用户名: 密码: 验证码:
金属橡胶环与圆锥轴承组合支承转子系统振动性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
圆锥动静压滑动轴承综合了动压轴承和静压轴承的优点,能够同时承受径向及轴向载荷,具有启动平稳、轴向间隙容易调整、高速时摩擦功耗较小等特点,在高速旋转机械中的应用愈来愈广泛。然而支承在油膜轴承中的高速转子,由于受不平衡质量或者外界干扰等因素的影响,在通过临界转速区或者运行时常会出现剧烈的振动,由于油膜的特性还会产生“自激振动”,从而使转子系统丧失动力稳定性。为了实现对高速旋转机械振动的控制,金属橡胶干摩擦阻尼减振构件因其阻尼性能好、重量轻、且易制成各种形状、环境适应能力强、可调节刚度等一系列优点在该领域得到了成功的应用。
     本文针对圆锥动静压轴承支承的高速转子系统,提出用金属橡胶环作为弹性阻尼支承,设计了金属橡胶环与圆锥动静压轴承组合支承高速转子系统,研究了该系统的金属橡胶环动力学参数计算方法、圆锥动静压轴承的油膜力特性、系统模型的建立以及系统参数设计的方法等,并对该组合支承高速转子系统进行了振动性能实验研究。
     基于对金属橡胶单元体力学实验结果,建立了金属橡胶单元体非成型方向和成型方向的迟滞恢复应力数学模型,基于此模型,推导出了金属橡胶环径向和轴向动力学参数计算的数学表达式。理论和实验研究了金属橡胶环结构参数与动力学参数的关系,实验结果与理论仿真结果具有较好的一致性,证明了理论模型的正确性。研究结果表明,金属橡胶环动刚度和阻尼的大小与振动幅值和频率有关,预变形和相对密度对径向动刚度和能量耗散系数有重要影响,径向动刚度和能量耗散系数在数值上比轴向大许多。
     对金属橡胶环与圆锥动静压轴承组合支承中的轴承油膜力进行了相关研究。考虑润滑油膜轴向速度、紊流和热效应等因素,推导了极坐标系下圆锥动静压轴承的广义雷诺方程、能量方程及相关表达式,采用有限差分法对方程进行离散,利用帕坦卡正系数法则对离散化方程系数及常数项进行处理,数值计算得到了油膜三维压力场和温度场,研究了轴承温升、间隙等参数对轴承性能的影响,数值计算了油膜刚度系数和阻尼系数。对该轴承的静压浮起、动压润滑和流量特性进行相关实验研究,理论与实验研究具有较好的一致性,证明了理论分析的正确性。
     建立了圆锥动静压轴承转子系统刚性支承和金属橡胶环与圆锥动静压轴承组合支承转子系统的运动微分方程,提出了基于H_∞理论的系统数学模型,给出了H_∞性能指标γ意义下的振动抑制效果评估指标及动力稳定性判别准则,H_∞性能指标γ越小系统对不平衡干扰力的抑制能力越强,系统响应振幅越小。考虑金属橡胶环模型参数不确定性,通过具体算例,提出了基于H_∞性能指标γ意义下的金属橡胶环最佳动力参数设计方法,仿真结果与H_∞理论计算值对比证明了基于H_∞理论的系统模型的正确性。
     研制了金属橡胶环与圆锥动静压轴承组合支承高速转子系统实验台。对比实验研究了圆锥动静压轴承刚性支承以及金属橡胶环弹性支承的高速转子系统振动性能,研究表明,圆锥动静压轴承在工作时,存在着剧烈的自激振动而导致系统失稳,供油压力对圆锥动静压轴承高速转子系统稳定区域有影响,提高供油压力有助于扩大转子系统稳定区域,但是稳定区域扩大能力有限。当系统加入金属橡胶环弹性支承时,由不平衡干扰力产生的系统基频振动随之减小,系统产生自激振动的转速明显提高,系统稳定区域扩大,随着供油压力的增大,系统稳定区域提高的愈明显,当圆锥动静压轴承与金属橡胶环动力参数达到合理地匹配时,金属橡胶干摩擦阻尼能有效地消耗振动能量,降低系统的振动,有效扩大系统稳定区域,实验研究结果与理论分析具有很好的一致性。
     本文的研究对金属橡胶环与圆锥动静压轴承组合支承系统在工业各领域高速旋转机械中的实际应用,奠定了理论及实验基础,具有重要的理论意义和实际应用价值。
Conical hybrid (hydrodynamic-hydrostatic) bearing has the advantages ofdynamic pressure bearing and aero-static bearing, such as the capability of bearingthe axial and radial load, steady start, easy adjustment for axial clearance, lessfrictional power loss in high-speed rotation, etc. These advantages had widden itsapplication in high speed rotation machines. However, the rotor supported byjournal bearing may generate severe vibration when it runs across the critical speedcaused by the unbalanced mass or the external disturbance. The nonlinearity of oilfilm force may also generate the self-excited vibration which may lead to theinstability of the rotor system. In order to control the vibration of high-speedrotating machinery, the damping elements made of Metal Rubber (MR) materialhave been widely used in the field of vibration reduction because of its gooddamping performance, light weight, accessibility to produce elements with variousshapes, suitability of severe environment, adjustable stiffness, and so on.
     In the present study, a high speed rotor system with combined supportconsisted with conical hybrid sliding bearing and MR ring was designed. Thecalculation method for the dynamic characteristics of MR ring, the lubricationperformance of conical hybrid bearing, the systematic modeling and designingmethods of this system have been researched. The dynamic characteristics of thiscombined bearing high-speed system have been studied experimentally.
     Based on the experimental results of MR segment,model building was used tobuild a hysteretic restoring stress mathematical model of MR microelement innon-molding direction and shaping direction. The expression for the nonlinearhysteresis force versus relative density was derived, and a formula for thecalculation of dynamics parameters of MR damping ring was deduced. The dynamicparameters of MR ring were tested which shows the accordance with the theoreticalsimulation results. Theoretical and experiment results show that the frequency andamplitude of vibration are dependent on the stiffness and damping of MR ring. Thepreloaded deformation and relative density of the ring have great influence on itsradial dynamic stiffness and energy dissipation. The radial stiffness and energydissipation factor are greater numerically than those in axial direction.
     The oil film force of conical hybrid sliding bearing in the combined supportwas researched. With consideration of the effects of parameters of turbulence,thermal effect and axial velocity, the generalized Reynolds’ equation, energycontrol equation and the oil film lubrication related expressions in polar coordinatesystem were derived, and then discretized using finite difference method which coefficients and constants were treated using Patankar positive coefficientprincipals. The three dimensional pressure field and temperature distribution wereanalyzed numerically. The effects of bearing clearance on the performance ofjournal bearing, as well as the stiffness and damping coefficients of the bearing,were studied. The static pressure, hydrodynamic lubrication and flow characteristicswere tested experimentally. The theoretical results show good agreements with theexperimental results which prove the correctness of the theory.
     The differential equations of motion for the rotor system with rigid support andcombined support were set up separately. A systematic model based on H_∞theorywas presented. Based on this, a criterion for evaluating the effect of vibrationcontrol and dynamic stability considering the index γ for H_∞theory was proposed.The smaller the index γ for H_∞theory is, the stronger the capability of the system toprevent the disturbance of unbalanced forces is, and the smaller the amplitude of thesystem response is. Through a specific example, index γ for the description of H_∞performance and trail-and-error were used to optimize the parameters for thedynamic design, considering uncertainty of the MR damping ring. The accordanceof simulated and experimental results based on H_∞show the validity of themodeling method.
     The MR–conical hybrid sliding bearing-high-speed rotor test system was setup. The dynamic characteristics of the conical hybrid sliding bearing with a rigidsupport and a support with a MR ring were compared. Results show that for anoperational conical hybrid sliding bearing at operational stage, it may may generateself excitation and cause the systematic instability. The oil supply pressure to therotor system has a significant effect on the stability range of the system. Theimprovement of oil supply pressure is beneficial to expand this range, but it haslimit to make this range widened. When the MR damping ring is put into the elasticsupport, the primary frequency of the system caused by the unbalanced mass wasreduced, and the frequency for self excitation was increased obviously, whichindicates that the stability range became large. With the increase of oil supplypressure, the system of regional stability was improved significantly. When theparameters of conical hybrid sliding bearing and MR ring to dynamic parametersare matched reasonably, the vibration energy can be dissipated effectively, whichreduces the vibration of the system, improves the system stable speed essentially.The test results show good agreement with the theoretical analysis results.
     The experimental and theoretical results of this paper are beneficial to thefurther application of MR–conical hybrid sliding bearing joint support in highspeed rotating machinery.
引文
[1]钟一谔,何衍宗,王正.转子动力学[M].北京:清华大学出版社,1987:124-132.
    [2] Чегодаев Д Е,Мулюкин О П, Колтыгин Е В.金属橡胶构件设计[M].李中郢,等译.北京:国防工业出版社,2000:7-13.
    [3]武国启.金属橡胶材料吸声降噪特性及实验研究[D].哈尔滨:哈尔滨工业大学学位论文,2009:1
    [4]姜洪源,夏宇宏,敖宏瑞.航空发动机用特种金属橡胶构件的应用研究[J].燃气涡轮实验与研究,2003,16(3):1-5.
    [5]王佳民,裴听国.惯性平台新型金属橡胶减振器理论与实验研究[J].宇航学报,2003,24(1):92-96.
    [6]姜洪源,夏宇宏,敖宏瑞.航空发动机用特种金属橡胶构件的应用研究[J].燃气涡轮实验与研究,2003,16(3):1-5.
    [7]李胜波,闫辉,姜洪源等.圆锥滑动轴承-转子系统中金属橡胶阻尼器力学性能研究[J].功能材料,2011,42(1):167-170.267-270.
    [8]李玉龙,何忠波,白鸿柏等.金属橡胶的研究及应用进展[J].兵器材料科学与工程,2011,34(1):101-108.
    [9]巴威尔F T.轴承系统——理论和实践[M].西安交通大学机械原理及机械零件教研室译,机械工业出版社,1983:1
    [10] Aston R L, O'Donoghue J P, Rowe W B. Design of conical hydrostaticjournal bearings[J]. Machinery and Production Engineering,1970,116(2988):250-254.
    [11] Korneev A Yu. Influence of turbulence on the static characteristics of conicaljournal bearings[J]. Russian Engineering Research,2012,32(4):338-342.
    [12] Prabhu T, Jayachandra, Ganesan N. Analysis of multirecess conicalhydrostatic thrust bearings under rotation[J]. Wear,1983,89(1):29-40.
    [13] Prabhu T, Jayachandra, Ganesan N. Theoretical analysis of the dynamicstiffness of conical hydrostatic thrust bearings under tilt, eccentricity androtation[J]. Wear,1983,91(2):149-159.
    [14] Salem E A, Khalil M F. Thermal and inertia effects in externally pressurizedconical oil bearings[J]. Wear,1979,56:251-264
    [15] Khalil M F, Kazzab S Z, Ismail A S. Performance of externally pressurizedconical thrust bearing under laminar and turbulent flow conditions[J]. Wear,1993,166(2):147-154.
    [16] El-Kayar A, Salem E А, Khalil M F, et al. Behaviour of externally pressurizedconical bearings lubricated with non-Newtonian fluids[J]. Wear,1981,67(2):133-145.
    [17] Rohde S M, Maday C J, Ezzart H A. Fundamentals of the design of fluid filmbearings (Computer-aided design of hybrid conical bearings)[C]. ACSSymposium Series,1979:193.
    [18] Pospelov G A. Stationary characteristics of two-sided conical hydrodynamicbearings[J]. Soviet Journal of Friction and Wear (English translation of Treniei Iznos),1986,7(6):39-45.
    [19] Ettles C, Svoboda O. Application of double conical journal bearings in highspeed centrifugal pumps–12[C]. London, Proceedings of the Institution ofMechanical Engineers,1975,189(38):221-230.
    [20] Hannon W M, Braun M J, Hariharan S I. Generalized Universal ReynoldsEquation for variable properties fluid-film lubrication and variable geometryself-acting bearings[J]. Tribology Transactions,2004,47(2):171-181.
    [21] Hannon W M, Braun M J. Numerical solution of a fully thermally coupledGeneralized Universal Reynolds Equation (GURE) and its application[J].Part1: Conical bearings. Tribology Transactions,2007,50(4):540-557.
    [22] Satish C, Sharma, Vikas M, et al. Performance analysis of a multirecesscapillary compensated conical hydrostatic journal bearing[J]. TribologyInternational,2011,44(5):617-626.
    [23] Srinivasan K, Prabhu B S. Analysis of externally pressurized gas-lubricatedconical bearings[J]. Wear,1983,86(2):201-212.
    [24] Srinivasan K, Prabhu B S. Steady state characteristics of conical hybridbearings[J]. Wear,1983,89(1):57-67.
    [25] Murthy T S R, Satyan B R, Shenoy R K. An analysis of a new type of highprecision conical preformed four-lobe self-adjusting hydrodynamic crownbearing for grinding work spindles[J]. International Journal of Machine ToolDesign and Research,1977,17(4):209-224.
    [26] Murthy T S R. Analysis of multi-scallop self-adjusting conical hydrodynamicbearings for high precision spindles[J]. Tribology International,1981,14(3):147-150.
    [27] Murthy T S R, Balaramaiah Y, Venkatesh V C. An analysis of a specialhydrodynamic bearing for machine tool spindles[J]. CIRP Annals-Manufacturing Technology,1983,32(1):319-325.
    [28] Kharasov O M, Maksimov V A, Galeev Sh A. Experimental investigation ofconical sliding bearings with self-aligning pads[J]. Chemical and PetroleumEngineering (English translation of Khimicheskoe i NeftyanoeMashinostroenie),1989,24(11-12):657-660.
    [29] Shnepp V B, Galeev A M, Batkis G S, et al. Elimination of unstable freevibrations of the rotor of a centrifugal high-pressure compressor[J]. Chemicaland Petroleum Engineering (English translation of Khimicheskoe i NeftyanoeMashinostroenie),1989,24(7-8):356-360.
    [30] Dewar D M. Analysis of grease and oil lubricated spiral grooved bearings[J].American Society of Mechanical Engineers(Paper),1973,73(20):9.
    [31] Bootsma J. Spherical and conical spiral groove bearings[J]. Р.1.Theory.Journal of Lubrication Technology. Transactions ASME,1975,97(2):236-242.
    [32] Bootsma J. Spherical and conical spiral groove bearings[J]. Р.2. Loadcapacity and stability. Journal of Lubrication Technology. TransactionsASME,1975,97(2):243-249.
    [33] Yoshimoto S, Anno Y, Tamura M. Axial load capacity of water-lubricatedhyrdrostatic conical bearings with spiral grooves (On the case of rigid surfacebearings)[J]. Journal of Tribology. Trans. ASME,1996,118:893-899.
    [34] Yoshimoto S, Kume T, Shitara T. Axial load capacity of water-lubricatedhydrostatic conical bearings with spiral grooves for high speed spindles[J].Tribology International,1998,31(6):331-338.
    [35] Huang Y, Chen D G. Effect of partial-grooving on the performance of spiralgroove bearings: analysis using a perturbation method[J]. TribologyInternational,1996,29(4):281-290.
    [36] Nypan L J, Scibbe H W, Hamrock B J. Optimal speed sharing characteristicsof a series-hybrid bearing. Journal of Lubrication Technology[J]. Trans.ASME, Ser. F,1973,95(1):76-81.
    [37] Scibbe H W, Winn L W, Eusepi M. Design and evaluation of a3million DNseries-hybrid thrust bearing[J]. American Society of Mechanical Engineers,1976,76(17):9.
    [38] Vikas M P, Satish C S, Jain, S C. Influence of wear on the performance of amultirecess conical hybrid journal bearing compensated with orificerestrictor[J]. Tribology International,2011(44):380–395
    [39] Demidovich V M, Goryunov L V, Yakimov N A. Characteristics of GTEcombined support without oil supply to the ball bearing[J]. SovietAeronautics (English translation of Izvestiya VUZ, Aviatsionnaya Tekhnika),1989,32(1):142-144.
    [40]张蕊华,李横江,罗曼·尼古拉耶维奇·鲍利亚果夫.转子系统混合支承结构分析[J].南昌大学学报,2010,32(4):318-321.
    [41] Rodkiewicz C M, Mioduchowski A. The mean temperature of a conicalbearing[J]. Wear,1975,31(2):227-235.
    [42] Rodkiewicz C M, Jedruch W, Skiepko J. Thermal effects in conicalbearings[J]. Wear,1977,42(1):187-196.
    [43] Kennedy J S, Sinha P, Rodkiewicz C M. Thermal effects in externallypressurized conical bearings with variable viscosity[J]. Journal of Tribology,Transactions of the ASME,1988,110(2):201-211.
    [44]禹艳萍.计入轴瓦弹性变形的圆锥动静压轴承静态性能分析[D].郑州:郑州工学院,1989.
    [45]方晓丽.圆锥动静压轴承的性能分析及优化设计[D].郑州:郑州工学院学位论文,1988.
    [46]苏智剑.液体圆锥滑动轴承性能分析中的有限元法[J].郑州工学院学报,1996,17(1):29-33.
    [47]路长厚,张锡霞,艾兴.圆锥滑动轴承有限元分析[J].机械设计,1995(9).
    [48]岑少起,郭红,等.圆锥浮环动静压轴承有限元解和实验研究[J].机械工程学报,1996,32(5):63-69.
    [49]郭红,来新民,岑少起.计入气穴影响的径推联合动静压浮环轴承稳定[J].润滑与密封,2009,34(9):10-15.
    [50]胡松峰,岑少起,郭红.深腔气穴对动静压浮环径向轴承压力场的影响[J].机械制造,2010,48(555):34-36.
    [51]郭红,陈昌婷,岑少起.基于ANSYS的浮环动静压轴承中浮环的有限元分析[J].轴承,2011(4):9-13.
    [52] Lund J W. The stability of an elastic rotor in journal beatings with flexibledamped supports[J]. ASME, Jappl Mech,1965,10(4):911-920.
    [53] A.C.克利宗.转子动力学弹性支承[M].董师予,译.科学出版社,1987.
    [54]贺世正.弹性支承转子临界转速分析[J].流体机械,1999,27(10):9-12.
    [55]范天宇.弹性支承干摩擦阻尼器减振研究[D].西安:西北工业大学,2006,4:18-21.
    [56]王跃社,郑铁生,许庆余.弹性支承滑动轴承-转子稳定性研究[J].应用力学学报,1994,11(2):61-67.
    [57]彭超英,高孔容.弹性支承滑动轴承系统的稳定性理论研究(I)—非线性失稳振动的计算与分析[J].华南理工大学学报(自然科学版),1996,24(12):85-90.
    [58]张亚红,华军,许庆余.外弹性支承滑动轴承—刚性转子系统非线性动力稳定性的研究[J].应用力学学报,2001,18(3):105-110.
    [59] Hamburg G, Parkinson J. Gas turbine shaft dynamics[R]. SAE Trans,1962(70):74-78.
    [60]夏南,孟光.对挤压油膜阻尼器轴承和旋转机械转子—挤压油膜阻尼器轴承系统动力特性研究的回顾与展望[J].机械强度,2002,24(2):219-224.
    [61] Cooper S. Preliminary investigation of oil film for the control of vibration[C].Institute of Mechanical Engineers, Lubrication and Wear Convention,Paper28.1963:305-315.
    [62]陈钊.弹支挤压油膜阻尼器动力特性分析方法研究[D]南京:南京航空航天大学学位论文,2008:4.
    [63] Hahn E J, Simandiri S. Squeeze film mounts for vibration attenuation in rigidrotors[C]. Proceedings of the noise, shock and vibration conference,MonarchUniversity,Melbourne,Australia,1974:435-444.
    [64] Barrett L E, Gunter E J. Steady State and Transient Analysis of a SqueezeFilm Damper Bearing for Rotor Stability[C]. University of Virginia,Charlottesville,1973:185-197.
    [65] Gunter E J. Design of Nonlinear Squeeze-Film Dampers for AircraftEngines[J], Journal of Lubrication Technology,1977,99(1):57-64.
    [66] Vance J M. A current review of rotor dynamics problems in high speed lightweight turbo-machinery and power shafting[C]. Proceedings of theconference on the stability and dynamic response of rotors with squeeze filmbearings, U.S.A.R.O, Charlottesvill. Va, May,1979:7-19.
    [67]孟光.转子动力学研究的回顾与展望[J].振动工程学报,2002,15(1):1-9.
    [68] Cookson R A, Kossa S S. The Effectiveness of Squeeze Film DamperBearings Supported Rigid Rotor without a Centralizing Spring[J]. Int. J.Mech. Sci,1980,122:313-324.
    [69]沈心敏.挤压油膜轴承支承的刚性转子的稳态特性.北京航空学院,BH-C305,1978(7).
    [70] Yan Li-Tang, Li Qi-Han. Experimentson the vibration characteristics of arotor with flexible,damped support[J]. ASME journal of Engineering forpower,1981(103):174-179.
    [71]顾家柳.转子动力学[M].国防工业出版社,1985:1-269.
    [72]沈心敏.高速转子系统挤压油膜轴承力学特点与相关算法[J].润滑与密封,1987(1):17-26.
    [73]刘方杰.挤压油膜阻尼器减振技术[J].机械制造,1989(12):13-16.
    [74]付才高,冯心海,等.非同心型挤压油膜阻尼器的实验和理论研究[J].航空动力学报,1986(1):223-226.
    [75]付才高,冯心海,等.挤压油膜阻尼器的实验研究[J].燃气涡轮研究所,1978,1(1):5-7.
    [76]付才高,李希凡.挤压油膜阻尼器突加不平衡响应实验研究[J].燃气涡轮实验与研究,1988,1(1):26-30.
    [77]付才高,冯心海,等.高速转子支承阻尼系统减振特性实验研究[J].航空动力学报,1988,3(4):304-308.
    [78]蒋书运,陈照波,等.航空燃气轮机挤压油膜阻尼器油膜温度场的理论分析[J].航空动力学报,1998,13(4):439-443.
    [79]杨秋晓,谭庆昌,等.挤压油膜阻尼器油膜周向惯性速度的分布[J].吉林大学学报(工学版),2008,38(5):9.
    [80]王红瑾,秦卫阳,等.带挤压油膜阻尼器双盘转子的参数变化对系统响应的影响[J].航空动力学报,2009,24(11).
    [81]张蕊华,陈海初,熊志文,等.挤压油膜阻尼器刚性转子系统动力特性的研究[C].2011年全国机械动力学学术大会论文集,中国杭州:2011:193-199.
    [82] David P, Fleming. Dual clearance squeeze film damper for high loadconditions[J]. ASME journal of Tribology,1985(107):275-279.
    [83] Hooshang H, Waltton J F, Advanced Multi-squeeze Film Dampers for RotorVibration Control[J]. STLE Trib. Tran.,1991,34.
    [84]周明,李其汉,晏砺堂.弹性环式挤压油膜阻尼器实验研究与应用[J].航空动力学报,1998,13(4):408-413.
    [85]周明.弹性环式挤压油膜阻尼器油膜力特性研究[J].燃气涡轮实验与研究,1998,11(3):17-23.
    [86]张志谊,崔满,杨文凯.波纹环阻尼减振效果的理论分析[J].哈尔滨工业大学学报,1997,29(1):107-109.
    [87]康召辉,任兴民,王鸷.弹性环式挤压油膜系统新的三维动力学模型[J].机械强度,2009,31(6):892-895.
    [88]赵杰,晏砺堂,朱梓根,等.新型可动外环挤压油膜阻尼器减振特性研究[J].航空动力学报,1998,13(4):353-357.
    [89]马艳红.金属橡胶外环自适应挤压油膜阻尼器实验研究[D].北京航空航天大学硕士学位论文,2002:55.
    [90]马艳红,王虹,洪杰.带金属橡胶油膜环的自适应挤压油膜阻尼器非协调响应研究[J].航空动力学报,2009,24(2):390-395.
    [91] Zeidan F, San Andres L, Vance J. Design and Application of Squeeze FilmDampers inRotating Machinery[C]. Proceedings of the25th TurbomachinerySymposium, Turbomachinery Laboratory, Texas A&M University, September,1996:169-188.
    [92] De Santiago, San Andrés O L, Dynamic Response of a Rotor-Integral SqueezeFilmDamper to Couple Imbalances[J]. ASME Paper2000-GT-0388.
    [93] De Santiago, San Andrés O L, J Oliveras. Imbalance Response of a RotorSupportedon Open-Ends, Integral Squeeze Film Dampers[J]. ASME Journalof Gas Turbines and Power,1999,121(4):718-724.
    [94]曹磊.组合弹性支承—阻尼系统动力特性理论及实验研究[D].南京:南京航空航天大学学位论文,2006:2-15.
    [95]张蕊华,姜洪源,夏宇宏,等.金属橡胶挤压油膜阻尼器刚度分析[J].湖南科技大学学报,2009,24(1):28-31.
    [96]黄文俊,李录平.透平叶片干摩擦阻尼减振研究综述[J].热力透平,2006,35(2):95-100.
    [97] Den Hartog J P. Forced Vibration with Combined Couloumb and Viscous Fric-tion Trans[J]. ASME,1931,53:107-115.
    [98] Den Hartog J P. Mechanical Vibartions [M].McGraW-Hill,1956:373.
    [99] Levitan E S. Forced Oscillation of a Spring-Mass System having CombinedCoulomb and Viscous Damping [J]. Acoustical Society of America,1960,32:1265.
    [100] Iwan W D, The Dynamic Response of Bilinear Hysteretic Systems[D].California: PHD Thesis of California Institute of Technology,1961:25-30.
    [101] Bouc R. Forced Vibration of Mechanincal System with Hysteresis[C]. In:Proc.IV Conf. on Nonlinear Oscillations. Czechoslovakia: University ofPrague,1967:241-245.
    [102] Wen Y K. Equivalent Linearization for Hysteretic Systems under RandomExcitation[J]. J Appl Mech, ASME,1980,47(1):150-154.
    [103] Firrone C M, Botto D G, Muzio M. Modelling a Friction Damper: Analysis ofthe Experimental Data and Comparison with Numerical Results[M]. Proc.Biennial ASME Conf. Eng. Syst. Design Anal.2006:543-552.
    [104] Juraj S G, Raduz Z, Peter M. On Dry Friction Modelling and Simulation inKinematically Excited Oscillatory Systems[J]. Sound and Vibration.2008,311(18):74-96.
    [105]金靖,江晓峰.粘滞阻尼器与金属屈服耗能器的设计参数与性能比较[J].浙江工业大学学报,2008,36(1):102-107.
    [106] Антипов В А, Пономарев Ю К, Белоусов А И. Расчет и конструированиесредств виброзащиты сухово трения[M]. Самара: СамГАПС,2005:17-41.
    [107] Паровай Ф В, Борисов В А. Исследование Влияния ПолимернойОболочки на Работоспособность Радиальных Уплотнений с УпругимЭлементом из Материала МР[C]. Вибрационная Прочность иНадежность Двигателей и Систем Летательных Аппаратов: Сб. Науч. Тр.Куйбышев: КуАИ,1987:100-105.
    [108] Борисов В А, Паровай Ф В. Релаксация Напряжений в Уплотнениях сУпругими Элементами из Материала МР[C]. ИсследованиеГидростатиче-Ских Опор и Уплотнений Двигателей ЛетательныхАппаратов: Межвуз. темат. сб. науч. тр. Харьков: ХАИ,1986:60-63.
    [109] Белоусов А И, Балякин В Б. Теория и проектирование гидродинамиче-ских демпферов опор роторов[D]. Издательство Самарского НаучногоЦентра РАН,2002:44-49.
    [110] Калакутский Л И, Eйнер В А,Изжэуров Е А и др[P]. Материал длямедицинских элементов из металла. Заявл.83.11.24., Опубл.85.07.07.
    [111]郝德刚.多层钢板转子阻尼器及相关技术研究[D].哈尔滨:哈尔滨工业大学学位论文,2008:26-30.
    [112]闫辉.面向航空发动机管路支承的金属隔振器研究[D].哈尔滨:哈尔滨工业大学学位论文,2006:9-10.
    [113]王新,朱梓根.环形金属橡胶减振器[J].航空动力学报,1997,12(2):143-145.
    [114]郭宝亭,朱梓根.金属橡胶阻尼器在转子系统中的应用[J].航空动力学报,2003,18(5):663-668.
    [115] Ulanov A M, Lazutkin G V.“Description of an Arbitrary Multi-axial LoadProcess for Non-linear Vibration Isolators”[J]. Journal of Sound andVibration,1997,203(5):903-907.
    [116]闫辉,姜洪源,刘文剑,等.具有迟滞非线性的金属橡胶隔振器参数识别研究[J].物理学报,2009,58(8):5238-5243.
    [117] Лазуткин Г В, Антипов В А, Рябков А Л. Влияние особенностейконструкционного демпфирования на нелинейные колебаниявиброзащитных систем [J]. Механика и машиностроение,2009,11(3):301-306.
    [118] Корнеев А Ю, Савин Л А, Соломин О В.Конические подшипникижидкостного трения машиностроение-1[M]. ОрелГТУ,2008:40-57.
    [119]许尚贤.液体静压和动静压滑动轴承设计[M].东南大学出版社出版,1989.
    [120]丁舜年.大型电机的发热与冷却[M].科学出版社,1992:63.
    [121]帕坦卡S V.传热与流体流动的数值计算[M].张政,译.科学出版社,1984:40-43.
    [122]刘大全.考虑温粘热效应的滑动轴承非线性油膜力模型研究及其应用[D].复旦大学博士学位论文,2005:63.
    [123] Лунд. Разработка понятия динамических коэффициентов радиальныхподшипников жидкостного трения[J].Проблемы трения и смазки,1987(1):40-45.
    [124]邹伯敏.自动控制理论[M].机械工业出版社,2004:266.
    [125]俞立.鲁棒控制—线性矩阵不等式处理方法[M].清华大学出版社,2002:89-91.
    [126]朱石坚,楼京俊,何其伟.振动理论与隔振技术[M].国防工业出版社,2006:281.
    [127]申铁龙. H∞控制理论及应用[M].清华大学出版社,1996:5-10.
    [128]张正松,傅尚新,冯冠平.旋转机械振动监测及故障诊断[M].机械工业出版社,1991:353-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700