用户名: 密码: 验证码:
聚合物/碳纳米管及二氧化钛管基复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米技术被应用到材料科学领域中,以纳米复合材料为代表的新材料研究已经成为了二十一世纪世界各国普遍研究的重点。聚合物基纳米复合材料和贵金属电催化剂材料是目前研究的两个热点。聚合物基纳米复合材料的可设计性使其集聚合物与纳米添加相的双重优势,可以生成性能优异的工程材料以及具有新的特殊性能的功能材料。而贵金属电催化剂材料在燃料电池的研究中至关重要,由于贵金属催化剂材料存在成本高、催化效率低等缺点,在很大程度上影响了燃料电池的实用化。因此,最近几年,寻找能降低贵金属用量和提高催化效率的载体材料成为了人们关注的热点。
     本文论述了的纳米复合材料的研究及最新进展,并以聚合物/碳纳米管复合材料和二氧化钛纳米管(TiO_2-NTs)基贵金属纳米复合材料为研究重点,制备了聚合物/碳纳米管复合材料、二氧化钛纳米管及以其为载体的贵金属(Pd、Pt)电催化剂复合材料,并研究了它们的性能。主要内容如下:
     1.采用原位聚合法成功制备了聚甲基丙烯酸甲酯/碳纳米管、环氧树脂/碳纳米管和聚苯乙烯/碳纳米管三种纳米复合材料,研究了碳纳米管对聚合物基体摩擦磨损性能的影响。结果表明:碳纳米管的引入使得复合材料的摩擦系数和磨损率都有很大的降低,可以有效地增强聚合物基体的摩擦磨损性能,而且存在一个最佳的添加量,添加量过少或过多都达不到最好的增强效果。对于聚甲基丙烯酸甲酯/碳纳米管复合材料而言,1.0wt%的碳纳米管添加量使增强效果达到最佳;而在环氧树脂/碳纳米管和聚苯乙烯/碳纳米管复合材料中,1.5wt%的碳纳米管使摩擦磨损性能达到最好。对于碳纳米管增强聚合物基体摩擦学性能的机理我们也作了一些讨论,可能的原因主要是碳纳米管优异的力学、热学性能以及复合材料独特的结构等。
     2.共聚物比单一聚合物在性能和结构上有很大的提高,因此我们采用原位聚合法成功制备了聚甲基丙烯酸甲酯/聚苯乙烯/多壁碳纳米管共聚物纳米复合材料,并研究了其摩擦学性能。结果表明,1.5wt%的多壁碳纳米管添加量使复合材料的摩擦磨损性能达到最佳,复合材料的磨损率从2.3×10~4 mm~3 N~(-1)m~(-1)降低到1.3×10~4 mm~3 N~(-1)m~(-1),降低了43.4%。通过对复合材料内部结构以及显微硬度、摩擦学等试验结果的分析,我们探讨了多壁碳纳米管增强的机理。
     3.采用原位化学氧化聚合法制备了聚苯胺/多壁碳纳米管复合材料并研究了其在中性电解液中的电容器性能。结果表明:在1M NaNO_3溶液、-0.2-0.8V扫描范围以及5mAcm~(-2)的电流密度下,聚苯胺/多壁碳纳米管复合材料的电容量达到了328Fg~(-1),明显优于纯聚苯胺的电容量193F~(-1)。我们还通过恒流充放电和阻抗分析测试,研究了复合材料电容器性能提高的原因。多壁碳纳米管提高聚苯胺电容性能的原因可能有以下几个因素:1)多壁碳纳米管的高比表面积可以使其与聚苯胺基体有更好的界面结合。2)聚苯胺/多壁碳纳米管复合材料形成了一个多孔的三维网络状结构,这提供了大的比表面积并使电解液在三维空间里有较好地储存和传输,复合材料也因此就有了更多的法拉第反应活性点从而也拥有了更大的电容值。3)多壁碳纳米管优异的力学性能和电学性能也大大提高了复合材料的结构稳定性同时降低其内部阻抗。另外,循环稳定性测试表明:聚苯胺/多壁碳纳米管复合材料比聚苯胺基体有更好的循环稳定性,在超级电容器材料领域中必将有着广阔的应用前景。
     4.为了降低贵金属的用量和提高其催化效率,寻找具有高比表面积和稳定性的载体材料成为了人们研究的热点。我们采用水热合成法制备了锐钛矿型的TiO_2-NTs并以其为载体制备了Pd/TiO_2-NTs、Pt/TiO_2-NTs电催化剂材料。通过对其在水合肼以及甲醇中电催化性能的研究,结果发现这两种材料都有很好的催化性能,其氧化还原峰的峰电位很负和峰电流也都很高。我们认为TiO_2-NTs高的比表面积和出色的稳定性使贵金属的用量降低同时又提高了其催化效率。另外,我们还讨论了水合肼和甲醇的催化机理。这些都表明TiO_2-NTs是一种很理想的燃料电池电催化剂载体材料。
Nanocomposites have been the research focus in the world in 21th century since nanotechnology has been applied in the materials fields. There are two hots including polymer-based nanocomposites and noble metal catalysts nanocomposites. Because the polymer-based nanocomposites have the advantages of all the components, the nanocomposites with excellent and novel properties can be prepared by designing the structure of the nanocomposites. The noble metal electrocatalysts are very important in the research of the fuel cell. However, the application of the fuel cell has been delayed by the high cost and low catalytic efficiency of noble metal electrocatalysts. So the good carrier materials which can low the cost and imporve the catalytic efficiency have recently been paid much attention.
     In this paper, we reviewed the latest development in the research of the nanocomposites. With the focus on the polymer/CNTs nanocomposites and the electrocatalysts nanocomposites using TiO_2-NTs as carrier, we have fabricated the polymer/CNTs nanocomposites, TiO_2-NTs, Pd/TiO_2-NTs and Pt/TiO_2-NTs electrocatalysts nanocomposites. The properties of the synthesized nanocomposites have been investigated in details. The main content is the following:
     1. The three kinds of polymer/CNTs nanocomposites, including poly(methyl methacrylate)/CNTs, epoxy/CNTs and polystyrene/CNTs, have been produced successfully by means of in-situ polymerization method. The influence of CNTs on the friction and wear properties of the polymer base were investigated in details.
     The results showed that the introduction of CNTs greatly lowed the friction coefficient and wear rate of the nanocomposites. The friction and wear properties of the pure polymer were effectively improved. And the best reinforcement impact could be obtained at the right introduction weight of CNTs. For PMMA/CNTs, the introduction of 1.0wt% CNTs can make the best reinforement. For EP/CNTs and PS/CNTs, the best tribological properties of the nanocomposites can be obtained at the introduction of 1.0wt% CNTs.
     And the reinforcement mechanisms of CNTs were proposed. The improvements on the tribological properties of polymer/CNTs nanocomposites were mainly attributed to the following factors: 1) super high mechanical and thermal properties of CNTs; 2) the unique structure of the polymer/CNTs nanocomposites.
     2. The copolymer have better properties and structure than the single polymer. PMMA/PS/MWNTs copolymer composites have been fabricated successfully by means of in-situ polymerization method.
     The introduction of MWNTs improved the friction and wear properties of the copolymer base. The best tribological properties of the copolymer nanocomposites were obtained at the introduction of 1.5wt% MWNTs. The wear rate of the nanocomposites was decreased by 43.4% from 2.3×10~4 mm~3 N~(-1)m~(-1) to 1.3×10~4 mm~3 N~(-1)m~(-1). The mechanisms of the improvements on the tribological properties were discussed by analysising the experimental data of the structure, tribological experiments of the copolymer nanocomposites.
     3. PANI/MWNTs have been synthesized successfully by means of in-situ chemical polymerization method. The electrochemical capacitance performance of the composites was investigated in the solution of 1M NaNO_3 by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge tests with a three-electrode system. At the current of 5mAcm~(-2), PANI/MWNTs showed the higher specific capacitance values of 328 Fg~(-1) than the pure PANI (193 Fg~(-1)). The main reasons may be attributed to the following factors: 1) The high surface area of MWNTs can help the conjunction between MWNTs and PANI; 2) the well-coated MWNTs of the composites produced a porous three-dimensional network, which might provide a large surface area and allow excellent electrolyte access and storage in three dimensions. Therefore, PANI/MWNTs composites have more available active sites for faradic reaction and larger specific capacitance than pure PANI. 3) The super high mechanical properties of MWNTs can improve the stability of the composites and excellent conductivity of MWNTs can low the resistance of the composites. So PANI/MWNTs composites with good stability have the promising application as the electrochemical capacitors.
     4. The carrier materials with high surface and good stabiligy have attracted much attention because they can low the load of noble metals and improve the catalytic efficiency. So the anatase TiO_2-NTs have been synthesized through the hydrothermal process. Pd/TiO_2-NTs and Pt/TiO_2-NTs electrocatalysts have been fabricated by chemical reduction. The catalytic activity of the two electrocatalysts for CH_3OH andN_2H_4 ? H_2O have been investigated in details. The negative voltage and the highcurrent were obtained. The main factors were the high surface and good stabiligy of TiO_2-NTs. The results imply that TiO_2-NTs are good carrier materials of the fuel cell electrocatalysts.
引文
[1] 马克·瑞特,丹尼尔·瑞特(著),席生岐,柴东朗(译),纳米技术——对又一重大概念的简明阐释,西安交通大学出版社,2004。
    [2] 张立德,纳米材料,化学工业出版社,2000。
    [3] 张立德,牟季美,纳米材料和纳米结构,科学出版社,2001。
    [4] R. Roy, Komamenis, D.M. Roy, Mater. Res. Soc. Symp. Proc. 1984,32,47.
    [5] 张玉龙,李长德,张银生,唐迪,梁民宪,陈京生,王喜梅,纳米技术与纳米塑料,中国轻工业出版社,2002。
    [6] 陈晓婷,唐旭东,王玉忠,合成树脂及塑料 2001,18(2),62。
    [7] S. Iijima, Nature 1991,354,56.
    [8] 王铀,沈静,化工新型材料 1998,1,8。
    [9] 陶杰,季学来,机械制造与自动化 2006,35(1),13。
    [10] 周立美,相似工程学,机械工业出版社,1998。
    [11] 郭刚,于杰,罗筑,陈兴江,刘一春,贵州科学 2002,20(2),22。
    [12] J.T. Christine, K.C. Bradley, A.W. Jeffrey, Z. Nicholas, L.L. Joseph, Polymer 1992, 33,1496.
    [13] R. Eli, H. Liang, Chem. Mater 1996, 8, 5461.
    [14] C. Yan, O. Jude, Chem. Mater 1999,11,2181.
    [15] 章永化,龚克成,高分子材料科学与工程 1997,7,14。
    [16] 吕建坤,柯毓才,漆宗能,益小苏,高分子学报 2001,1,85。
    [17] 乔放,李强,漆宗能,王佛松,高分子通报 1997,3,135。
    [18] 何天白,胡汉杰,功能高分子与新技术,化学工业出版社,2001。
    [19] 曾晓飞,陈建峰,王国全,高分子学报 2002,6,739。
    [20] H.Y.Zhu, G.Q. Lu, Materials Research Society Symposium —Proceedings 2002,703, 9.
    [21] 焦宁宁,王建明,石化技术与应用 2001,19(2),57。
    [22] 殷亚东,张志成,徐项凌,化学通报 1998,12,21。
    [23] Y. Zhu, Y. Qian, X. Li, Chem.Commum 1997,272,10811.
    [24] 王丽平,洪广言,功能材料 1998,29,3431。
    [25] 柯昌美,汪厚植,段辉,张美杰,赵惠忠,李轩科,武汉科技大学学报(自然科学版) 2003,26,120。
    [26] 李小兵,热固性树脂 1999,2,19。
    [27] G. Shi, M.Q. Zhang, M.Z. Rong, B. Wetzel, K. Friedrich, Wear 2004,256,1072.
    [28] L. Chang, Z. Zhang, C. Breidt, K. Friedrich, Wear 2005,258,141.
    [29] Y. Zhang, G.E. Zhou, Y.H. Zhang, L. Li, L.Z. Yao, C.M. Mo, Materials Research Bulletin 1999, 34,701.
    [30] E.Tang, G. Cheng, X. Ma, Powder Technology 2005,161,209.
    [31] 门艳茹,杨贤金,朱胜利,崔振铎,桑晓明,盛京,功能材料 2005,12,1927。
    [32] R. Tsuji, Y. Ogushi, Fusion Engineering and Design 1997,34-35,811.
    [33] 石楠,天津大学硕士论文,2006。
    [34] 文纲要,孙昭艳,杨剑,安立佳,高分子材料科学与工程 2002,18,154。
    [35] 宁平,夏林,张英东,艾细英,塑料工业 2003,31,26。
    [36] P.J. Nigrey, A.G. MacDiarmid, A.J. Heeger, J.C.S.Chem.Commun. 1979,594.
    [37] H. Shirakawa, E.J. Louis, A. G.MacDiarmid, C.K. Chiang, A.J. Heeger,J.C.S.Chem.Commun. 1977, 578.
    [38] A.F. Diaz, K. Kanazawa, G.P. Gardini, J.C.S.Chem.Commun. 1979,635.
    [39] J. Bacon, R.N. Adams, J.Am.Chem.Soc. 1968,90,6596.
    [40] A.G. MacDiarmid, J.C. Chiang, M. Halpern, W.S. Huang, J.R. Krawczyk, R.J. Mammone, S.L. Mu, N.L.D. Somasiri, W. Wu, Polym.Prepr.1984,25,248.
    [41] K.K. Kanazawa, A.F. Diaz, R.H. Geiss, W.D. Gill, J.F. Kwak, J.A. Logan, J.F. Rabolt, G.B. Street, J.C.S.Chem.Commun 1979, 854.
    [42] G. Tourillon, F. Gamier, J.Electroanal.Chem. 1982,135,173.
    [43] K. Tanaka, T. Shichiri, T. Yamabe, Synth.Met. 1986,16,207.
    [44] J.G. Speight, P. Kovacic, F.W. Koch, J.Macromol.Sci. 1971, 5,295.
    [45] D.M. Ivory, G.G. Miller, J.M. Sowa, L.W. Shacklette, R.R. Chance, R.H. Baughman,J.Chem.Phys. 1979, 71,1506.
    [46] A.G. MacDiarmid, Synth.Met. 1997, 84,27.
    [47] A.G. MacDiarmid, J.C. Chiang, A.F. Richter, A.J. Epstein, Synth.Met. 1987, 18,285.
    [48] A.G. MacDiarmid, J.C. Chiang, A.F. Richter, N.L.D. Somasiri, A.J. Epstein, Conducting Polymers, Alcacer.L.ed.,Reidel Publication, Dordrecht,1987, P105.
    [49] J.P. Travers, E.M. Genies, C. Tsintavis, Mol.Cryat.Liq.Cryst. 1985,121,195.
    [50] R.J. Cushman, P.M. Mcmanus, S.C. Yang, J.Electroanal.Chem. 1987,219, 335.
    [51] E.M. Genies, M. Lapkowski, J.F. Penneau, J.Electroanal. Chem. 1988,249,97.
    [52] T. Kobavashi, H. Yoneyama, H. Tamura, J.Electroanal.Chem. 1984,161,419.
    [53] A. Kitani, M. Kaya, S.I. Tsujioka, K. Sasaki, J.Polym.Sci:Part A, Polym.Chem. 1988,26,1531.
    [54] P. Nunziante, G. Pistoia, Electrochimica Acta 1989,34,223.
    [55] M.Morita, Macromol.Chem.Phys. 1995,196,2649.
    [56] 曾清华,王栋知,王淀佐,化工进展 1998,2,13。
    [57] 周健,俞进见,工程塑料应用 2004,32,50。
    [58] 王德禧,工程塑料应用 2002,30,572。
    [59] 刘燕,广西轻工业 2007,102,17。
    [60] R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 2002,297,787.
    [61] W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G..Wang, Science 1996,274,1701.
    [62] D.S. Xu, G.L. Guo, L.L. Gui, Y.Q. Tang, Z.J. Shi, Z.X. Jin, Z.N. Gu, W.M. Liu,X.L. Li, G.H. Zhang, Appl. Phys. Lett. 1999,75,481.
    [63] S. Iijima, T. Ichihashi, Nature 1993,363,603.
    [64] 李晓红,兰州大学博士论文,2003。
    [65] 张刚,湖南大学硕士学位论文,2004。
    [66] X. Zhou, J. Zhou, Z. Yang, Phys. Rev. B 2000,62,13692.
    [67] M. Treacy, T. W. Ebbesen, J. M. Gibson, Nature 1996,381,678.
    [68] D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R. E. Smalley, Appl. Phys. Lett. 1999, 74,3803.
    [69] H. Ago, K. Petritsch, M.S.P. Shaffer, A.H. Windle, R.H. Friend, Adv. Mater. 1999,11,1281.
    [70] E. Kymakis, G.A. Amaratun, J. Appl. Phys. Lett. 2002,80,112.
    [71] P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Science 1994,265,1212.
    [72] S. Iijima, C. Brabec, A. Maiti, J. Bernholc, J. Chem. Phys. 1996,104,2089.
    [73] N.G. Chopra, L.X. Benedict, V.H. Crespi, MX. Cohen, S.G. Louie, A. Zettl, Nature 1995,377,135.
    [74] M.R. Falvo, G.J. Clary, R.M. Taylor Ⅱ, V. Chi, F.P. Brooks Jr., S. Washburn, R. Superfine, Nature 1997, 389, 582.
    [75] J. Hone, M. Whitney, A. Zettl, Synth.Met. 1999,103,2498.
    [76] J. Hone, M.C. Llaguno, N.M. Nemes, A.T. Johnson, J.E. Fischer, D.A. Walters, M.J. Casavant, J. Schmidt, R.E. Smalley, Applied Physics Letters 2000,77,666.
    [77] J. Hone, M. Whitney, C. Piskoti, A. Zettl, Physical Review B-Condensed Matter 1999,59,R2514.
    [78] N.G. Mensah, G. Nkrumah, S.Y.Mensah, F.K.A. Allotey, Physics Letters A 2004,329,369.
    [79] J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z.Benes, J.E. Fischer, Applied Physics A-Materials Science & Processing 2002, 74,339.
    [80] S.Y. Mensah, F.K.A. Allotey, G. Nkrumah, N.G. Mensah, Physica E-Low-Dimensional Systems & Nanostructures 2004,23,152.
    [81] Y.K. Kwon, P. Kim, In High Thermal Conductivity Materials, 2006, pp 227-265.
    [82] S.Berber, Y. K.Kwon, D.Tomanek, Physical Review Letters 2000, 84,4613.
    [83] C.A. Dyke, J.M. Tour, Covalent Functionalization of Single-Walled Carbon Nanotubes for Materials Applications. In 2004, Vol. 108, pp 11151-11159.
    [84] Y. Li, S. Peng, D. Mann, J. Cao, R. Tu, K.J. Cho, H. Dai, On the Origin of Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes. In 2005,109, pp 6968-6971.
    [85] G. Wang, Y. Li, Y. Huang, Structures and Electronic Properties of Peanut-Shaped Dimers and Carbon Nanotubes. In 2005,109, pp 10957-10961.
    [86] N. Petkov, B. Platschek, M.A. Morris, J.D. Holmes, T. Bein, Oriented Growth of Metal and Semiconductor Nanostructures within Aligned Mesoporous Channels. In 2007,19, pp 1376-1381.
    [87] S.O. Koswatta, M.S. Lundstrom, D.E. Nikonov, Band-to-Band Tunneling in a Carbon Nanotube Metal-Oxide-Semiconductor Field-Effect Transistor Is Dominated by Phonon-Assisted Tunneling. In 2007,7, pp 1160-1164.
    [88] B.Q. Wei, R. Vajtai, P.M. Ajayan, Appl. Phys. Lett. 2001,79,1172.
    [89] M.S.P. Shaffer, H.W. Alan, Adv. Mater. 1999,11,937.
    [90] R. Kaushal, R.R Nachiket, Dae-Yun Kim, Nano Letters 2003,3, 829.
    [91] J. Sandier, M.S.P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, A.H. Windle, Polymer 1999,40,5967.
    [92] R. Haggenmueller, H.H. Gmommans, A.G. Rinzler, J.E. Fischer, K.I. Winey, Chemical Physics Letters 2000,330,219.
    [93] S. Kumar, H. Doshi, M. Srinivasrao, J.O. Park, D.A. Schiraldi, Polymer 2002, 43,1701.
    [94] W.E. Dondero, R.E. Gorga, Journal of Polymer Science Part B:Polymer Physics 2006,44, 864.
    [95] T.X. Liu, I.Y. Phang, L. Shen, S.Y. Chow, W.D. Zhang, Macromolecules 2004, 37, 7214.
    [96] Z. Jia, Z. Wang, C. Xu, J. Liang, B. Wei, D. Wu, S. Zhu, Materials Science and Engineering A 1999,271, 395.
    [97] K.H. An, K.K. Jeon, J.K. Heo, S.C. Lim, D.J. Bae, Y.H. Lee, J. Electrochem. Soc. 2002,149, A1058
    [98] 曾宪伟,赵东林,碳素技术 2004,4,16。
    [99] F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. Yang, C. Li, P. Willis, Adv. Mater. 2003,15,1161.
    [100] J. Ayutsede, M.Gandhi, S. Sukigara, H. Ye, C.Hsu, Y. Gogotsi, F. Ko, Biomacromolecules 2006, 7,208.
    [101] J.N. Coleman, U. Khan, Y.K. Gun'ko, Adv. Mater. 2006,18,689.
    [102] M. Olek, J Ostrande, S. Jurga, H. Mohwald, N. Kotov, K. Kempa, M. Giersig, Nano Lett. 2004,4,1889.
    [103] H.Paloniemi, M.Lukkarinen, T. Aaritalo, S.Areva, J.Leiro, M.Heinonen, K. Haapakka, J. Lukkari, Langmuir 2006,22,74.
    [104] R. Duggal, F. Hussain, M. Pasquali, Adv. Mater. 2006,18,29.
    [105] L.S. Schadler, S.C. Giannaris, P.M. Ajayan, Appl. Phys. Lett. 1998,73, 3842.
    [106] R. Andrews, D. Jacques, A.M. Rao, T. Rantell, F. Derbyshire, Y. Chen, J. Chen, R.C. Haddon, Appl. Phys. Lett. 1999,75,1329.
    [107] D. Qian, E.C. Dickey, R. Andrews, T. Rantell, Appl. Phys. Lett. 2000,76,2868.
    [108] V. Lordi, N. Yao, J. Mater. Res. 2000,15,2770.
    [109] C.A. Cooper, R.J. Young, M. Halsall, Compos. Part: A 2001,32,401.
    [110] M. Cadek, J. N. Coleman, V. Barron, K. Hedicke, W. J. Blau, Appl Phys.Lett. 2002,81,5123.
    [111] W. Tang, M.H. Santare, S.G. Advani, Carbon 2003,41,2779.
    [112] C.A. Grimes, C. Mungle, D. Kouzoudis, S. Fang, P.C. Eklund, Chem. Phys.Lett. 2000,319,460.
    [113] M. Gao, S. Huang, L. Dai, G. Wallace, R. Gao, Z. Wang, Angew Chem Int Ed 2000,39,3664.
    [114] A. Allaouia, S. Baia,b, H.M. Chengb, J.B. Baia, Compos. Sci. Technol. 2002, 62,1993.
    [115] P.C.P. Watts, W.K. Hsu, G.Z. Chen, D.J. Fray, H.W. Kroto, D.R.M. Walton, J. Mater. Chem. 2001,11,2482.
    [116] 贾志杰,王正元,徐才录,材料开发与应用 1998,13,22。
    [117] 徐化明,李冉,梁吉,无机化学学报 2005,9,20。
    [118] D.M. Delozier, K.A. Watson, J.G. Smith, J.W. Connell, Compos. Sci. Technol. 2005,65, 749.
    [119] S. Curran, A.P. Davey, J. Coleman, A. Dalton, S. Maier, A. Drury, D. Gray, M. Brennan, K. Ryder, M. Lamy, D.L. Chapelle, Syn. Met. 1999,103,2559.
    [120] Z.X. Jin, L. Huang, S.H. Goh, G.Q. Xu, W. Ji, Chem. Phys. Lett. 2000, 332, 461.
    [121] B. McCarthy, J.N. Coleman, R. Czerw, A.B. Dalton, M. Panhuis, D. Tekleab, H.J. Byrne, D.L. Carroll, W.J. Blau, Nanotechnology 2001,12,187.
    [122] W.Wu, JXi, L.Liu, L.Guo, Y.Z. Xi.; L.Dai, D.Zhu, Chemical Physics Letters 2002,364,196.
    [123] Z. Wang, C. Liu, Z. Liu, H. Xiang, Z. Li, Q. Gong, Chem Phys Lett 2005,407, 35.
    [124] H. S.Woo, R.Czerw, S.Webster, D.L. Carroll, J.W. Park, J.H. Lee, Synth. Met., 2001,116,369.
    [125] J. Fan, M.X. Wan, D.B. Zhu, B.H. Chang, Z.W. Pan, S.S. Xie, J. Appl. Poly. Sci. 1999,74,2605.
    [126] http:PPwww. whlib. ac. cnPgcjsxxkbP05202. htm (2005201215) [2006202].
    [127] 封伟,易文辉,徐友龙,连彦青,王晓工,吉野胜美,物理学报 2003,52,1272。
    [128] 杨杰,沈曾民,熊涛,新型碳材料 2003,18,95。
    [129] 李宏建,彭景翠,许雪梅,夏辉,化学物理学报 2001,14,211。
    [130] 沈曾民,杨子芹,赵东林,陈晓红,郝宁,复合材料学报 2003,20,25。
    [131] Z. Fan, G. Luo, Z. Zhang, L. Zhou, F.Wei, Materials Science and Engineering: B,2006,132,85.
    [132] C. Zhang, Q.Q. Ni, S.Y. Fu, K. Kurashiki,Composites Science and Technology 2007, 67,2973.
    [133] 程瑞玲,王依民,合成纤维工业 2004,27,25。
    [134] J.J. Ge, H.Q. Hou, Q. Li, M.J. Graham, A. Greiner, D.H. Reneker, F.W. Harris, S.Z.D. Cheng, J. AM. CHEM. SOC. 2004,126,15754.
    [135] W.X. Chen, J.P. Tu, L.Y. Wang, H.Y. Gan, Z.D. Xu, X.B. Zhang, Carbon 2003,41,215.
    [136] H. Cai, F.Y. Yuan, Q.J. Xue, Mater. Sci. Eng. A 2004,94, 364.
    [137] M. Cochet, W.K. Maser, A.M. Benito, M.A. Callejas, M.T. Martinez, J.M. Benoit, J. Schreiber, O. Chauvet, Chem. Commun. 2001,1450.
    [138] J.E. Huang, X.H. Li, J.C. Xu, H.L. Li, Carbon 2003,41,2731.
    [139] X. Zhang, J. Zhang, R. Wang, Z. Liu, Carbon 2004,42,1455.
    [140] P. Santhosh, A. Gopalan, K.P. Lee, J. Catal. 2006,238,177.
    [141] Y.G. Wang, H.Q. Li, Y.Y. Xia,Adv. Mater. 2006,18,2619.
    [142] E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. Beguin, J. Power Sources 2006,153,413.
    [143] H. Chen, Z.P. Huang, D.Z. Wang, S.X. Yang, J.G. Wen, Z.F. Ren, Applied Physics A 2004, 73,129.
    [144] E. Frackowiak, F. Beguin, Carbon 2002,40,1775.
    [145] 孔祥荣,彭鹏,孙桂香,郑文君,化学通报 2007,1,8。
    [146] S. Matsuda, Appl. Catal. 1983,8,14.
    [147] B.B. Lakshmi, C. Patrissi, J. Chem. Mater. 1997,9,2544.
    [148] P.D. Cozzoli, A. Kornowski, J. Am. Chem. Soc. 2003,125,145.
    [149] 王保玉,张景会,刘湛(?),精细化工 2003,20,333。
    [150] 李晓红,张校刚,力虎林,高等学校化学学报 2001,22,130。
    [151] 李伟,王晓冬,杨建军,化学研究 2002,13,12。
    [152] T. Kasuga, M Hiramatsu, A. Hoson, T. Sekino, K. Niihara. Langmuir 1998,14, 3160.
    [153] G.H. Du, Q. Chen, R.C. Che, Z.Y. Yuan, L.M. Peng, Appl. Phys. Lett. 2001,79, 3702.
    [154] X. Sun, Y. Li, Chem. Eur. J. 2003,9,2229.
    [155] T. Kasuga, Thin Solid Films 2006,496,141.
    [156] 赖跃坤,孙岚,左娟,物理化学学报 2004,20,1063。
    [157] A. Ghicov, H. Tsuchiya, J.M. Macak, P. Schmuki, Electrochemistry Communications 2005, 7, 505.
    [158] Y. Yang, X.H. Wang, L. Li, Materials Science and Engineering B 2008,149, 58.
    [159] D.J. Yang, H.G. Kim, S.J. Cho, W.Y. Choi, Materials Letters 2008,62, 775.
    [160] M.A. Khan, H.T. Jung, O.B. Yang, J. Phys. Chem. B 2006,110,6626.
    [161] V. Idakiev, Z.Y. Yuan, T. Tabakova, B.L. Su, Applied Catalysis A: General 2005,281,149.
    [162] D. Li, Z. Wang, Y. Ding, Inorg. Chem. 1999,38,4737.
    [163] H.J. Jong, I.K. Hider, J.C. Kjeld, Chem. Mater. 2002,14,1445.
    [164] 张青红,高濂,郑珊,化学学报 2002,60,1439。
    [165] M. Qamar, C.R. Yoon, H.J. Oh, N.H. Lee, K. Park, D.H. Kim, K.S. Lee, W.J. Lee, S.J. Kim, Catalysis Today 2008,131,3.
    [166] J.C. Xu, M. Lu, X.Y. Guo, H.L. Li, Journal of Molecular Catalysis A 2005, 226,123.
    [167] 王芹,陶杰,翁履谦,宋申华,陶海军,材料开发与应用 2004,19,9。
    [168] S. Uchida, R. Chiba, M. Tomiha, N. Masaki, M. Shirai, Studies in Surface Science and Catalysis 2003,146, 791.
    [169] I.C. Flores, J.N. De Freitas, C. Longo, M.A. De Paoli, H. Winnischofer, A.F. Nogueira, Journal of Photochemistry and Photobiology A: Chemistry 2007,189, 153.
    [170] G. K. Mor, K. Shankar, M. Paulose, Nano. Lett. 2005, 5,191.
    [171] O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, C.A. Grimes, Sensors and Actuators B 2003,93,338.
    [172] G.K. Mor, K. Shankar, M. Paulose, O.K Varghese, C.A. Grimes, Nano. Lett. 2006,6,215.
    [173] J.H. Park, S. Kim, A.J. Bard, Nano Lett. 2006,6,24.
    [174] L.M. Ang, T.S.A. Hor, G.Q. Xu, C. H. Tung, S.P. Zhao, J.L.S. Wang, Carbon 2000,38,363.
    [175] B.D. Yao, Y.F. Chan, X.Y. Zhang, W.F. Zhang, Z.Y. Yang, N. Wang, Appl. Phys.Lett. 2003,82,281.
    [176] Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, H. Xu, J. Am. Chem. Soc. 2003, 125,12384.
    [177] H.Q. Song, X.P. Qiu, F.S. Li, W.T. Zhu, L.Q. Chen, Electrochemistry Communications 2007,9,1416.
    [178] M. Wang, D.J. Guo, H.L. Li, Journal of Solid State Chemistry 2005, 178,1996.
    [1]何鹏,冯新,汪怀远,史以俊,陆小华,润滑与密封 2007,32(4),173。
    [2] F. Li, H. Hu, J.L. Li, B. Zhao, Wear 2002,249, 877.
    [3] R.S. Bahadu, D. Tabor, Wear 1984,98,1.
    [4] Z.Z. Zhang, Q.J. Xue, W.M. Liu, W.C. Shen, Tribol. Int. 1998,31,361.
    [5] R.S. Bahadu, D.L. Gong, Wear 1992,158,41.
    [6] F. Li, F.Y. Yan, L.G. Yu, W.M. Liu, Wear 2000,237,33.
    [7] S. Iijima, Nature 1991,354, 56.
    [8] T.W. Ebbesen, P.M. Aiayan, Nautre 1992,358,220.
    [9] M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature 1996,381,678.
    [10] E.W. Wong, P.E. Sheehan, Science 1997,277,1971.
    [11] P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Science 1994,265,1212.
    [12] M.S.P. Shaffer, A.H. Windle,Adv. Mater. 1999,11,937.
    [13] C. Stephan, T.P. Nguyen, M.L.D.L. Chapelle, S. Lefrant, C. Jounet, P. Bernier, Synth. Met. 2000,108,139.
    [14] Z.X. Jin, K.P. Pramoda, G.Q. Xu, S.H. Goh, Chem. Phys. Lett. 2001,337,43.
    [15] K.T. Lau, S.Q. Shi, Carbon 2002,40,2965.
    [16] T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa,. N. Ishii,T. Aida, Science 2003,300,2072.
    [17] R.H. Baughman, A.A. Zakh idov, W.A.de Heer, Science. 2002,297,787.
    [18] W.X. Chen, F. Li, G. Han, J.B. Xia, L.Y. Wang, J.P. Tu, Z.D. Xu, Tribol Lett. 2003,15,275.
    [19] 夏军宝,陈卫祥,李飞,韩贵,王浪云,涂江平,徐铸德,浙江大学学报(工学版) 2003,37,471。
    [20] H. Cai, F.Y. Yuan, Q.J. Xue, Mater. Sci. Eng. A 2004,364,94.
    [21] J. Kong, H. Soh, A. Cassell, C.F. Quate, H. Dai, Nature 1998, 395,878.
    [22] A. Cassell, J. Raymakers, J. Kong, H. Dai, J. Phys. Chem. 1999,103,6484.
    [23] M. Su, B. Zheng, J. Liu, Chem. Phys. Lett. 2000,322,321.
    [24] 李晓红,兰州大学博士学位论文,2003。
    [25] 李梦轲,兰州大学博士学位论文,2003。
    [26] 陆梅,兰州大学博士学位论文,2005。
    [27] B. Mail, J. Vac. Sci. Tech.B 1993,11,658.
    [28] D. Brambley, R. Bennett, J. Res. 1996,13,42.
    [29] M. Khoury, D. Ferry, J. Vac. Sci. Tech. B 1996,14,114.
    [30] E. Dobisz, S. Brandow, R. Bass, J. Vac. Sci. Tech. B 2000,18,132.
    [31] D. Hasko, S. Yasin, A. Mumtaz, J. Vac. Sci. Tech. B 2000,18,426.
    [32] 兰州大学高分子研究所,高分子化学实验,兰州大学出版社,1999。
    [33] Z.J. Jia, Z.Y. Wang, C.L. Xu, J. Liang, B.Q. Wei, D.H. Wu, S.W. Zhu, Mater. Sci. Engi. A 1999,271,395.
    [34] C. Stephan, T.P. Nguyen, M.L. de la Chapelle, S. Lefrant, C. Journet, P. Bernier, Synth. Met. 2000,108,139.
    [35] 张克惠,张广成,焦剑,塑料材料学,西北工业大学出版社,2000。
    [1] V.N. Pavlyuchenko, L.V. Kholodnova, S.K. Kanaun, N.A. Byrdina, Z.M. Alekseyeva, L.T. Kudryavtseva, I.N. Vishnevskaya, A.Ya. Goldman, S.S. Ivanchev, Polymer Science U.S.S.R. 1989,31,1012.
    [2] U. Geissler, M.L. Hallensleben, L. Toppare, Syn. Met. 1991,40,239.
    [3] 肖卫东,何培新,胡高平,湖北大学学报(自然科学版) 2000,22(2),167。
    [4] 文纲要,孙昭艳,杨剑,安立佳,高分子材料科学与工程 2002,18(2),154。
    [5] 何本桥,张玉红,肖卫东,何培新,高分子材料科学与工程,2003,19(2),61。
    [6] 宋波,任显成,现代塑料加工应用2003,15(1),1。
    [7] 宁平,夏林,张英东,艾细英,塑料工业 2003,31(3),26。
    [8] A. Pegoretti, J. Kolar(?)k, L. Fambri, A. Penati, Polymer 2003,44,3381.
    [9] G. Cakmak, Z. K(?)c(?)kyavuz, S. K(?)c(?)kyavuz, Syn. Met. 2005,151,10.
    [10] X.C. Ge, Y. Xu, Y.Z. Meng, R.K.Y. Li, Composites Science and Technology 2005,65,2219.
    [11] C.F. Zhou, T. Liu, T. Wang, S. Kumar, Polymer 2006,47,5831.
    [12] J.M. Park, S.T. Quang, B.S. Hwang, K. L. DeVries, Composites Science and Technology 2006,66,2686.
    [13] L.L. Cui, X.Y. Ma, D.R. Paul, Polymer 2007,48,6325.
    [14] S. Ghose, K.A. Watson, D.C. Working, J.W. Connell, J.G. Smith Jr., Y.P. Sun, Composites Science and Technology 2008,68,1843.
    [15] A.R. Mahdavian, M. Ashjari, A.B. Makoo, European Polymer J. 2007,43,336.
    [16] I.K. Yang, P.H. Tsai, Polymer 2006,47, 5131.
    [17] J.W. Chung, SJ. Han, S.Y. Kwak, Composites Science and Technology 2008,68, 1555.
    [18] L. Lu, Z. Zhou, Y. Zhang, S.F. Wang, Y.X. Zhang, Carbon 2007,45,2621.
    [19] 杨福生,化学工程师 2001,82,31。
    [20] 徐玲,石油化工高等学校学报 1998,11(4),12。
    [21] B. Marrs, R. Andrews, D. Pienkowski, Carbon 2007,45,2098.
    [22] Z.J. Jia, Z.Y. Wang, C.L. Xu, J. Liang, B.Q. Wei, D.H.Wu, S.W. Zhu, Mater Sci Eng A 1999,271,395.
    [23] 张克惠,张广成,焦剑,塑料材料学,西北工业大学出版社,2000。
    [1] P.J. Nigrey, A.G. MacDiarmid, A.J. Heeger,J.C.S.Chem.Commun. 1979, 594.
    [2] H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, J.C.S.Chem.Commun. 1977, 578.
    [3] L.M. Gan, L.H. Zhang, H.S.O. Chan, C.H. Chew, Mater Chem Phys 1995,40,94.
    [4] M. Matsumura, T. Ohno, S. Saito, M. Ochi, Chem Mater 1996, 8,1370.
    [5] B.Z. Tang, Y. Geng, J.W.Y. Lam, B. Li, X. Jing, X. Wang, Chem. Mater. 1999, 11,1581.
    [6] H. Kawaguchi, Prog Polym Sci 2000,25,1171.
    [7] Y.C. Liu, C.J. Tsai, J. Electroanalytical Chemistry 2002, 537,165.
    [8] K. Suri, S. Annapoorni, R.P. Tandon, N.C. Mehra, Synth. Met. 2002,126,137.
    [9] 邓建国,贺传兰,龙新平,彭宇行,李蓓,陈新滋,高分子学报 2003,3,393。
    [10] 孙永锐,石南林,罗鲲,郭雪梅,材料导报 2003,17,98。
    [11] 赵金玲,王立新,任丽,高分子材料科学与工程 2003,19,185。
    [12] 陈爱化,王海侨,赵彬,复合材料学报 2004,21,157。
    [13] 生瑜,陈建定,朱德钦,功能高分子学报 2004,17,13。
    [14] D. Amitabha, D. Ajay, L. Susanta, Synth. Met. 2004,144,303.
    [15] 范颖,刘丽敏,李长江,高分子材料科学与工程 2005,21,70。
    [16] 桂长清,电池工业 2003,8,163。
    [17] 朱磊,吴伯荣,陈晖,刘明义,简旭宇,李志强,稀有金属 2003,27,385。
    [18] A. Rudge, J. Davey, I. Raistrick, A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld,J.P. Ferraris, J. Power Sources 1994,47, 89.
    [19] H. Zhou, H. Chen, S. Luo, G. Lu, W. Wei, Y. Kuang, Solid State Electrochem 2005,9,574.
    [20] A. Laforgue, P. Simon, C. Sarrazin, J.F. Fauvarque, J. Power Sources 1999, 80,142.
    [21] Kwang Sun Ryu, Kwang Man Kim, Nam-Gyu Park, Yong Joon Park, Soon Ho Chang, J. Power Sources 2002,103,305.
    [22] N. Oyama, T. Tatasuma, T. Sato, T. Sotomura, Nature 1995, 373, 598.
    [23] 陈梁,于有海,毛华平,卢晓峰,张万金,危岩,高等学校化学学报 2004,25,1768。
    [24] D.M. Chao, J.Y. Chen, X.F. Lu, L. Chen, W.J. Zhang, Y. Wei, Synth. Met. 2005, 150,47.
    [25] J.H. Park, O.O. Park, K.H. Shin, C.S. Jin, J.H. Kim, Electrochem. Solid State Lett. 2002, 5, H7.
    [26] S. Iijima, Nature 1991,354, 56.
    [27] L.S. Schadler, S.C. Giannaris, P.M. Ajayan, Appl. Phys. Lett. 1998,73,3842.
    [28] D. Qian, E.C. Dickey, R. Andrews, T. Rantell, Appl. Phys. Lett. 2000,76,2868.
    [29] R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 2002,297,787.
    [30] X.H. Chen, G. Zhang, C.S. Chen, L.P. Zhou, S.L. Li, X.Q. Li, Adv. Eng. Mater. 2003,5,514.
    [31] H.J. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley, Nature 1996,384,147.
    [32] P.P. Joshi, S.A. Merchant, Y.D. Wang, D.W. Schmidtke, Anal. Chem. 2005, 77, 3183.
    [33] M. Cochet, W.K. Maser, A.M. Benito, M.A. Callejas, M.T. Martinez, J.M. Benoit, J. Schreiber, O. Chauvet, Chem. Commun. 2001,1450.
    [34] J.E. Huang, X.H. Li, J.C. Xu, H.L. Li, Carbon 2003,41,2731.
    [35] Z. Wei, M. Wan, T. Lin, L. Dai, Adv. Mater. 2003,15,136.
    [36] X. Zhang, J. Zhang, R. Wang, Z. Liu, Carbon 2004,42,1455.
    [37] M. Baibarac, I. Baltog, C. Godon, S. Lefrant, O. Chauvet, Carbon 2004, 42, 3143.
    [38] P. Santhosh, A. Gopalan, K.P. Lee, J. Catal. 2006,238,177.
    [39] G. Wu, L. Li, J.H. Li, B.Q. Xu, J. Power Sources 2006,155,118.
    [40] V. Gupta, N. Miura, J. Power Sources 2006,157, 616.
    [41] V. Gupta, N. Miura, Electrochim. Acta 2006, 52,1721.
    [42] H.K. Chaudhari, D.S. Kelkar, Polym Int. 1997,42, 380.
    [43] M. Terrones, W.K. Hsu, A. Schilder, H. Terrons, N. Grobert, J.P. Hare, Appl. Phys. A. 1998,66, 307.
    [44] W. Feng, X.D. Bai, Y.Q, Lian, J. Liang, X.G. Wang, K. Yoshino, Carbon 2003, 41,1551.
    [45] A.K. Chatterjee, M. Sharon, R. Banerjee, M. Neumann-Spallart, Electrochimica Acta 2003,48,3439.
    [46] G.X. Wang, J. H. Ann, J. Yao, M. Lindsay, H.K. Liu, S.X. Dou, J. Power Sources 2003,16,119.
    [47] Z.S. Lou, Q.W. Chen, W. Wang, Y.F. Zhang, Carbon 2003,41,3063.
    [48] N. pierard, A. Fonseca, Z. Konya, I. Willems, G. Van Tendeloo, J.B. Nagy, Chemical Physics Letters 2001,335,1.
    [49] S.M. Park, in: H.S. Nalwa (Ed.), Handbook of Organic Conductive Molecules and Polymers, vol. 3, Wiley, New York, 1997, pp. 428-432.
    [50] Y.K. Zhou, B.L. He, W.J. Zhou, J. Huang, X.H. Li, B. Wu, H.L. Li, ElectrochimActa 2004,49,257.
    [1] E.S. Steigerwalt, G.A. Deluga, C.M. Lukehart, J. Phys. Chem.B 2002, 106,760.
    [2] D.A. Stevens, S. Zhang, Z. Chen. J.R. Dahn, Carbon 2003,41,2769.
    [3] J.T.Moore, D. Chu, R.Z. Jiang, G.A. Deluga, C.M. Lukehart, Chem. Mater. 2003, 15,1119.
    [4] X. Sun, R. Li, D. Villers, J.P. Dodelet, S. Desilets, Chem. Phys. Lett. 2003,379, 99.
    [5] C. Rice, S. Ha, R.I. Masel, A. Wieckowski, J. Power Sources 2003,115,229.
    [6] T. Okada, N. Arimura, C. Ono, M. Yuasa, Electrochim. Acta 2005, 51,1130.
    [7] D.J. Guo, H.L. Li, J. Power Sources 2006,160,44.
    [8] P.K. Shen, C.W. Xu, Electrochem. Commun. 2006,8,184.
    [9] T. Onoe, S. Iwamoto, M. Inoue, Catal. Commun. 2007,8,701.
    [10] J. Solla-Gull, E. Lafuente, A. Aldaz, M.T. Martinez, J.M. Feliu, Electrochim. Acta 2007, 52,5582.
    [11] V. Lordi, N. Yao, J. Wei, Chem. Mater. 2001,13,733.
    [12] J.S. Yu, S. Kang, S.B. Yoon, G. Chai, J. Am. Chem. Soc. 2002,124,9382.
    [13] K.Y. Chan, J. Ding, J. Ren, S. Cheng, K.Y. Tsang, J. Mater. Chem. 2004,14, 505.
    [14] J. Guzman, S. Carrettin, A. Corma, J. Am. Chem. Soc. 2005,127,3286.
    [15] H.B. Sufifredini,V. Tricoli, L.A.Avaca, N.Vatistas, Electrochem. Commun. 2004, 6,1025.
    [16] 张青红,高濂,郑珊,化学学报 2002,60,1439。
    [17] M. Qamar, C.R. Yoon, H.J. Oh, N.H. Lee, K. Park, D.H. Kim, K.S. Lee, W.J. Lee, S.J. Kim, Catalysis Today 2008,131,3.
    [18] J.C. Xu, M. Lu, X.Y. Guo, H.L. Li, Journal of Molecular Catalysis A 2005,226, 123.
    [19] 王芹,陶杰,翁履谦,宋申华,陶海军,材群开发与应用 2004,19,9。
    [20] A.R. Armstrong, G. Armstrong, J. Canales, P.G. Bruce, Angew. Chem. Int. Ed. 2004,43,2286.
    [21] S. Uchida, R. Chiba, M. Tomiha, N. Masaki, M. Shirai, Studies in Surface Science and Catalysis 2003,146 791.
    [22] J. Li, L. Li, L. Zheng, Y. Xian, L. Jin, Talanta 2006,68,765.
    [23] A.Y.H. Lo, R.W. Schurko, M. Vettraino, B.O. Skadtchenko, M. Trudeau, D.M. Antonelli, Inorg. Chem. 2006,45,1828.
    [24] I.C. Flores, J.N. De Freitas, C. Longo, M.A. De Paoli, H. Winnischofer, A.F. Nogueira, Journal of Photochemistry and Photobiology A: Chemistry 2007,189,153.
    [25] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv.Mater. 1999,11, 1307.
    [26] J.M. Leger, S. Rousseau, C. Coutanceau, F. Hahn, C. Lamy, Electrochim. Acta 2005,50,5118.
    [27] C. Lu, C. Rice, R.I. Masel, P.K. Babu, P.Waszczuk, H.S. Kim, E. Oldfield, A. Wieckowski, J. Phys. Chem. B 2002,106,9581.
    [28] Y.K. Zhou, L. Cao, F.B. Zhang, B.L. He, H.L. Li, J. Electrochem. Soc. 2003, 150,A1246.
    [29] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 1998,14, 3160.
    [30] L. Torrente-Murciano, A.A. Lapkina, D.V.Bavykin, F.C.Walsh, K.Wilson, J. Catal 2007,245,272.
    [31] 王玫,兰州大学硕士论文,2006。
    [32] D.J. Guo, H.L. Li, J. Colloid Interface Sci. 2005,286,274.
    [33] C. Batchelor-McAuley, C.E. Banks, A.O. Simm, T.G.J. Jones, R.G. Compton, Analyst 2006,131, 106.
    [34] K. Honda, M. Yoshimura, T.N. Rao, D.A. Tryk, A. Fujishima, J. Electroanal. Chem. 2001,514,35.
    [35] 郭道军,兰州大学博士论文,2006。
    [36] M.P. Hogarth, G.A. Hards, Platinum Metals Rev. 1996,40,150.
    [37] X. Li, W.X. Chen, J. Zhao, W. Xing, Z.D. Xu, Carbon 2005,43,2168.
    [38] D.J. Guo, H.L. Li, J. Power Sources 2006,160,44.
    [39] A. Kabbabi, R. Faure, R. Durand, B. Bedan, F. Hahn, J.M. Leger, C. Lamy, J. Electroanal Chem. 1998,444,41.
    [40] D.R. Rolison, P.L. Hagans, K.E. Swider, J.W. Long, Langmuir 1999,15,774.
    [41] T. Yajima, N. Wakabayashi, H. Uchida, M. Watanabe, Chem.Comm. 2003, 7, 828.
    [42] M.Y. Wang, J.H. Chen, Z. Fan, H. Tang, G.H. Deng, D.L. He, Y.F. Kuang, Carbon 2004,42, 3251.
    [43] H. Wang, T. Loffler, H. Baltruschat, J. Appl. Electrochem. 2001,31,759.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700