学通报,1996,4:25-26
    [87]杨占红,李新海,王红强等.碳纳米管的提纯一重铬酸钾氧化法[J].化学世界,1999,12:627-630
    [88]Ajayan P M,Ebbesen T M,Ichihashi T,et al.Opening Carbon Nanotubes with Oxygen and Implications for Filling[J].Nature,1993,362:522-525
    [89]Tsang S C,Harris P J F,Green M L H.Thinning and Opening of Carbon Nanotubes by Oxidation Using Carbon Dioxide[J].Nature,1993,262:520-522
    [90]Sano M,Kamino A,Okamura J.Ring closure of carbon nanotubes[J].Science,2001,293:1299-1301
    [91]Liu J,Rinzler A G,Dai H.Fullerene pipes[J].Science,1998,280:1253-1255(YANG Jie,SHEN Zeng min,XIONG Tao.The preparation and properties of carbon nanotubes in-situ encapsulated by polyaniline[J].New Carbon Materials,2003,18(2):95-100
    [92]Mickelson E T,Huffman C B,Rinzler A G,et al.Fluorination of single-wall carbon nanotubes[J].Chemical Physics Letters,1998,296:188-194
    [93]Boul P J,Liu J,Mickelson E T,et al.Reversible sidewall functionalization of buckytubes[J].Chemical Physics Letters,1999,310:367-372
    [94]Georgakilas V,Kordatos K,Prato M,et al.Organic functionalization of carbon nanotubes[J].Journal of the American Chemical Society,2002,124:760-761
    [95]Huang W J,Taylor S,Fu K F,et al.Attaching proteins to carbon nanotubes via diimide-activated amidation[J].Nano Letters,2002,2:311-314
    [96]Chen J,Rao AM,Lyuksyutov S,et al.Dissolution of full-length single walled carbon nanotubes[J].Journal of Physical Chemistry B,2001,105:2525-2528
    [97]Linqin Jian,Liang Gao,Jing Sun.Production of aqueous colloidal dispersions of CNTs[J].Journal of Colloid and Interface Science,2003,260:89-94
    [98]Alexander Star,David W.Steuerman,James R.Heath,et al.Starched Carbon Nanotubes [J].Angew.Chem.Int.Ed.2002,41(14):2508-2512
    [99]O'Connell M J,Boul P,Ericson L M.Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping[J].Chem Phys Lett,2001,342:265-271
    [100]Michael J.O'Connell,Sergei M,et al.Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes[J].Science,2002,297:593-596
    [101]Dalton A B,Stephan C,Coleman J N.Selective interaction of a semiconjugated organic polymer with single-wall nanotubes[J].J Pbys Chem B,2000,104:10012-10016
    [102]Chambers G,Carroll C,Farrell G F.Characterization of the interaction of gamma cyclodextrin with single-walled carbon nanotubes[J].Nano Lett,2003(3):843-846
    [103]Chen Jian,Liu Haiying,Weimer W A.Functional conjugated polymers[J].J Am Chem.Soc,2002,124:9034-9035
    [104]杨杰,沈曾民,熊涛.聚苯胺原位包裹碳纳米管材料的制备及性能[J].新型炭材料,2003,18(2):95-100
    [105]Arben Merkoci.Carbon nanotubes.SEMINARI PERMANENT DE FISICA I QUIMICA curs 2008-09 CDEC,Barcelona 30.01.2009http://www,xtec.es/cdec/formacio/pdf/spfq/OB-Og/3_nanotubes,pdf
    [106]成会明著,纳米碳管制备、结构、物性及应用,化学工业出版社,材料科学与工程出版中心,2002,ISBN 7-5025-3957-3
    [107]Wang Y,Wei F,Luo G,et al.The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor[J].Chemical Physics Letters,2002,364:568-572
    [108]Resasco D E,Alvarez W E,Pompeo F,et al.A scalable process for production of single-walled carbon nanotubes(SWNTs) by catalytic disproportionation of CO on a solid catalyst[J].Journal of Nanopaticle Research,2002,4:131-136
    [109]Singh C,Shaffer M S,Windle A H.Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method[J].Carbon,2003,41:359-368
    [110]H.Daniel Wagner.Nanotube-polymer adhesion:a mechanics approach[J].Chemical Physics Letters,2002,361:57-61
    [111]H.Wan,F.Delale,L.Shen.Effect of CNT length and CNT-matrix interphase in carbon nanotube(CNT) reinforced composites[J].Mechanics Research Communications,2005,32:481-489
    [112]Kin-tak Lau.Interfacial bonding characteristics of nanotube/polymer composites [J].Chemical Physics Letters,2003,370:339-405
    [113]QianD,Dickey E C,Aandrews R,et al.Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites[J].Appl Phys Lett,2000,76(20):2868-2870
    [114]H.Wan,F.Delale,L.Shen.Effect of CNT length and CNT-matrix interphase in carbon nanotube(CNT) reinforced composites[J].Mechanics Research Communications,2005,32:481-489
    [115]周桢.聚合物/多壁碳纳米管复合材料结构与性能的研究[D].上海:上海交通大学,2007
    [116]孙艳妮.碳纳米管/聚烯烃复合材料的制备及性能研究[D].青岛:青岛科技大学,2006
    [117]张文锋.碳纳米管/聚四氟乙烯复合材料场发射特性研究[D].成都:电子科技大学,2006
    [118]陈利.聚合物/碳纳米管复合材料制备科学的研究[D].成都:中国科学院成都有机化学研究所,2005
    [119]Jihua Gou,Bob Minaie,Ben Wang,et al.Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites[J].Computational Materials Science,2004,31:225-236
    [120]H.W.Gob,S.H.Goh,G.Q.Xu,et al.Dynamic mechanical behavior of in situ functionalized multi-walled carbon nanotube/ phenoxy resin composite[J].Chemical Physics Letters,2003,373:277-283
    [121]袁观明,李轩科,张铭金等.碳纳米管对环氧树脂力学性能的影响[J].宇航材料工艺,2005,2:38-41
    [122]Gopinath Subramanian,Malcolm J Andrews.Preparation of SlaNT-reinforced composites by a continuous mixing process[J].Nanotechnology,2005,16(6):836-840
    [123]汪华锋,李振华,王新庆等.纳米碳管/环氧树脂复合材料的制备及力学性能[J].复合材料学报,2004,21(15):48-51
    [124]贾春燕.碳纳米管环氧树脂复合材料的制备及性能研究[D].长沙:中南大学,2008
    [125]王建国.多壁碳纳米管/环氧树脂复合材料结构与性能的研究[D].杭州:浙江大学,2006
    [126]范锦鹏,赵大庆,徐则宁,吴敏生.多壁碳纳米管-氧化铝复合材料的制备及其力学、电学性能研究.中国科学 E辑 工程科学 材料科学,2005,35(9):934-945
    [127]李四年,宋守志,余天庆等.碳纳米管对镁基材料的强韧化作用[J].湖北工学院学报,2003,18(6):13-16
    [128]杨益.碳纳米管增强镁基复合材料的制备与性能研究[D].长沙:国防科学技术大学,2006
    [129]袁海龙.碳纳米管/银基复合材料的制备与性能研究[D].合肥:合肥工业大学,2004
    [130]陈小华,李德意,李学谦等.碳纳米管增强镍基复合镀层的形貌及摩擦磨损行为研究[J].摩擦学报,2002,22(1):6-9
    [131]曹雷.纳米碳管/稀土酞菁复合材料的制备与光电性能研究[D].杭州:浙江大学,2004
    [132]孙康宁,李爱民,尹衍升等.碳纳米管/羟基磷灰石复合材料的制备研究[J].中国生物医学工程学报,2004,23(6):573-578,515
    [133]魏强.多壁碳纳米管/纳米羟基磷灰石骨修复复合材料的研究初步[D].北京:北京化工大学,2004
    [134]LI Aimin,SUN Kangning,DONG Weifan.Influence of Sintering Technique on Mechanical Properties and Microstructure of CNTs/Hap Composit[J].Journal of Synthetic Crystals,2004,33(4):624-628
    [135]赵萍.CF/CNTs增强磷酸钙骨水泥复合材料及其生物相容性评价[D].济南:山东大学,2005
    [136]郝春云,杨明辉,杨海涛等.碳纳米管增韧氮化硅陶瓷复合材料的探讨[J].陶瓷,2005,2:21-23
    [137]Z.Xia,L.Riester,W.A.Curtin,etc.Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites.Acta Materials[J].2004,52:931-944
    [138]Makar,J.M.,Beaudoin,J.J.Carbon nanotubes and their application in the construction industry.1st International Symposium on Nanotechnology in Construction.Paisley,Scotland,June 22,2003:331-341(NRCC-46618)
    [139]Jon Makar,Jim Margeson and Jeanne Luh.Carbon nanotube/cement composites-early results and potential applications.3st International Conference on Construction Materials:Performance,Innovation and Structural Implications.Vancouver,B.C.August 21,2005:1-10(NRCC-47643)
    [140]Reinhard,T.and Torsten,K..Nanotubesfor high-performance concrete.Betonwerk Fertigteil Tech.2005,71(2):20-21
    [141]Li Geng Ying,and Wang Pei Ming,Zhao Xiaohua.Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes.Carbon,2005,43:1239-1245
    [142]Saez de Ibarra Y,Gaitero J J,Campillo I.Analysis by atomic force microscopy of the effects on the nanoindentation hardness of cement pastes by the introduction of nanotube dispersions.TNT2005 29 August-02 September,2005Oviedo-Spain
    [143]Yakovlev G,Keriene J,Gailius A,et al.Cement Based Foam Concrete Reinforced by Carbon Nanotubes.Materials Science.2006,12,(2):147-151
    [144]Li G Y,Wang P M,Zhao X H.Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites.Cement & Concrete Composites.2007,29:377-382
    [145]Sidney Mindess,J.Francis Young,David Darwin.吴科如,张雄,姚武等译.混凝土(原著第二版).北京:化学工业出版社,2005
    [146]卢都友,许仲梓,唐明述.改性压实水泥抗压强度影响因素的研究[J].南京 化工大学学报,18(3):34-38
    [147]吴中伟.高技术混凝土[J].硅酸盐通报,1994,1:41-45
    [148]何峰,黄政宇.200~300MPa 活性粉末混凝土(RPC)的配制技术研究[J].2000,4:3-7
    [149]赵海君,严云,胡志华等.活性粉末混凝土(强度大于200MPa)的研究[J].混凝土,2006,11:25-27
    [150]A.J.F.M.考拉格,J.P.弗里德里希斯.砂浆制备方法:中国,97193783.4[P].2003,04,30
    [151]王卉,赵立宇,陈江等.超高强水泥组成及制造方法:中国,88105676.6.1990,02,21
    [152]王卉,陈江,赵立宇等.高强水泥砂浆及制品的组成和制造方法:中国,89105812.5.1991,06,26
    [153]钟世云,吴冲.一种自密实高强砂浆:中国,200610027202.0.2006,11,08
    [154]Saeed Khalaf Rejeb.Improving compressive strength of concrete by a two-step mixing method.Cement and Concrete Research 1996;26(4):601-605
    [155]Pierre-Henri Jezeguel,Veronique Collin.Mixing of concrete or mortars:dispersive aspects.Cement and Concrete Research 2007:37:1321-1333
    [156]David A.Williams,Aaron W.Saak,Hamlin M.Jennings.The influence of mixing on the rheology of fresh cement paste.Cement and Concrete Research 1999;29:1491-1496
    [157]Thomas M.Vickers Jr,Stephen A.Farrington,Jeffrey R.Bury,et al.Influence of dispersant structure and mixing speed on concrete slump retention.Cement and Concrete Research,2005:35:1882-1890
    [158]Ping-Kun Chang,Yaw-Nan Peng.Influence of mixing techniques on properties of high performance concrete.Cement and Concrete Research 2001;31:87-95
    [159]Victor Fernandez-Altable,Ignasi Casanova.Influence of mixing sequence and superplasticiser dosage on the rheological response of cement pastes at different temperatures.Cement and Concrete Research,2006;36:1222-1230
    [160]冯忠绪,王卫中,姚运仕等.搅拌机合理转速的确定[J].工程机械,2005,4:60-64
    [161]郭向勇,方坤河,冷发光等.对高性能混凝土搅拌理论的探讨[J].水利发电,2005,1:38-41
    [162]姚燕,王玲,田培.高性能混凝土[M].北京:化学工业出版社,2006
    [163]Michael Schmidt,Carsten Geisenhansl tlke.高性能和自密实混凝土中细颗粒的最佳组成[J].商品混凝土,2005,4:62-70
    [164]周祖康,顾惕人,马季铭.胶体化学基础[M].北京:北京大学出版社,1987
    [165]李玉铭,石岩.磷酸三丁酯对GRC水泥流动性的作用[J].哈尔滨理工大学学报,2001,6(4):13-14
    [166]HEIMUTH R A.新拌水泥浆体的结构和流变学[A].第七届国际水泥化学年会论文集[C].巴黎:1980,488-489
    [167]David Chopin,Franc,ois de Larrard,Bogdan Cazacliu.Why do HPC and SCC require a longer mixing time?[J].Cement and Concrete Research,2004,34:2237-2243
    [168]中华人民共和国国家标准.普通混凝土力学性能试验方法标准GB/T 550081-2002.北京:中国建筑工业出版社,2003
    [169]姜睿.超高强混凝土组合柱抗震性能的试验研究[D].大连:大连理工大学,2007
    [170]蒲心诚,王志军,王冲等.超高强高性能混凝土的力学性能研究[J].建筑结构学报,2002,23(6):49-45
    [171]蒲心诚王志军王冲等.超高强高性能混凝土力学性能研究[J].云南建材,2002,1:28-33
    [172]蒲心诚王志军王冲等.C100~C150超高强高性能混凝土的强度及变形性能研究[J].混凝土,2002,10:3-8
    [173]中华人民共和国国家标准.建筑砂浆基本性能试验方法标准JGJ 70-90.北京:中国建筑工业出版社,1991
    [174]中华人民共和国国家标准.硅酸盐水泥、普通硅酸盐水泥GB 175-1999.北京:中国建筑工业出版社,2000
    [175]Guangcheng Long,Xinyou Wang,Youjun Xie.Very high performance concrete with ultrafine powders[J].Cement and Concrete Research 2002:32:601-605
    [176]蒲心诚,严吴南,王冲.硅灰对150MPa超高强高流态混凝土的强度及流动性的贡献[J].混凝土与水泥制品,2000,1:8-12
    [177]MouretM,Bascoul A,Escadeillas G.Microstructural features of concrete in relation to initial temperature-SEM and ESEM characterization[J].Cement and Concrete Research,1999,29(3):369-375.
    [178]Kjellsen Knut O,Jennings Hamlin M.Observations of microcracking in cement paste upon drying and rewetting by environmental scanning electron microscopy[J].Advanced Cement Based Materials,1996,3(1):14-19.
    [179]Moeser B.Der einsatz eines ESEM-FEG fuer hochaufloesende und mikroanalytische untersuchungen originalbelassener banstoffproben[A].Proceedings of 14th International Baustofftagung[C].Germany:Weimar,2000.20-23,89-114.
    [180]Stark J,Moser B,Bellmann F.New approaches to ordinary portland cement vhydration in the early hardening stage[A].Proceedings of the 5th International Symposium on Cement and Concrete[C].Shanghai:2002,1:56-70.
    [181]A.Noumowe.Effet des hautes temperatures(20℃-600℃) sur lebeton[D].Institut National des Sciences hppliquees,1995.
    [182]Lucia hlarcon-Ruiz,Gerard Platret,Etienne Massieu,et al.The use of thermal analysis in assessing the effect of temperature on a cement paste[J].Cement and Concrete Research,2005,35:609-613
    [183]廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996
    [184]Hillerborg,A.The theoretical basis of method to determine the fracture energy of GF of concrete[J].Materials and Structures,1985,18(106):291-296
    [185]RILEMTechnical Committee 50-FMC.Determination of the fracture energy of Mortar and Concrete by means of three-point bend tests of notched beams,proposed RILEM draft recommendations.RILEM,Materials and Structures[J],18(106):285-296
    [186]卜丹.楔入式紧凑拉伸断裂试验研究[D].大连:大连理工大学,2007
    [187]王志军,蒲心诚.超高强混凝土单轴受压性能及应力应变曲线的试验研究.重庆建筑大学学报[J].2000,22(Sup.):27-33
    [188]蒲心诚,王志军,王冲等.超高强高性能混凝土的力学性能研究.建筑结构学报[J],2002,23(6):49-55
    [189]王勇威,蒲心诚,王志军.单轴压力下56.3~164.9MPa混凝土的应力-应变关系.建筑结构学报[J],2005,26(1):97-102
    [190]Qinghua Li and Shilang Xu.Experimental investigation and analysis on flexural performance of functionally graded composite beam crack-controlled by ultrahigh toughness cementitious composites.Science in China Series E:Technological Sciences,2009,52(6):1648-1664
    [191]Shilang Xu and Xiufang Zhang.Theoretical Analysis and Experimental Investigation on Flexural Performance of Steel Reinforced Ultrahigh Toughness Cementitious Composite RUHTCC Beams.Science in China Series E:Technological Sciences,2009,52(4):1068-1089
    [192]Vladimir A.Sinani,Muhammed K.Gheith,Alexander A.Yaroslavov,et al.Aqueous dispersions.of single-wall and multi-wall carbon nanotubes with designed amphiphilic polycations.J.AM.CHEM.SOC.127.2005(10):3463-3472
    [193]Dirk W,Ma J X.Mechanical Properties of Ultra High Strength Concrete.LACER.2003,8:175-184
    [194]姚燕,王玲,田培.高性能混凝土[M].北京:化学工业出版社,2006
    [195]Liu J,Rinzler A G,Dai H.Fullerene pipes[J].Science,1998,280:1253-1255
    [196]范锦鹏,赵大庆,徐则宁,吴敏生.多壁碳纳米管-氧化铝复合材料的制备及其力学、电学性能研究.中国科学 E辑.2005,35(9):934-945.
    [197]C.D.P.Benson,B.L.Karihaloo.CARDIFRC~(?)-Developmentand mechanical properties.Part Ⅲ:Uniaxial tensile response and other mechanical properties[J].Magazine of Concrete Research,2005,57(8):433-443
    [198]J.M.Hodgkinson.白树林,戴兰宏,张庆明(译).先进纤维增强复合材料性能测试[M].北京:化学工业出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700