用户名: 密码: 验证码:
复杂断块低渗致密砂岩气藏裂缝发育规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国低渗致密储层不同程度地发育天然裂缝,裂缝的存在与否对油气井的产能高低起重要控制因素,因其分布复杂,目前这类油气藏开发效果普遍较差,特别是我国东部油气田断块小,裂缝加上小断层的存在为油气田开发增加了难度,给开发地质研究提出了更新的研究课题。本文在前人相关研究基础上,以户部寨气田ES_4段作为典型实例,通过多种理论、方法及生产动态资料有机结合,详细研究了低渗致密砂岩储层裂缝裂分布规律研究方法及缝裂分布模型建立。
     本文首先分析了户部寨气田裂缝成因,引入平衡地质剖面与包裹体测温等技术手段对现有断层进行描述和质量的检验、建立正确的地质模型和构造力学模型、应用构造分形的预测小断裂系统的分布概率等新思路。然后,在对岩芯观察和室内试验的基础上,系统研究了户部寨气田裂缝定性和定量参数,为定量预测裂缝分布提供了基础;在裂缝定量描述、构造发育演化史、地质模型和力学模型建立的基础上,应用三维有限元数值模拟方法对ES_4段构造裂缝的分布进行了定量预测;应用概率统计方法,通过构造物理模拟、试验分析的运用和验证研究裂缝渗流网络特征;应用平衡地质剖面方法研究构造演化特征及组合模式分析,进一步应用构造分形方法预测小断层分布概率,建立储层裂缝三维预测模型、小断裂系预测模型和裂缝网络模型,达到精确预测复杂断块裂缝的分布规律及裂缝形成动态变化规律。
     通过以上的研究,对复杂断块低渗致密砂岩气藏裂缝研究理论、研究思路、应用技术和方法等方面取得“两个创新、两个突破”:(1) 首次以伸展构造理论为基本依据,根据断裂的分形分布特征,用分形几何方法对目前资料尚无法识别的小断裂系数量分布特征进行了定量预测,提出了天然气藏裂缝渗流系统和中小断裂系为渗流双通道的新观点;(2) 首次提出了从裂缝系统、天然裂缝渗流网络系统、断裂系统及地应力场在开发应用中的分析四方面有机配合来综合评价和研究复杂断块致密砂岩气藏裂缝研究新思路;(3) 在裂缝与小断裂系相结合的双通道系统研究、以裂缝参数预测与裂缝渗流网络系统改造相结合的系列技术与方法方面取得了突破;(4) 针对多组系裂缝的发育特点,在对天然裂缝渗流网络数值模拟的基础上,对裂缝渗流体系的改造进行了构造物理模拟和数值模拟分析,在对裂缝形成动态变化规律预测方面取得突破,为气藏井网优化、改造和提高采收率提供了地质理论依据。
In our country, intrinsic fracture is growing to different extent in low-permeability tight layer. Whether the fractures exist plays an important control role on well productivity. At present, because of complicated distribution, the development effect of such hydrocarbon is poor. Especially in the east of our country fault block is small, in addition to the fractures, there are small faults for good measure, which adds the difficulty in developing oil-gas field and brings forward a new problem for development geology. On the basis of former correlation study, this paper takes Hubuzai oil field for a representative example, traverses the research approach of distribution rules and modeling in low-permeability tight sandstone layer.This paper firstly analyzes fracture cause of Hubuzai gas field, and inducts equilibrium geologic section and inclusion temperature measurement etc to describe fault in existence and check its quality, then sets up proper geologic model and structural mechanics model, and the new thought that predicts distribution probability of small fault system by structural fractal theory. On the basis of observation on cores and indoor experiment, study the qualitative and quantitative parameters by the numbers of Hubuzai gas field, provides a reference for quantitative prediction the fracture distribution. After quantitative description of fracture and evolvement history of structure, and establishment of geologic model and mechanics model, carries out quantitative prediction on the distribution of structural fracture of ES4 section by three-dimension finite element numerical simulation method. On the basis of physical simulation of structure, exertion and verification of experimental analysis, this paper studies the network characteristic of fracture seepage. It also Studies the characteristic of structural evolution and analyzes the combined mode by equilibrium geologic section method, and more predicts distribution probability of small fault system by structural fractal theory, and sets up three-dimension prediction model of fracture, prediction model of small fracture system and network model of fracture, so accurately predicts distribution rules of complex fault block and dynamic change rules of fracture formation.From above researches, some harvests are got in research theory, research
    thought, and applied technology and method, summarized as "two innovations and two breakthroughs" as follows:1) On the basis of extensional tectonics theory, according to the characteristics of fracture fractal distribution, firstly conduct quantitative prediction of quantity distribution characteristics of small fracture system beyond of identification now by means of fractal geometry theory. Then present the new viewpoint that fracture seepage system of natural gas reservoir and that of medium or small fault have two channels when fluid flows through porous medium.2) This paper firstly present the new thought that appraise and research synthetically the fracture of complex fault block tight sandstone gas reservoir cooperated with four aspects such as fracture system, natural fracture seepage network system, fault system, and analysis of earth stress field applied in development.3) This paper has made breakthroughs in the research of dual-channel system, i. e. fracture system and small fault system, and the series of technologies and methods combined fracture parameters prediction and fracture seepage network system.4) Aimed at growth characteristics of multicomponent fracture, on the basis of numerical simulation on natural fracture seepage network system, conduct structural physical simulation and numerical simulation on alteration of fracture seepage system. This paper has made breakthroughs in predicting dynamic variation rules of fracture, and provides geological theory reference for pattern optimization and reconstruct, and IOR.
引文
[1] B.H迈杰鲍尔.裂缝性油田开发特征.石油工业出版社,1989.
    [2] 范高尔夫·拉特,T.D.裂缝油藏工程基础.石油工业出版社,1989.
    [3] 刘瑞苟.显微构造地质学.地质出版社.1988.
    [4] 纳尔逊.R.A.天然裂缝性储层的地质分析.石油工业出版社,1988.
    [5] 斯麦霍夫.E.M,裂缝性储层勘探的基本理论与方法.石油工业出版社,1991.
    [6] 王允诚.裂缝性致密储集层.石油工业出版社,1992.
    [7] 唐明辉.节理的断裂力学机制研究进展.地质科技情报,1991.10,NO.2
    [8] 周加晓.裂缝性油气勘探论文集.石油工业出版社,1991.
    [9] 万天丰.古构造应力场.地质出版社,1988.
    [10] 杜伯仁.分形理论及其在地学中的应用简介.地质科技情报,199.10,NO.1。
    [11] 曾锦光等.应用构造面主曲率研究油气藏裂缝问题.力学学报,1982.2
    [12] 蒋维城.固体力学有限元分析.北京理工大学出版社,1989.
    [13] S.S.劳尔.工程中的有限元分析.科学出版社,1991.
    [14] 单文琅,宋鸿林等,构造变形分析的理论、方法与实践.中国地质大学出版社,1991.
    [15] 朱志澄等.构造地质学.中国地质大学出版社,1990.
    [16] 李志明,张金珠,地应力与油气勘探开发,石油工业出版社,1997.
    [17] 李道品等,低渗透砂岩油田开发,石油工业出版社,1997.
    [18] 林建平译,构造地质学进展:一百年来在认识节理作用方面的进展,地震出版社,1994o22.
    [19] 颜丹平,变质核杂岩研究新进展,地质科技情报,1997,第4期。
    [20] 单家增,构造模拟实验在石油地质学中的应用,石油工业出版社,1996.
    [21] 颜丹平译,内华达拉斯韦加斯地区的盆岭伸展构造.构造地质学进展,地震出版社,1994。
    [22] 万天丰.中国东部中新生代板内变形、构造应力场研究及其应用.地质出版社,1995.
    [23] 袭亦南.中国油气储层研究论文集.石油工业出版社,1993.
    [24] 阎桂生.古地磁学.武汉地质学院出版社,1985.
    [25] 谢和平.分形-岩石为学导论.科学出版社,1996.
    [26] 大连工学院数理力学系光测组.光弹性实验.利国防工业出版社,1978.
    [27] B.Velde等.裂缝从脆性到塑性变化过程中的分形和长度分析.国外油气勘探,1996,1.
    [28] 颜其彬等.分形建模技术在储层预测中的应用.天然气工业,1994,14(1):29-31.
    [29] 张吉昌等.储层构造裂缝的分形分析.石油勘探与开发,1996,4(23):65-67.
    [30] 周新桂等.储层构造裂缝定量预测研究及评价方法.地球学报,2003,24(2):175-180.
    [31] 曾联波等.柴达木盆地北缘断裂构造分形特征与油气分布关系研究.地质科学,2001,36(2):241-247
    [32] 赵跃华等.安棚深层系储层特征及裂缝分布规律.大庆石油地质与开发,1999,18(6):9-11.
    [33] 周新桂等.储层构造裂缝定量预测与油气渗流规律研究现状和进展.地球科学进展, 2003,18(3):398-404
    [34] 宋惠珍等.储层古应力场数值模拟.地震地质,1999,21(3):193-204.
    [35] 何光明,高如曾.分形理论在裂缝预测中的尝试.石油物探,1993,32(2):1-13
    [36] 宋慧珍,贾承造,欧阳建,等.裂缝储层研究理论与方法.北京:石油工业出版社,2001.
    [37] 周新桂,孙宝珊,李耀辉.辽河张强凹陷科尔康油田储层裂缝预测研究[J].地质力学学报,1998,4(3):70 75.]
    [38] 王连捷等.地应力与油气运移[J].地质力学学报,1996,2(2):3-10.
    [39] 孙焕泉等.地下构造裂缝分布规律及其预测.大庆石油学院学报,2000,24(3):83-85.
    [40] 曾锦光等.应用构造面主曲率研究油气藏裂缝问题.力学学报,1982,(2):202-206.
    [41] 王连捷等.地应力驱动油气运移基本方程及有限元模拟.地质力学学报,1999,5(1):27-32.
    [42] 丁中一等.构造裂缝定量预测的一种新方法—二元法.石油与天然气地质,1998,19(1):1-17.
    [43] 文世鹏等.储层构造裂缝数值模拟技术.石油大学学报,1996,20(5):17-24.
    [44] 丁原辰等.A E法油田最大主应力值的测量及其与油产关系.岩石力学与工程学报,1998,17(3):315-321.
    [45] 郑荣才.储层裂缝研究的新方法—声发射实验.石油与天然气地质,1998,19(3):186-189.
    [46] 武红岭等.油田构造应力场驱动油气运移的理论和方法研究.石油学报,1999,20(5):712.
    [47] 王红才等.油田三维构造应力场数值模拟与油气运移.地球学报,2002,23(2):175-178.
    [48] 王秀娟等.三肇地区扶、杨油层裂缝和地应力分布特征对注水开发的影响.大庆石油地质与开发,2000,19(5):9-12.
    [49] 李玉喜等.储层裂缝长度和分布规律的现场预测方法.大庆石油学院学报,1998,22(4):16-18.
    [50] 王言中等.储层岩石应力裂缝演化的逐级连通模型及意义.地球物理学进展,1993,8(4):81-89.
    [51] 黄辅琼,欧阳健,肖承文.储层岩心裂缝与试件裂缝定量描述方法研究.测井技术,1997,21(5):356-360.
    [52] 龚姚进等.柴达木盆地油泉子油田储层构造裂缝定量预测.钻采工艺,2002,25(5):89-94.
    [53] 陈波等.储层构造裂缝数值模拟技术的应用实例.石油学报,1998,19(4):50-54.
    [54] 宋惠珍等.储层构造裂缝预测方法及其应用.地震地质,1999,21(3):205-213.
    [55] 黄铺琼等.储集层构造裂缝定量预测方法研究.地震地质,1999,21(3):261-267.
    [56] 刘翠荣.川西坳陷喜山期构造应力场数值模拟及裂缝预测.天然气工业,2002,22(3):10-13.
    [57] 杨依超等.东濮凹陷户部寨地区致密砂岩储层裂缝发育规律.天然气工业,1999,19(6):88-89.
    [58] 刘呈冰等.全面评价低孔裂缝/孔洞型碳酸盐岩及火成岩储层.测井技术,1999,23(6):457-478.
    [59] 练章华等.裂缝宽度预测的有限元数值模拟.天然气工业,2001,21(3):47-49.
    [60] 穆龙新.裂缝储层地质模型的建立.石油勘探与开发.1995,22(6),78-82.
    [61] 李行船等.古构造应力场反演在储层裂缝预测中的应用—以埕北30潜山油藏为例.山东科技大学学报,2001,20(1):74-77.
    [62] 孙小洁等.古地磁岩芯定向法在榆树林油田出层天然裂缝定向中的应用.大庆石油学院学报,1995,19(4):30-33.
    [63] 曾联波等.伸展构造区低渗透储层构造裂缝的分布特征.石油实验地质,1997,19(4),344-347.
    [64] 曾联波.低渗透砂岩储层裂缝分布的实验研究.湘潭矿业学院学报,1998,13(3):20-24.
    [65] 刘建军等.低渗裂缝性储层渗透性能变化的动态模拟.辽宁工程技术大学学报,2001,20(4):543-545.
    [66] 李玉喜等.储层天然裂缝与压裂裂缝关系分析.特种油气藏.2000,7(3):26-29.
    [67] 孟勇等.渤南油田三区构造应力场研究与应用.特种油气藏,2004,11(1):28-30.
    [68] 金燕等.测井裂缝参数估算与储层裂缝评价方法研究.天然气工业,2002,22(增),64-68.
    [69] 廖曦等.四川盆地典型构造低渗气藏储层裂缝分布及预测.天然气工业,2002,22(增),44-50.
    [70] 施伟军等.一种研究油气储层裂缝的新方法—计算机层析(CT)法.石油实验地质,2001,23(3):344-347.
    [71] 李海燕等.应用分形技术预测井间裂缝.石油大学学报,2002,26(6):33-35.
    [72] 陈忠等.有限元数值模拟在构造裂缝定量预测中的应用.特种油气藏,2001,8(1):64-67.
    [73] David, D. P., Progress in understanding jointing over the past century, Geological societyof Americabulletin, 1988, VOL. 100.
    [74] Ladeira, F. L. &Price, N. J., Relationshi pbetween ftacture spacing and bed thickness, J. struet Geol. 1981, VOL. 3 (2).
    [75] Lehne, K. A., AadOIly, B. S., Quantitative analysis of stress regimes and fracture from logs and driiiing records of a North Sea Chalk Field, The Log Analyst, 1992.
    [76] Lorenz, J. C., et aL Regional Fractlired Ⅰ:A mechanism for the formation of regional fracture at depth in plat-lying reservoirs, 1991, A. AP. G., Voi., 75(11).
    [77] Murray, G. H., Quantitative fracture study, Sanish Pooi, Fracture-Contolled production, A. AP. G., 1977, Reprint Series 21.
    [78] Narr, W., Fracture density in the deep subsurface:Techniques with application to point Argucllo Oil Field, A. A. P. G., 1990, Vol. 68.
    [79] Paul, L. H., Neotectonic joints, Geological Society of America Bulletin, 1989, VOL. 101.
    [80]Narr. W. and Leache L. A. method for estimating subsurface fracture density in core, A. A. P. G., VOL. 126(4).
    [81]Qin Huang & Awgelier, J., Fracture spacing and its relation to bed thickness, Tectonophysics, 1989, VOl. 126(4).
    [82] Rawnsley , K. K , ,Joint development in perturbed stress fields near faults,J. structure, Geol., 1992, VOL. 14.
    [83] Ranstad, L. R., GeoLogical modelling of fractured hydrocarbon reservoirs, University of Trondheim, 1997, Report NO. 77-4.
    [84] kowallis B. J., et al,Healed microcrack orientations in granite from zllinois borehole UPH-3 and their relationship to the rocks stress history, Tectonophysics, 1987,135. P297-360
    [85] Michael R. Gross, The origin and spacing of cross joints:examples from the Monterey Formation, Sanata Barbara Coastline,California, J. structure, Geol., 1993, Vol. 15, NO. 6 , p737~751
    [86].Robest, L. K. ,Microcracks Rocks:A rwview,Tectonophysics, 1983, Vol. 100.
    [87]. A. Vollbrecht, et al, Development of microcracks in granites cooling and uplift: examples from the Variscan basement in NE Bavaria, Germany J. struct. Geol.,1991,VOl. 13, NO. 7, p787~799
    [88] W. Narr & J. Suppe, Joint spacing in sedimentary rocks, J. struet., Geol.,1991, Vol. 13, NO. 9, p1037~1048
    [89] . T. Rives&M. Razack, Joint spacing:analogue and numerical simulations, J. Struct., Geol, 1992, Vol. 14, NO. 819, p925~937
    [90]. Cruishank, K. M. & A. Aydin, Unweaving the joints in Entrada Sandstone, Arches National Park, Utach, USA, J. Struct. Geol. , 1995, 17 (3) :401—421
    [91] . Wu H. &D. D. Pollard, An experimental study of the relationship between joint spacing and layer thickness, J. Struct. Geol., 1995,17(6):887^905
    [92]. Wu, H., Prediction of three dimensional subsurface fracture networks using borehole image/core data:User's manual, 1995, Stanford University
    [93]. Mcquillan, H., Small-scale fracture density in Samara formation of southwest Iran and its relation to bed thickness and structural setting, A. A. P. G. bull. , 1973,57:P2367~ 2385
    [94] Narr, W. & J. B. Currie, Origin of fracture porosity-example from Altament Field, A. A. P. G. bull., 1982, 66:P1231~1247
    [95]. Laslett, G. M., Censoring and edge effect in areal and line transact sampling of rock joint traces, Math. Geol., 1981, 14(2) :P125~140
    [96]Engelder, T., Loading paths to joint propagation during a tectonic cycle: an example
     from the Appalachian plateau, USA, J. Struct. Geol., 1985, 7(3/4) :P459~476
    [97]. Jamison, W. R. & D. W. Stearns, Tectonic deformation of wingate sandstone, Colorado Nationaln Monument, A. A. P. G. bull., 1982, 66(12):P2584-2608
    [98]Gillespie, P. A., Howard, C.B., Walsh J. J. & J. Waterson, Measurement and characterization of spatial distributions of fractures, Tectonophysics, 1993, 226:113~141
    [99]. Barton, C.C., Fractural analysis of sealing and spacing clustering of fractures, In:Fractals in the Earth Science, By C. C. Barton & P. R. Lapointe, 1995, pl41~178, New York:Plenum Press
    [100]. kulander, B. R. , Dean, S. L. &Jr. B. J. Ward, Fractured core analysisi: interpretation, logging, and use of natural and indeced fractures in core, 1990, A. A. P. G. Method in exploration' series NO. 8, P87
    [101]Aguilera, R., Determination of subsurface distance between vertical parallel natural fractures based on core data, A. A. P. G. Bull., 1988, 72(7) :P845~851
    [102].Marret, R. & R.Allmendinger, Estimates of strain due to brittle faulting:sampling of fault populations, J. Struet. Geol., 1991,13:P735~738
    [103]Yielding, G., J. WaLsh & J. WateRSon, The prediction of small-scalefaulting, First Break, 1992,10: P449-460
    [104]Gauthier B. D. m. & S. D. Lake, Probabilistic modeling of faults below the limit of seismic resolution in Pelican Field, North Sea offshore United Kingdom, A. A. P. G. Bun., 1993, 77(5) :P761~777
    [105]Mandeibrot, B. B. , The fractal geometry of nature, 1982, New York: W. H. Freeman.
    [106]Sassi,W., Livera, S. L. &B. P.R. Caline, Reservoir compartmentation by faults in Comormant Block IV, UK northern North Sea, in: Structural and tectonic modeling and its applications to petroleum geology, edited by Lareson, R. M.,et al., 1992, p355~ 364, Spec publ. Norway petrol., Vol. 1
    [107]Martin J. H.& J. A. Cooper, An integrated approach to the modeling of permeability barrier distribution in a sedimentologically complex reservoir, 1985, SPE13052, p1~9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700