用户名: 密码: 验证码:
青藏高原北部地区相变轻质哨所太阳能采暖研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国青藏高原北部地区驻扎着大量的分散式哨所、兵站及连以下分队住用营房。由于该地区冬季漫长,且十分寒冷,冬季供暖对设备、物质及燃料消耗的压力很大。许多分散式营房由于不适合采用节能效率较高的集中供暖方式,而主要采取燃油锅炉等独立供暖设施。一些哨所甚至没有采暖措施,严重时将危及部队官兵的生命安全。太阳辐射是对建筑室内环境影响最重要的因素之一,而青藏高原地区是我国太阳能资源最为丰富的地区。对于分散式哨所、兵站及分队住用营房的冬季采暖而言,提高建筑对太阳能的利用是十分重要的节能途径。
     地处该区域营房的交通条件较为艰险,建筑材料运输成本高,可施工工期短等情况,使施工质量难以得到很好的控制,且很难采用工程量大的传统建造方式。由于轻质建筑施工采用干法作业,建造速度快,近年来发展较为迅速,尤其轻型钢结构建筑,已成为国内外目前应用和发展较快的新型建筑结构型式。特别是一些有特殊要求的低层建筑,如部队营房哨所、兵站和大跨度建筑等,应用轻质建筑的优势更为明显。轻质围护结构虽具有保温隔热性能好的优势,但其蓄热性较低,建筑整体热工性能较差,室内温度波动大,基本上不能有效地利用太阳辐射热能用于改善室内热环境。因此,被动式太阳房设计中明确规定围护结构不宜采用轻质墙体材料。
     相变材料与显热蓄热材料(如混凝土、砖等)相比,由于蓄热密度高、重量轻,大副降低对建筑物构造和结构强度的要求,应用于轻质建筑,能够显著提高轻质墙体的蓄热性能。但目前相变材料应用于轻质建筑围护结构中,存在许多需待解决的问题,如:缺乏较为适宜的作为墙体结构的相变材料制备及特性研究;在满足使用要求的同时,如何确定与围护结构基体结合,易于施工建造的结构形式;针对相变材料墙体的蓄热、放热特性,如何确定其使用效果评价指标;以及应用于不同气候特征地区轻质建筑的设计理论研究及工程实践。基于上述对于相变材料在墙体中使用前景及存在问题的分析,结合被动式太阳房技术,论文开展了利用相变材料改善轻质哨所墙体热工性能和室内热环境的研究,主要内容如下:
     ①进行相变轻质墙体非稳态传热过程分析及计算研究
     伴有相变的传热问题在数学上是一个强非线性问题,对于不同工况下的相变墙体传热过程将更加复杂。对这类情况使用近似方法求解较困难,而数值方法是处理这类问题较为有效的手段。通过对相变墙体传热特点分析,研究建立相变墙体传热过程解析方程,在此基础上建立基于有限差分法的相变墙体传热数值计算模型,为相变墙体设计和应用提供计算分析手段。
     ②进行相变墙体被动式太阳房(Trombe形式)自然对流换热模拟研究
     对墙体含相变材料的轻质集热蓄热墙式(Trombe形式)被动太阳房进行传热模型及空气间层内自然对流换热的模拟研究,并对海拔较高地区建筑围护结构表面的对流换热系数及天空背景温度等参数进行了修正,建立了室内空气温度的计算程序。为相变轻质墙体被动式太阳房室内热环境模拟及室内温度的预测提供了理论基础和计算工具。
     ③制备了新型相变材料,并完成相变轻质墙体结构设计和制备。
     采用溶胶-凝胶的工艺路线,以饱和脂肪酸为相变材料,制备二氧化硅为载体的复合相变材料。采用相变材料颗粒/板作为蓄热功能层、硅钙纤维板或轻质金属板等墙板材料作为结构支撑层、EPS等有机保温材料或无机保温材料作为保温功能层,完成多种“保温层+相变蓄热层+结构层”的轻质墙体结构设计和制备。
     ④建立相变轻质墙体实验间,对模型的有效性进行验证
     在西宁地区建造了相变轻质墙体集热蓄热墙式(Trombe形式)被动太阳房实验间,对相变轻质墙体实验间围护结构内表面及室内温度进行测试,并与理论模型的计算结果进行对比验证。
     ⑤提出了相变轻质墙体冬季采暖工况使用效果的评价指标
     结合相变轻质墙体的蓄热、放热特性及对室内温度的改善效果,确立了评价相变轻质墙体冬季采暖工况使用效果的指标:“累计日室内温度偏移值”I EX。
     ⑥对冬季采暖工况的相变轻质墙体被动式太阳房技术进行优化
     用验证的数学模型对青藏高原北部地区轻质被动式太阳房进行相变墙体使用效果的优化分析,对影响相变轻质墙体被动式太阳房室内温度的参数进行多因素多水平优化模拟,总结出相变轻质墙体被动式太阳房优化技术方案。
     ⑦指导实际的工程设计
     利用上述的理论分析结论,在西宁及玉树地区进行了相变轻质墙体工程试点,结果表明:相变材料克服了轻质结构墙体由于不能有效蓄热,而不宜应用于被动式太阳房设计建造的局限,极大地提高了轻质结构建筑对太阳能资源利用效率,使轻质建筑也可以应用被动式太阳房技术。
     总之,论文开展了利用相变材料改善轻质墙体被动式太阳房围护结构热工性能和室内温度环境的研究。建立了有关相变墙体传热和轻质被动式太阳房室内温度计算模型。提出了相变轻质墙体冬季采暖工况使用效果的评价指标。得出了相变材料在部分地区被动式太阳房上适用规律,并开展了工程实践。论文的部分结论对相变墙体在轻质建筑中进行合理的设计和应用,发挥最佳节能功效奠定了理论基础。
A great deal of dispersible sentry, soldier barrack and unaided barracks quarter at the northern region of Qinghai and Tibet plateau; it is lengthy and extreme cold in winter. The consumption of equipmentses, materials and fuels for heating are very big in winter.Because of being unsuitable for the energy efficiency concentrated type heating way,many dispersible type barracks mainly adopt the independent fuel boiler heating facilities.Some sentry even do not adopt heating systems,which severity endanger the life safety of soldiers.
     The solar radiation energy is the most important influence factor to the building indoor environment.The northern region of Qinghai and Tibet plateau is most rich region for solar energy resources in our country, so it is a very important energy efficiency way to exploit the solar energy for heating in the dispersible sentry, soldier barrack and unaided barracks.
     Due to the scurvinessc transportation condition, high building material conveyance cost, and short construction period it is difficult to adopt the tradition construct way, also the construction quality has been hard to get a good control.The lightweight building has been developed quickly in recent years, particularly light steel structure building, which has become new building structure pattern to apply and develop currently at home and abroad. Due to having a quick construction speed, the well anti-vibration capability, less foundation expenses, beauty building shape, less building material and steel use, high recycle utilization advantage, the lightweight building extensively is used for kinds of industrial building, the civil building and public building. Especially in some low layers construct with a special request, the advantages of the lightweight constructs is more obvious, for example troops barracks sentry, the soldier barrack and greatly crosses building etc. But the lightweight constructs cannot attain the request of related building energy efficiency standard because the cumulate thermal capability of light weight structure is weak and whole thermal inertia is bad. Some scholars definitely have put forward that the common lightweight construct was unwell used for passive solar building technique.
     Because of the high cumulate thermal density and the light weight, compared with obvious thermal material (concrete and brick.etc.), the Phase Change Materia(lPCM) will reduce the request of construct and structure strength of building. Be applied to lightweight building fabric, PCM can increase the cumulate thermal capability of lightweight fabric and improves the thermal capability of lightweight constructs, and make the whole thermal inertia index to attain the request of energy efficiency standard. In the meantime it will be one of the effective paths that improve the indoor thermal environment quality in light weight building. Up to now, using PCM in building materials has been limited by many difficulty,such as: lack of the making and characteristic research on PCM appling to the fabric structure material; at the time of satisfying using request, how to make sure the fabric combinative form of easy construction; how to evaluate the effect of PCM using under different conditions, such as phase change material temperature, thickness, insulation thickness and night ventilation in different climate area and incorporating the PCM into the wallboard,lack of design theories research and engineering fulfillment at different weather characteristic region lightweight etc.
     According to above-mentioned analysis of foreground and existence problem for PCM using in the fabric, combining passive solar house technique the thesis developed the technique application study that utilize PCM to improve the fabric thermal characters and indoor temperature environment in lightweight building:
     ①Build up the non-steady heat conduction mathematics model for phase change fabric, and carry on the numerical analysis
     Heat conduction of phase change is strong nonlinear mathematics problem; many literatures had already proven that there is no accurate solution for the kind of phase change heat conduction problem through the limited thickness flat panel of fabric. In the meantime the approximate method is more difficult to solve this kind of problem and inapplicable for engineering, but the numerical method is more effective means to handle this problem. The thesis analyzed the heat conduction characteristic for phase change fabric, established the mathematics models of the phase change heat conduction and indoor air heat balance of PCM room, ulteriorly dispersed the equations and carried on the numerical calculation with the limited different method, this work would provide the calculation and analysis means for the design of phase change fabric and building energy efficiency application.
     ②Put up the research of nature convective heat transfer model for phase change fabric passive solar house(Trombe),and carry on the numerical analysis
     Thesis had carried on the simulation researches on the heat transfer and air convective heat exchange in the PCM fabric trombe passive solar building, and builds the mathematic model on the air flow and heat exchange. Adopted the finite difference method to disperse the equations and solved the differential system of equations with the Semi-Implicit iterative Method.It could provide the credible theory and powerful calculative tools for stimulating and forecasting the indoor thermal environment of PCM lightweight fabric passive solar building.
     ③Prepare new-style PCM and complete the structure design for PCM lightweight fabric.
     We had made the compound PCM of fatty acids and salts by the sol-gel method in this paper, which utilizes the silicon dioxide as the carrier. We had Adopted the PCM grain or plank as the cumulate thermal function layer, and the silicon and calcium fiberboard or lightweight metal plank as the wall structure support layer, and EPS and mineral thermal insulation material.etc.as the thermal insulation function layer, and finally had completed kinds of the cumulate thermal function layer + thermal insulation function layer + structure layer" structure design and making for fabric.
     ④Establish PCM lightweight fabric experiment, carry on the identification for the usefulness of model
     Respectively we had constructed the PCM lightweight fabric experiment chambers at Xining region (passive solar building condition in winter), test the inner surface and indoor air temperature in the lightweight fabric chambers, and carried on contrast verification with the calculation results of theories models.
     ⑤Put forward the evaluation indexes for PCM lightweight wall usage effect on the condition of heat insulation and passive solar heating
     Combining the characteristic of charging and discharging thermal capability of the PCM lightweight fabric and usage effect, we had established the usage effect evaluation indexes, that is the“Accumulative Excursion for Indoor Air Temperature in One Day—I EX”for passive solar heating on the PCM lightweight building.
     ⑥Combining the passive solar energy technique, optimizing the structure form of PCM lightweight fabric
     Utilizing the mathematics model certificated, we had carried on the optimization analysis for applying the PCM passive solar technique in Xining zone. Carry on the simulation of many factors with many levels for the influence parameters on the indoor air temperature in the PCM lightweight passive solar building. Finally we had made sure the optimization structure forms of PCM lightweight fabric that could be applicable to the passive solar building in the the northern region of Qinghai and Tibet plateau. The optimization results could be as the passive solar building fabric design project.
     ⑦Engineering design
     Utilizing the above-mentioned analytical results, we had constructed the PCM lightweight fabric building in Xining and Yushu, and analyzed and test the indoor thermal environment. The results had indicated that PCM can improve the indoor thermal environment quality in light weight building in winter, and improve the thermal capability of lightweight constructs, and attain the preferable effect of energy efficiency .
     In conclusion, the thesis developed the application study on making use of the PCM fabric to improve the thermal characteristic of fabric and indoor thermal environment in the lightweight passive solar building. Paper established the model of phase change heat transfer and the indoor air temperature thermal equilibrium. Put forward the evaluation index for PCM lightweight wall usage effect in passive solar building. The thesis carried on the scientific and exact analysis to the influence factors of the PCM application. Commanded the PCM apply regulation on the lightweight building fabric, and developed the engineering fulfillment. Parts of conclusions of thesis lay the initial theories foundation for carrying on reasonable design and application of PCM fabric in the lightweight passive solar building building and implementing the preferable economy energy effect.
引文
[1]宋德萱.节能建筑设计与技术[M].同济大学出版社, 2003:1.
    [2]张寅平,胡汉平,孔祥冬,等.相变储能理论和应用[M].合肥:中国科学技术大学出版社, 1996. 8.
    [3]张华,徐宇工.相变材料在建筑围护结构中的应用研究[J] .山东建筑工程学院学报, 2005. 20(2). 78-82.
    [4]张东,周剑敏,吴科如.相变储能材料的相变过程温度模型[J].同济大学学报(自然科学版) 2006, 34(7)928-932.
    [5]戴彦德.我国可持续发展中的能源问题[J] .节能, 2003(2):3-5.
    [6]郁聪,康艳兵.国内外节能政策的回顾及强化我国节能政策的建议[J] .中国能源, 2003, 25(10):4-13.
    [7] Amar M. Khudhair, A review on energy conservation in building applications with thermal storage by latent heat using phase change materials [J]. Energy Conversion and Management 45 (2004) 263–275.
    [8] Bo He, Fredrik Setterwall, Technical grade para. n waxes as phase change materials for cool thermal storage and cool storage systems capital cost estimation[J]. Energy Conversion and Management, 2002, 43:1709–1723.
    [9]崔中敏.被动式太阳房相变材料的实验研究[J].山东建筑工程学院学报, 1995. 2.
    [10]张正国.复合相变储热材料的研究与发展[J].化工进展, 2003. 5.
    [11]邓安仲,李胜波,沈小东等.脂肪酸/SiO2复合相变材料储能行为研究[J] .材料导报, 2007, 21(5A):282-286.
    [12] Kuznik, Frederic; Virgone et a1. Energetic Eficiency of Room Wall Containing PCM Wallboard: A full-scale Experimental Investigation[J]. Energyand Buildings, 2008, 40(2): 148-156.
    [13]叶宏,葛新石,焦冬生.带定形PCM的相变贮能式地板辐射采暖系统热性能的数值模拟[J].太阳能学报, 2002, 23(4):482-487.
    [14] Ahmet Sary, Form-stable para. n/high density polyethylene composites as solid–liquid phase change material for thermal energy storage:preparation and thermal properties[J]. Energy Conversion and Management,2004,45: 2033–2042.
    [15] Zalba B, Marin J M, Cabeza I F, et a1. Review on thermal energy storage with phase change materials, heat transfer analysis and applications [J]. Applied Thermal Engineering, 2003, 23(3):251-283.
    [16]林坤平,张寅平,狄洪发等.地板下送风式相变蓄热电采暖系统.太阳能学报[J]. 2005, 26 (6):820-824.
    [17] D. A. Neeper, Thermal dynamics of wallboard with latent heat storage [J]. Solar Energy, 2000, 68:393–403.
    [18] T. Lee, D. W. Hawes, D. Banu. Control aspects of latent heat storage and recovery in concrete[J]. Solar Energy Mater. Solar Cells, 2000, 62:217–237.
    [19] K. Darkwa, P. W. O, Callaghan, D. Tetlow. Phase-change drywallsin a passive-solar building [J]. Applied Energy, 2006, 83: 425-435.
    [20] Athienitis AK, Liu C, Hawes D. Investigation of thermal performance of a passive-solar test-room with wall latent-heat storage [J]. Build Environment, 1997;32(5):405–10.
    [21]陈超,刘宇宁,果海凤,周玮.复合相变墙体应用于被动式太阳房的初步研究[J].建筑材料学报, 2008, 11, (6):684-689.
    [22]阮德水,张太平,张道圣等.相变蓄热材料在太阳房中的应用研究[J].华中师范大学学报(自然科学版), 1992, 26(4):65-69.
    [23] Zhang Y P, Xu X, Di K P, et al. experimental study on the thermal performance of shape- stabilized phase change material floor used in passive solar buildings [J]. Energy and Buildings, 2005, 37(10):1084-1091.
    [24] Xu X, Zhang Y P, Di K P, et al. modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings [J]. Journal of Solar Energy Engineering-Transanctions of ASME, 2006, 128(2):255-257.
    [25] Maha Ahmad, Andre′Bontemps, He′bert Salle′e, Daniel Quenard. Experimental investigation and computer simulation of thermal behaviour of wallboards containing a phase change material [J]. Energy and Buildings, 2006, 38:357–366.
    [26] Anica Trp. An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit [J]. Solar Energy,2005,79:648-660.
    [27] Piia Lamberg, Reijo Lehtiniemi, Anna-Maria Henell. Numerical and experimental investigation of melting and freezing processes in phase change material storage [J].International Journal of Thermal Sciences,2004,43:277-287.
    [28] Mario De Grassia, Alessandro Carbonaria, Giulio Palomba. A statistical approach for the evaluation of the thermal behavior of dry assembled PCM containing walls[J].Building and Environment,2006,41:448-455.
    [29] M.J. Huang, P.C. Eames, N.J. Hewitt. The application of a validated numerical model to predict the energy conservation potential of using phase change materials in the fabric of abuilding[J].Solar Energy Materials & Solar Cells,2006,90:1951-1960.
    [30] C. Arkar, S. Medved. Free cooling of a building using PCM heat storage integrated into the ventilation system[J].Solar Energy,2007,81:1078-1087.
    [31] Manuel Iba′n?ez ,Ana La′zaro b,Bele′n Zalba b.An approach to the simulation of PCMs in building applications using TRNSYS[J].Applied Thermal Engineering,2005,25:1796-1807.
    [32]郭宽良,孔祥谦,陈善年.计算传热学[M].合肥:中国科学技术出版社,1988.
    [33] Tomlinson,C. Arkar, S. Medved. Free cooling of a building using PCM heat storage integrated into the ventilation system[J].Solar Energy, 2007,81:1078-1087.
    [34] K. Nagano a, S. Takeda a, T. Mochida a, et al.Study of a floor supply air conditioning system using granular phase change material to augment building mass thermalstorage-Heat response in small scale experiments[J].Energy and Buildings,2006,38:436–446.
    [35] A. Pasupathya, R. Velraja, R.V. Seenirajb. Phase change material-based building architecture for thermal management in residential and commercial establishments [J].Renewable and Sustainable Energy Reviews, 2008, 12:59-64.
    [36]方贵银.平板蓄冷单体凝固传热特性理论研究[J].能源研究与信息,1999,15(1):28-35.
    [37] Crawley, D.B.EnergyPlus: Creating a New-Generation Building Energy Simulation Program[J].Energy & Buildings,2001,Vol.33,Issue 4:p.443-457.
    [38]郭宽良.数值计算传热学[M].安徽科学技术出版社.1987.
    [39] Zhou Jin, Huang Shu-yi.Caculation for Phase Change Thermal Tranfer.Energy Technology [J].2000, 1:11-14.
    [40] M.N.奥齐西克著,俞昌铭译.热传导[M].北京:高等教育出版社,1983.7
    [41] D.R克罗夫特,D.G.利利著,张风禄等译,传热学的有限差分计算[M].北京:冶金工业出版社,1982.3
    [42] Kim J-S, Darkwa K. Simulation of an integrated PCM-wallboard system[J].Int J Energy Res,2003, 27(3):215–23.
    [43] K.Darkwa, P.W.O, Callaghan.Phase-change drywallsin a passive-solarbuilding [J].Applied Energy,83(2006):425-435.
    [44] F Robe,Cabanot M,et a1.Concrete walls to collect and hold heat[J].Solar Age,1977,2(8):9-13.
    [45] Utzinger D M,Klein SA,Mitchell JW.The effect of air flow rate in collector-storage wall [J].Solar energy, 1980, 25(6):511-519.
    [46] Tarazi,Nasri khadir.A Model of a Tromb Wall[J]Renewable Energy,1991,1(3-4):533-541.
    [47] ]Smolec W,Thomas A. Theoretical and experimental investigations of heat transfer in a Trombe wall[J].Energy Conversion and Management,1993,34(5):385-400.
    [48] Ormiston S J,rathby G D,hollands K G T.Nnumerical predictions of convection in a trombewall system[J].Int.J.Heat Mass Ttransfer,1986,29(61):869-877.
    [49] Yedder,R Ben, Bilgen E.Natural convection and conduction in trombe wall systems[J].International journal of heat and mass transfer,1991,34(4-5):1237-1248.
    [50] Lukic N. The transient house heaing condition-the building envelope response factor(ber)[J].Renewable Energy,2003,28(4):523-532.
    [51] ]Lukic N.The transient house heaing condition-the daily changes of the building envelope response factor(ber)[J].Renewable Energy,2005,30(4):537-549.
    [52]孟长再,巴特尔,马广兴.被动式太阳房集热部件优化选型及集热面积简易计算方法探讨[J].节能技术,2003,2l(2):2-6.
    [53]叶宏,葛新石.几种集热一贮热墙式太阳房的动态模拟及热性能比较[J].太阳能学报, 2000, 2l(4):349-357.
    [54]李元哲,狄洪发,方贤德.被动式太阳房的原理及设计[M].北京:能源出版社, 1989.
    [55]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998.
    [56]彦启森,赵庆珠.建筑热过程[M].北京:中国建筑工业出版社, 1986.
    [57]胡松涛,朱春,王东等.低气压条件下电加热器自然对流换热性能测试[J].暖通空调,2006,36(03):21-24.
    [58]崔跃.高海拔地区暖通空调设计中的若干技术问题[J].暖通空调, 1999, 29(06):39-42.
    [59]刘叶弟,宋立新,臧建彬等.低气压下板式电加热器换热性能的研究[J].流体机械,2004,32(6):56-69.
    [60] ASHRAE Handbook-Fundamentals[M].Chaper6:PSYCHROMETRICS:2005.
    [61]章熙民,任泽霈,梅飞鸣等.传热学(第四版)[M].北京:建筑工业出版社,2003.
    [62]陈启高.建筑热物理基础[M].西安:西安交通大学出版社,1991.
    [63] Hagisima A,Tanimoto J.Field measurements for estimating the convective heat transfer coefficient at building surfaces[J].Building and Environment,2003,38(7):873-881.
    [64]朱颖心.建筑环境学[M].北京:中国建筑工业出版社,2005.
    [65]周允华.青藏高原的大气热辐射和天空有效温度[J].太阳能学报,1984,5(3):232-241.
    [66]张丽芝,张庆.相变贮热材料[J].化工新型材料,1999,(2):19.
    [67]秦鹏华,杨睿等,定形相变材料的热性能测试[J].清华大学学报,2003,43(6):833-835.
    [68]丁剑红,张寅平,王馨等.掺杂对定形相交材料导热系数的影响[J].太阳能学报, 2005, 26:6:853-856.
    [69]马宝国,王信刚,张志峰等.相变蓄能围护结构材料的研究现状与进展[J].建筑节能, 2005, 9:35-39.
    [70]李爱菊,张仁元,黄金,定形相变储能材料的研究进展及其应用[J].新技术新工艺, 2004, 2:45. 48.
    [71] DingJH, ZhangYP, WangX, eta1. Influence of additives On thermal conductivity of Shape. Stabilized phase change material [J]. Accepted by Solar Energy Materials and SolarCeils, 2006, 90:1692-1702.
    [72] KhudhairMA. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials [J]. EnergyConversionandManagement, 2004, 45:263-275.
    [73] Hawes D W, FeldmanD. Absorption of phase change materials in concrete [J].Solar Energy Materials and Solar Cells, 1992, 27:99-101.
    [74]余飞,陈中华,曾幸荣.正十二醇相变储热微胶囊的制备与表征[J].高分子材料科学与工程, 2009, (06):135-138.
    [75]鄢瑛,刘剑,张会平.微胶囊相变材料的原位聚合法合成与性能[J].华南理工大学学报(自然科学版), 2009, (09):139-143.
    [76]蹇守卫,马保国,金磊等有机-无机相变储能微胶囊的制备与表征[J].武汉理工大学学报, 2009, (11):5-7, 19.
    [77]邹光龙.溶胶-凝胶法制备SiO_2/脂肪酸复合相变材料[J].化工新型材料, 2009, (06) :45-47.
    [78]陈如麒,劳媚媚,徐军.溶胶-凝胶法制备铁酸镧LaFeO3薄膜[J].广西轻工业, 2009, (10) :18-19.
    [79]王大明.溶胶-凝胶法制备碳化硅研究进展[J].无机盐工业, 2009, (02):6-9.
    [80]刘羽,吴东兵,张永涛. Sol-Gel法二氧化硅溶胶的制备及稳定性研究[J].延安大学学报(自然科学版).
    [81]邓安仲,李胜波,沈小东等.脂肪酸/SiO2复合相变材料储能行为研究[J].材料导报, 2007, 21(5A):282-286.
    [82] Tval O. Anil, K. Sircar. Development of phase change technology for heating and cooling of residential building and other applications[A]. Proceeding of the 21th intersoeiety energy conversion en gineering conferenee Atlanta[C]. Washington:American Chemical Society, 1993, 134-140.
    [83]张华,徐宇工.相变材料在建筑围护结构中的应用研究[J].山东建筑工程学院学报, 20(2):78-82.
    [84] Pedro D,Silva,L.C.Gonc. Transient behaviour of a latent-heat thermal energy store: numerical and experimental studies [J]. Applied Energy, 2002, 73:83-98.
    [85] LaneG. A.Solar heat storage: Latent heat material [M]. Florida;CRC Press Inc: Background and Scientific Principles, 1983.
    [86] Hawes D W l. Latent heat storage in building materials [J]. Energy Buildings, 1993, 20(1):77.
    [87] Kaasinen H. The absorption of phase change substances into commonly used building materials [J]. Solar Energy Mater Solar Cells, 1992, (27):173.
    [88]秦鹏华,杨睿,张寅平.定形相变材料的热性能[J].清华大学学报(自然科学版), 2003, 43(6):833.
    [89]肖敏,龚克成.相变蓄热材料的制备及性能[J].太阳能学报, 2001, 22(4):427.
    [90]周剑敏,张东,吴科如.建筑节能新技术一相变储能建筑材料[J].房材与应用, 2003, (4):10.
    [91] E. Halawa, F. Bruno, W. Saman.Numerical analysis of a PCM thermal storage system with varying wall temperature [J]. Energy Conversion and Management, 2005, 46:2592-2604.
    [92] Dong Zhang, Shengli Tian, Deyan Xiao.Experimental study on the phase change behavior of phase change material confined in pores [J].Solar Energy, 2007, 81:653-660.
    [93] C Stetiu, Vineet Veer Tyagi, D. Buddhi. PCM thermal storage in buildings [J].A state of art.Renewable and Sustainable Energy Reviews, 2007, 11:1146-1166.
    [94] Mulligan J C, Colvin D P, Bryant Y G. Microencapsulated phase change material suspensions for heat transfer in spacecraft thermal systems [J]. Journal of Spacecraft and Rockets, 1996, 33 (2):278-284.
    [95]庄秋虹,张正国,方晓明.微/纳米胶囊相变材料的制备及应用进展[J].化工进展, 2006, 25 (4):388-392.
    [96] P. Lamberg, A. Jokisalo, K. Siren.The effects on indoor comfort when using phase materials with building concrete products[J].in:Proc. IEA, ECES IA Annex 10, 6th Workshop, Stockholm,Sweden, November 2000, p22–24.
    [97] Cho J S, Kwon A, Cho C G. Microencap sulation of octadecane as a phase change material by interfacial polymerizetion in an emulsion system [J]. Colloid and Polymer Science, 2002, 280 (3):60-66.
    [98] Yamagishi, Yasushi, Sugeno, et al. Comparison of micro mechanicalmodels based on the tension test for unidirectional GFRP composites [J]. American Society of Mechanical Engineers, 1998, 374:313-318.
    [99] Mckinney R A, Bryant Y G.Method of reducing infrared view ability of objects:US, 6373058[P].2002:204-216.
    [100] E. Assis, L. Katsman, G. Ziskind, R. Letan. Numerical and experimental study of melting in a spherical shell [J]. International Journal of Heat and Mass Transfer, 2007, 50: 1790-1804.
    [101] Song Qingwen, Li Yi, Xing Jianwei. Thermal stability of composite phase change material microcapsules incorporated with silver nano-particles [J].Polymer, 2007, 48:3317-3323
    [102]林怡辉,张正国,王世平.新型复合相变储热材料的研究[C]. 2000年中国材料研讨会论文摘要集(上),北京, 2000, 11:194-195.
    [103]林怡辉,张正国,王世平.溶胶-凝胶法制备新型蓄能复合材料[J].太阳能学报, 2001, 22(3): 334-337.
    [104] Hawes D W, Banu D, Feldman D. Latent heat storage in concrete [J]. Solar Energy Materials, 1989, 19:335-348.
    [105] Salyer I O. Dry powder mixes comprising phase change materials [P]. US 5370814, 1994.
    [106] Feldman D, Shapiro M M, Banu D, et al. Fattyacids and their mixtures as phase change materials for thermal energy storage [J]. Solar Energy Materials, 1989, 18:201-216.
    [107] Salyer I O. Thermoplastic, moldable, non-exuding phase change materials [P]. US 5565132, 1996.
    [108] J. S. Kim, K. Darkwa, Simulation of an integrated PCM wallboard system [J]. International Journal of Energy Research 27(3) (2003) 215–223.
    [109] K. Darkwa, J. S. Kim, Heat transfer in neuron-composite laminated phase change drywall [J]. Journal of Power and Energy, Proc. Instn. Mech. Eng. (Part A) 218 (2004) 83–88.
    [110] K. Darkwa, J. -S. Kim, Enhanced performance of laminated PCM wallboard for thermal energy storage in buildings, in: Proc. 37th Intersociety Energy Conversion Engineering Conference, 2002, Washington, USA.
    [111] K. Darkwa, J.S. Kim.Dynamics of energy storage in phase change drywall systems [J].International Journal of Energy Research, 2005, 29:335–343.
    [112] E. Assis, L. Katsman, G. Ziskind, R. Letan. Numerical and experimental study of melting in a spherical shell [J]. International Journal of Heat and Mass Transfer, 2007, 50:1790-1804.
    [113] Yinping Zhang, Guobing Zhou, Kunping Lin.Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook [J].Building and Environment, 2007, 42:2197-2209.
    [114] Mario De Grassia, Alessandro Carbonaria, Giulio Palomba.A statistical approach for the evaluation of the thermal behavior of dry assembled PCM containing walls[J].Building and Environment,200641:448-455.
    [115] C. Arkar, S. Medved. Free cooling of a building using PCM heat storage integrated into the ventilation system [J].Solar Energy, 2007, 81:1078-1087.
    [116] Manuel Iba′n?ez a, 1, Ana La′zaro b, Bele′n Zalba b, 2, Luisa F. Cabeza. An approach to the simulation of PCMs in building applications using TRNSYS. Applied Thermal Engineering 25 (2005) 1796-1807.
    [117] Manuel Iba′n?ez a,Ana La′zaro b,Bele′n Zalba b. An approach to the simulation of PCMs in building applications using TRNSYS [J]. Applied Thermal Engineering, 2005, 25:1796-1807.
    [118] Maha Ahmad a, Andre′Bontemps b, He′bert Salle′e a.A Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material[J].Energy and Buildings,2006,38:673–681.
    [119] M.J. Huang, P.C. Eames, N.J. Hewitt. The application of a validated numerical model to predict the energy conservation potential of using phase change materials in the fabric of a building [J].Solar Energy Materials & Solar Cells,2006,90:1951-1960.
    [120] ZHUANG Chun-long, DENG An-zhong,LI Sheng-bo,et a1.The field study of temperature distribution in the floor radiation heating room with new phase change material[J].Journal of Center South University of Technology,2007,14:91–94.
    [121]邓安仲,李胜波,庄春龙等.相变储热轻质围护结构夏季隔热节能实验研究[J],暖通空调, 2009, 9.
    [122] LI Bai-zhan, ZHUANG Chun-long, DENG An-zhong. Study on improving the indoor thermal environment in light weight building combining pcm wall and nighttime ventilation [J]. Journal of Civil, Architectural & Environmental Engineering, 2009, 31(3):109-113.
    [123] GB50176-93民用建筑热工设计规范[S].北京:中国建筑工业出版社,1993.
    [124]康绍忠.土壤一植物一大气连续体水分传输的计算机模拟[J].水利学报,1992,(3):112.
    [125]张素宁.太阳辐射逐时模型的建立[J].太阳能学报, 1997, 18(3):273-277.
    [126]叶宏.透明蜂窝和定形相变材料在太阳能利用中的理论和实验研究[D].合肥:中国科学技术大学,2002.
    [127]葛新石,龚堡,陆维德等.太阳能工程-原理和应用[M].北京:学术期刊出版社, 1988.
    [128]贺平,孙刚.供热工程[M].北京:中国建筑工业出版社, 2003.
    [129]肖肖伟.藏西南边远地区直接受益式太阳能采暖研究[D].北京:清华大学,2010.
    [130]李震,张寅平,江亿.非理想相变特性材料热性能简化分析方法即适用条件[J].太阳能学报, 2002, 23(1):27-31.
    [131] K.Kamil.Experimental and theoretical investigation of latent heat storage for water based solar heating systems[J].Energy Conv. Manage,1995,36:315–323.
    [132] Z.Belen, M.M.Jose, F.C.Luisa, et al.Review on thermal energy storage with phase change materials: heat transfer analysis and applications [J].Appl.Thermal Eng, 2003, 23:251–283.
    [133] M.K.Amar, M.F.Mohammed.A review on energy conservation in building applications with thermal storage by latent heat using phase change materials[J].Energy Conv. Manage,2004,45:263–275.
    [134] M.Hadjiwva, R.Stouyov, Tz.Filipova.Composite salt-hydrate concrete system for building energy storage [J].Renewable Energy, 2000, 19(1–2):111–115.
    [135]李元哲.被动式太阳房热工设计手册[M].北京:清华大学出版社, 1993.
    [136]麦金太尔D. A.室内气候[M](龙惟定)等译.上海:上海科学技术出版社1988.
    [137] Fanger P O. Comfort limits for asymmetric thermal radiation [J].Energy & Building, 1985, 8(3):225-236.
    [138]张旸.零辅助热源被动式太阳房热工设计计算方法[J].西安建筑科技大学学报(自然科学版),1999,31(1):29-31.
    [139]张旸.零辅助热源被动式太阳房设计技术研究[P].西安:西安建筑科技大学,1994.
    [140]刘加平,杜高潮.无辅助热源被动式太阳房热工设计[J].西安建筑科技大学学报,1995,27(4):370-374.
    [141]《GJB 4306-2002野营住房空间与环境参数限值[S].北京:中国建筑工业出版社,2002.
    [142] K. S. Ong. A mathematical model of a solar chimney [J]. Renewable energy, 2003, 28(7):1047-1060.
    [143] W. Smolec, A. Thomas. Problems encountered in heat transfer studies of a trombe wall [J]. Energy conversion and management. 1994, 35(6):483-491.
    [144] Awbi HB, Gan G. Simulation of solar-induced ventilation [J]. Renewable Energy Technology and the Environment. 1992, 4:20l6-2030.
    [145] Gan G. A parametric study of Trombe walls for passive cooling of buildings [J]. Energy and Buildings, 1998, 27(1):37-43.
    [146] F. Nur Demirbileka, Ugur G, Yalciner, et a1. Analysis of the thermal performance of a building design located at 2465m: Antalya-Saklikent National Observatory guesthouse [J]. Building and Environment, 2003, 38(1):177-184.
    [147]田胜元.实验设计与数据处理[M].北京:中国建材工业出版社, 1988.
    [148] zhang Y P, Xu X, Di H F, et al. experimental study on the thermal performance of the shape-stabilized phase change material floor used in passive solar building [J]. Journal of solar energy engineering-transactions of the ASME, 2006, 128(2):255-257.
    [149] Peippo K , Kauranen P, Lund P D. A multicomponent pcm wall optimized for passive solar heating [J]. Energy and buildings, 1991, 17(4):259-270]
    [150]柳孝图.建筑物理[M].北京:中国建筑工业出版社, 2000.
    [151] A.Bejan.Convection Heat Transfer, third ed [M]. John Wiley and Sons, 1994.
    [152]陈会娟,陈滨,庄智等.特朗贝墙体冬季集热性能的计算及预测[J].建筑热能通风空调, 2006, (02).
    [153]张健,周文和,丁世文.被动式太阳房供暖实验研究[J].太阳能学报, 2007, (08).
    [154]张蕊蕊,张杰,胡卜元.绿色生态建筑评价与暖通空调技术[J].河北建筑科技学院学报,2006.
    [155]喜文华,王恒一.被动式太阳房的设计与建造[M].北京:化学工业出版社, 2007.
    [156] ]GB50068-2001建筑结构可靠度设计统一标准[S].北京:中国建筑工业出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700