用户名: 密码: 验证码:
发动机—发电机系统轴系机电耦合动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发动机—发电机系统广泛应用于混合动力车辆、工程机械和柴油发电机组,其振动问题一直是影响动力装置的工作可靠稳定性和噪声控制的主要因素之一。
     在实际运行过程中,发动机—发电机系统轴系在电磁参数激励,气体爆发压力,活塞连杆往复惯性力和自激惯性激励等的联合作用,不仅产生复杂的非线性振动现象,还存在着复杂的机电耦合关系。为了全面研究发动机—发电机系统轴系的动态性能,分析轴系的耦合振动问题,有必要将发动机和发电机作为一个系统进行研究。本文的研究目的就是根据轴系的结构特点,从机电耦合的角度,研究发动机—发电机系统轴系在各种内部激励和外部激励作用下的动力特性和振动规律,为系统的设计、优化以及减噪等提供更符合实际的理论依据。主要内容包括:
     利用有限单元法建立发动机—发电机系统轴系非线性机电耦合动力学模型。首先,根据发动机曲轴系统的结构特点,将轴系简化为质量沿轴线连续分布的阶梯轴分布参数力学模型,在综合考虑曲轴扭振轴和横振的基础上,建立曲轴单元运动微分方程;其次,以发电机转子振动位移为节点位移,考虑发电机转子振动偏心时不均匀气隙磁场能量变化,建立发电机单元;最后,在这两个单元的基础上,基于有限元法建立发动机—发电机系统轴系的非线性动态模型。该非线性运动微分方程揭示了发动机—发电机系统轴系结构参数、电磁参数与其动态性能之间的关系,为进一步研究轴系的电磁参数、结构参数与其动态性能之间的内在联系奠定基础。
     利用多尺度法研究发动机—发电机发动机—发电机系统轴系发生参、强的共振条件及其耦合机理。研究结果表明:发动机—发电机系统轴系存在电磁参数激励和外激励;系统产生非线性参激振动的主要原因是发动机—发电机系统轴系受到非线性的电磁参数激励;在电磁参数激励、气体爆发压力、往复惯性力和自激惯性激励联合作用下系统将产生参激振动和强迫振动相耦合的现象。
     利用多尺度法对发动机—发电机系统轴系非线性动态方程进行求解,得到发动机—发电机系统轴系非线性动态方程的一次近似解。某具体在相同的工作状态和条件下,其仿真计算结果和试验测试结果基本一致,这说明轴系机电耦合动态模型及计算是正确、可靠的。
     研究了发动机—发电机系统轴系在电磁参数激励、气体爆发压力、往复惯性力和自激惯性力作用下的主共振、次谐共振、组合共振、超谐共振和多重共振的条件,和具体频率因子和条件下的共振分析以及系统运动稳定性等问题。
     采用多尺度法系统地研究发动机—发电机系统轴系在电磁参数激励、气体爆发压力、运动组件往复惯性力和自激惯性力作用下的主共振、次谐共振、组合共振、超谐共振和多重共振的条件;系统在电磁参数激励作用下的主共振和次谐共振;在自激惯性力、往复惯性力和气体爆发压力共同作用下的组合共振;在自激惯性力作用下的超谐共振;以及在电磁参数激励、往复惯性力和自激惯性力共同作用下的多重共振及其运动稳定性问题。
     利用能有效测试发动机—发电机系统轴系动态响应的动力装置,在广西玉柴进行相关的试验研究,验证本文理论研究的正确性。
As the main power source in hybrid devices, engine-genetator system is widely used in hybrid vehicles and hybrid driven construction machineries. The shaft system of engine-genetator withstands the impacts of complex alternating shock loads and strong electromagnetic field at work, so the reliable stability and noise control of hybrid device are affected by vibration problems of the shaft system.
     In the actual running process of hybrid shaft system, the shaft system of engine-genetator is in the combined effects of gas explosion pressure, inertia incentive and electromagnetic incentive, and electromagnetic parameters, mechanical vibration parameters and gas pressure parameters are mutual coupling systematacially. The change of electromagnetic parameters of generator will affect the change of mechanical vibration parameters of shaft system, while the change of mechanical vibration parameters of system will also affect the change of electromagnetic parameters of system, which is a complex electromechanical coupling relation. In order to study comprehensively on the dynamic performances of shaft system in engine-genetator and analyze the electro-mechanical coupling vibration problem of shaft system, a unified model is needed to be built. The purpose of this study was to research the dynamic characteristics and vibration laws of engine-generator shaft system under the coupling effect of engine and electrical system, which was based on the structural characteristics of shaft system and from the point of view of electro-mechanical coupling, and also to provide a detailed theoretical basis for the design, fault diagnosis, vibration and noise control of shaft system. The main contents included:
     Using finite element method, the non-linear electro-mechanical coupling dynamic model of engine-generator shaft system was established. Firstly, the shaft system was simplified to the mechanical model of quality continuous distribution along the ladder axis according to the structural characteristics of engine crank shaft system, and the crank shaft unit was built based on the complex of motion differential equations of torsional vibration axis unit and transverse vibration beam unit of crank system. Secondly, according to the electro-mechanical coupling relation that vibration eccentricity exists in generator rotor in actual operation state, the generator air-gap magnetic field energy function was introduced and the generator unit was built. Finally, the dynamic equation of non-linear electro-mechanical coupling of engine-generator shaft system was built by applying finite element method based on the crank shaft unit and generator unit of engine-generator shaft system. The equation providing basis for further study of the intrinsic link between dynamics characteristics of engine-generator shaft system and structural parameters, electromagnetic parameters and gas pressure parameters.
     Using multiscale method, the coupling mechanism and occurrence resonance condition of the parametric vibration with the forced vibration of engine-generator shaft system were studied deeply. The results showed that, the nonlinear electromagnetic parametric incentive, inertia incentive and gas explosion pressure existed in engine-generator shaft system. The electromagnetic parametric incentive was generated by the change of magnetic field atmosphere when the generator rotor vibrated eccentricly, which was the main cause of parametric excitation vibration. And the coupling phenonmenon of both the parametric vibration and the forced vibration was generated in the combined effects of electromagnetic parametric incentive, inertia incentive and gas explosion pressure.
     Using multiscale method, the nonlinear dynamic equation of engine-generator shaft system was solved and the linear approximate solution was obtained. A simulation calculation was also performed in a specific instance and the corresponding simulation result was obtained too. Comparing the simulation result with experimental result, it was found that they were basically consistent, which showed that the electro-mechanical coupling dynamic model of shaft system built and the calculation were both accurate and reliable.
     Using multiscale method, the conditions of primary resonance, subharmonic resonance, superharmonic resonance, combination resonance and multiple resonance of engine-generator shaft system under the actions of electromagnetic incentive, self-inertial incentive and gas external incentive were studied. The subharmonic resonance and primary resonance subjected to the electromagnetic incentive, the superharmonic resonance under the action of inertia incentive, the combination resonance under the actions of inertia incentive with external force, and the multiple resonance under the actions of electromagnetic incentive, self-inertial incentive and gas external incentive and also their motion stability were all studied.
     In addition, a related experimental research was performed on a hybrid powertrain test bench in Guangxi Yuchai, to verify the correctness of theoretical studies.
引文
[1]徐小东,张炳力.混合动力技术与未来汽车的发展[J].安徽建筑工业学院学报(自然科学版),2008,16(3):94-96.
    [2]陈晓东,高世杰,混合动力汽车发展所面临的挑战[J].汽车工业研究,2001,(6):16-20.
    [3]刘涛,姜继海,孙辉.静液传动混合动力汽车的研究与进展[J].汽车工程,2009,31(7):586-591.
    [4]陈建文,令狐婷,吕良恺.汽车混合动力技术发展现状及前景[J].汽车零部件,2011,8:75-76,80.
    [5]吴志军,陈永龙,邓俊等.插电式串联混合动力汽车的经济性与排放性[J].吉林大学学报(工学版),2011,41(6):1549-1553.
    [6]苏欣平,肖汇,杨钢等.混合动力汽车的效率分析及发展趋势[J].机床与液压,2011,39(20):57-58,85.
    [7]杨攀,赵又群.Plug-in混合动力城市公交车参数匹配与仿真[J].机械科学与技术,2011,30(8):1353-1360.
    [8]张立军,叶荫,余卓平.混合动力汽车用发动机起动振动与噪声特性初步研究[J].汽车技术,2009,3:28-31.
    [9]熊建强,黄菊花.混合动力汽车噪声和振动的分析与控制[J].噪声与振动控制,2009,5:96-100.
    [10]杨伟斌,秦大同.轻度混合动力汽车动力元件的选型与参数匹配[J],重庆大学学报,2003,(11):6-15.
    [11]张俊红,郑勇.内燃机振动、噪声的多体动力学分析[J].中国机械工程,2006,17(1):25-28.
    [12]孙军,桂长林,李震.内燃机曲轴强度研究的现状、讨论与展望[J].内燃机学报,2002,20(2):179-184.
    [13]李震,桂长林,孙军.内燃机曲轴的轴系振动分析研究的现状、讨论与展望[J].内燃机学报,2002,20(5):469-474.
    [14]李震.内燃机曲轴-轴承系统摩擦学动力学耦合研究[D].合肥工业大学,2005.10.
    [15]岳东鹏.轻度HEV混合动力系统轴系耦合动力学特性[D].天津大学,2005.5.
    [16]何芝仙.内燃机曲轴-轴承系统动力学摩擦学刚度和强度耦合研究[D].合肥工业大学,2006.10.
    [17]乔志强.某型柴油机曲轴系统动力特性研究[D].哈尔滨工程大学,2008.5.
    [181 李晓伟.基于虚拟样机技术的16V240ZJ型柴油机振动分析[D].大连交通大学,2010.6.
    [19]马维忍.基于虚拟样机技术的高速柴油机轴系振动机理研究[D].天津大学,2009.5.
    [20]Spaetgens T W, Vancouver B C. Holzer method for forced-damped torsion vibrations [J]. Journal of applied mechanics.1950,3:59-63.
    [21]Guagliano M, Terranova A, Vergani L. Theoretical and experimental study of the stress concentration factor in diesel engine crankshafts [J]. ASME J. Mech. Des. 1993,115(3):47-52.
    [22]李侠.高维参数激励系统的非线性动力学分析[D].浙江大学,2005.1.
    [23]邢正双.基于多体动力学柴油机机体结构强度分析[D].昆明理工大学,2010.5.
    [24]巨冬雪.内燃机轴系非线性扭转振动研究[D].哈尔滨工业大学,2009.6.
    [25]许增金.大型往复式压缩机轴系动力学特性研究[D].沈阳工业大学,2010.12.
    [26]王晓.发动机曲柄连杆机构多体系统动力学仿真研究[D].中北大学,2008.5.
    [27]龚海军.柴油机扭振分析及减震器匹配研究[D].吉林大学,2004.5.
    [28]马逢峻.基于瞬态动力学的EQ4H发动机轴系扭转振动研究及减振器开发[D].上海交通大学,2007.2.
    [29]付鲁华,吕兴才,张寅豹.内燃机曲轴振动研究的内容和方法[J].拖拉机与农用运输车,2004,4:5-8.
    [30]雷宣扬,宋希庚,薛冬新.模拟内燃机曲轴振动的新模型[J].中国机械工程.2003,14(17):1466-1469.
    [31]Okamura H,Shinno A,Yamanaka T',et al.Simple modeling and analysis for crankshaft three dimensional vibrations, part 1:background and application to free vibrations[J]. Journal of Vibration and Acoustics, Transactions of the ASME,1995,117(3):70-79.
    [32]Morita T, Okamura H. Simple modeling and analysis for crankshaft three-dimensional vibrations, part 2:application to an operating engine crankshaft [J].Journal of Vibration and Acoustics, Transactions of the ASME,1995,117(3):80-86.
    [33]W L Cleghom, K C Chao. Kineto-Elasto-Dynamic modeling of mechanisms employing linearly tapered beam finite el elements [J]. Mech.Mach.Theory. 1988,23:333-342.
    [34]覃文洁.内燃机曲轴系振动响应的多体系统动力学分析方法[J].安全与环境学报,2002,2(2):51-53.
    [35]舒歌群,郝志勇.内燃机轴系扭振,弯曲振动减振器的试验研究[J].天津大学学 报,1997,30(6):806-110.
    [36]赵赛,郝志勇.柴油机曲轴系扭转振动的有限元模型研究[J].车辆与动力技术,2000,80(4):27-30.
    [37]王传溥.舰船轴系振动[M].哈尔滨:哈尔滨船舶工程学院出版社,1987.
    [38]雷宣扬.内燃机曲轴动态振动特性的模拟[D].大连:大连理工大学,2003.
    [39]Kimura J, Shiono K, Okamura H, et al. Experiments and analysis of crankshaft three-dimensional vibrations and bending stress in a V-type ten-cylinder engine: influence of crank shaft gyroscopic motions. SAE 97199.
    [40]Okamura H, Shinno A, Sogabe K, etal.Dynamic stiffness matrix method for three-dimensional analysis of crankshaft vibrations(1st report, the background and applications to a planar structure crankshaft system)[J].Transactions of the Japan Society of Mechanical Engineers, Part C,1989,55(516):1965-1973.(In Japanese)
    [41]Kimura J,Okamura H, Sogabe K. Analysis of the influence of crankshaft system vibrations on the crankshaft handing stresses in a V-10 type diesel engine(crankpin fillet stresses induced by the crankshaft torsion-bending vibration)[J].Transactions of the Japan Society of Mechanical Engineers, Part C,1995,61(590):3834-3842.(In Japanese)
    [42]Kimura J,Okamura H, Sogabe K. Analysis of the influence of crankshaft system vibrations on the crankshaft bending stresses in a V-10 type diesel engine(2nd report, crankshaft stresses induced by gyroscopic vibrations of the crankshaft system)[J]Transactions of the Japan Society of Mechanical Engineer, Part C,1996,62(604):4477-4483.(In Japanese)
    [43]Bargis E,Garro A,Vullo V Crankshaft design and evaluation-part 1-critical analysis and experimental evaluation of current methods[J]. Conf. on Reliability, Stress Analysis and Failure Prevention in Mechanical Design, ASME International, 1980(a):191-201.
    [44]Bargis E,Garro A,Vullo v. Crankshaft design and evaluation-part 2-a modern design method:modal analysis[J]. Conf. on Reliability,Stress Analysis and Failure Prevention in Mechanical Design, ASME International,1980:203-211.
    [45]李惠珍,杨松林.曲轴弯曲应力变化规律的研究[J].汽车技术.1990,1:13-18.
    [46]李惠珍,张德平等.用有限元进行曲轴扭振计算.内燃机学报[J].1991,9(2):157-162.
    [47]郝志勇,段秀兵,程金林.柴油机曲轴轴系的柔性多体动力学仿真分析[J].铁道机车车辆,2003,23(1):86-89.
    [48]郝志勇,林琼,段秀兵.曲轴系统动力学特性的数字化仿真与实验研究[J].内燃机工程,2006,27(1):38-40.
    [49]郝志勇,舒歌群,史绍熙.内燃机轴系扭振响应的扭转弹性波计算方法研究[J].内燃机学报,2000,18(1):29-32.
    [50]殷建锋,郝志勇,韩松涛等.内燃机曲轴的连续分布模型分析方法[J].内燃机学报,2002,20(5):465-468.
    [51]韩松涛,郝志勇.6102B型柴油机曲轴三维有限元模态分析与实验研究[J].农业机械学报,2001,32(4):74-77.
    [52]郭磊,郝志勇,林琼.柴油机曲轴与气缸体系统动力学仿真研究[J].浙江大学学报(工学版),2007,4 1(5):780-784.
    [53]王国治.柴油机轴系扭振研究中的模态分析方法[J].内燃机学报,1986,4(3):249-259.
    [54]张洪田,张志华,王芝秋.船舶轴系扭振分析的改进模态综合技术[J].船舶工程,1992,(2):28-32.
    [55]Bagci C. A computer method for computing torsional nature frequencies of nonuniform shafts, geared system, and curved assemblies [C]. Proceedings'of the 3rd OSU mechanical conference. Oklahoma.1973,40:1-15
    [56]Bagci C, Rajavenkateswaran S K, Critical speed and modal analyses of rotating machinery using spatial finite-line element method[C]. Proc Of the 5th Int. Modal Analysis Conference,1987,11:1708-1717.
    [57]孙军,汪景峰.内燃机零部件有限元分析的研究现状与展望[J].内燃机,2004,(1):14-17,21.
    [58]方华,王天灵,李盛成.493型柴油机曲轴有限元分析及可靠度计算[J].汽车技术,1998,8:11-13.
    [59]Kexin Hu. A finite element formulation for coupled rigid and flexible dynamic analysis of an internal combustion engine crankshaft system [D]. University of Michigan,2002.
    [60]P K Nath, A Ghosh.Kineto-elastodynamic analysis of Mechanisms by finite element method [J]. Mech.Mach.Theory.1980,15:179-197.
    [61]尹建民,王德海,袁银南等.X6135柴油机曲轴强度的三维有限元研究.内燃机工程,1997,(2):71-77,86.
    [62]钱丽丽,姜树李,朱诞章等.连杆大头-曲柄销接触的三维有限元法计算[J].内燃机工程,2000,21(1):54-58.
    [63]孙军,桂长林,汪景峰.边界条件处理对曲轴有限元分析的影响研究[J].汽车工 程.2005,27(6):724-726.
    [64]王良国,胡德波.386Q型发动机曲轴疲劳强度有限元分析[J].内燃机学报,2000,(3):270-274.
    [65]苏铁熊,张儒华,蔡坪等.利用有限元法研究曲轴弯曲应力的变化规律[J].车用发动机,1995,4:35-40.
    [66]汪长民,柬德军.曲轴曲拐扭转刚度计算的有限元法[J].内燃机学报,1991,9(2):177-183.
    [67]孙少军,张俊红,高建.内燃机曲轴动态特性有限元分析及试验验证[J].天津大学学报,2008,41(2):233-237.
    [68]Cardinali R, Nordmann R, Sperber A. Dynamic simulation of nonlinear models of hydroelectric machinery [J]. Mechanical System and Signal Processing, 1993,7(1):29-44.
    [69]Zissimos P, Mourelatos. A crankshaft system model for structural dynamic analysis of internal combustion engines [J].Computers and Structural,2001,79:2009-2027.
    [70]Zheng-dong Ma, Noel C. Perkins. An efficient multibody dynamics model for internal combustion engine systems [J]. Multibody System Dynamics,2003,10:363-391.
    [71]H Nehme, N G Chalhoub, N Henein. Development of a Dynamic Model for Predicting the Rigid and Flexible Motions of the Crank Slider Mechanism [J]. Journal of Engineering for Gas Turbines and Power,2003,120(7):678-686.
    [72]D M W Hoffman, D R Dowling. Fully Coupled Rigid Internal Combustion Engine Dynamics and Vibration-Part I:Model Development [J]. Journal of Engineering for Gas Turbines and Power,2001,123(7):677-684.
    [73]D M W Hoffman, D R Dowling. Fully Coupled Rigid Internal Combustion Engine Dynamics and Vibration-Part Ⅱ:Model-Experiment Comparisons [J]. Journal of Engineering for Gas Turbines and Power,2001,123(7):685-692.
    [74]Zissimos P, Mourelatos. A crankshaft system model for structural dynamic analysis of internal combustion engines [J].Computers and Structures,2001,79(8):2009-2027.
    [75]戴莉娅,张志华,孙大庆.船舶推进轴系纵、横、扭耦合振动传递矩阵法的研究[J].中国造船,1989,4:98-106.
    [76]Daughty S, Vafaee G. Transfer matrix eigensolutions for damped torsional system [J]. ASME Jounral of vibraiton, acoustics, stress and reliability in design. 1985,107(1):128-132.
    [77]Huang Yuan Mao, Horng C D. Analysis of torsion vibration system by the extended transfer matrix method [J]. ASME Jounral of vibration as acoustics. 1999,121(4):250-255.
    [78]Wakabayashi K, lwamoto S, Matsumoto N. Analysis of vibrations of reciprocating engine shaftings by the transfer matrix method (the second report, calculation and comparison with measured data of torsion vibration [J]. Journal of the M.E.S.J.,1979,14(3):279-287.(In Japanese)
    [79]Wakabayashi K,lwamoto S, Nakamura A. Analysis of vibrations of reciprocating engine shaftings by the transfer matrix method(the third report,bending vibrational stresses excited by torsion vibrations of crankshafts of high speed, small diesel engine)[J]. Journal of the M.E.8.J.,1982,17(12):966-973.(In Japanese)
    [80]Okamura H, Suzuki A, Sogabe K, etal. Dynamic stiffness matrix method for three-dimensional analysis of crankshaft vibrations (3rd report application of flywheel FEM model and "multi-points spring support model" for oil-film of crank journals) [J]. Transactions of the Japan Society of Mechanical Engineers, Part C,1990,56(529):2319-2326.(In Japanese)
    [81]S.Vulli, J.F.Dunne, R.Potenza,etal. Time-frequency analysis of single-point engine-block vibration measurements for multiple excitation-event identification [J]. Journal of Sound and Vibration,2009,321 (3-5):1129-1143.
    [82]唐斌.基于精确动态刚度矩阵法的内燃机轴系扭转、纵向及弯曲三维耦合振动研究[D].大连理工大学,2006.
    [83]舒歌群.阶梯轴中扭转弹性波的传播机理及主动控制研究[D].天津大学,1997.
    [84]叶敏,罗纪生,郝志勇.大型汽轮发电机组转子轴系扭振弹性波的解析研究[J].机械工程学报,1998,34(4):15-21.
    [85]姚学诗.大型汽轮发电机组转子-支承系统动态优化设计研究[D].南京航空航天大学,2001.
    [86]陈金涛.基于AMEsim的柴油发电机组建模与仿真[J].柴油机,2008,30(1):5-9.
    [87]钟欣,肖民.船舶轴带发电机系统的建模与仿真[J].华东船舶工业学院学报(自然科学版),2005,19(4):15-18.
    [88]Prohl M A. A general method for calculating critical speeds of flexible rotors[J]. Journal of Appl. Mech. Trans ASME 1945,12(3):142-148.
    [89]Murphy B T, Vace J M. An Improved method for Calculating Critical Speeds and Rotor dynamics Stability of Turbo machinery[J]. ASME Trans. Journal of engineering for power,1983,105-110.
    [90]陆颂元.转子系统阻尼固有频率的传递矩阵一多项式计算法[J].应用力学学报,1986,3(1):73-82.
    [91]王正.Riccati传递矩阵法的奇点及其消除方法[J].振动与冲击,1987,6(2):74-78.
    [92]明章杰,宋希庚,陈亮等.基于三维实体有限元的某机车柴油发电机组轴系扭转振动研究[J].柴油机,2008,30(1):37-41.
    [93]陈德才.内燃机车主发电机-柴油机机组振动仿真研究[D].上海交通大学,2010.
    [94]刘晓,采用整体安装架机车柴油机组的有限元模型研究[D].西南交通大学,2007.
    [95]贺彦波,黄自鹏,朱雨等.柴油发电机组基座试验模态分析与有限元分析[J].机电设备,2008,(1):29-31
    [96]黄曼磊,土常虹.船舶电站柴油发电机组的非线性数学模型[J].哈尔滨工程大学学报,2006,27(1):15-19,47.
    [97]李东辉,船舶柴油发电机组的建模与运行仿真研究[D].大连海事大学,2011.3.
    [98]李郁侠,吴子英,原大宁等.基于传递矩阵法的大型水轮发电机组主轴系统非线性瞬态响应数学模型[J].水利水电技术,2002,33(7):21-26.
    [99]肖黎,张咏梅.大型水轮发电机组横向振动的有限元分析[J].长江科学院院报,2006,(5):37-40.
    [100]叶艳琴.柴油发电机组振动测试及有限元分析[D].南昌大学,2011.6.
    [101]廖道训,熊有伦,杨叔子.现代机电系统(设备)耦合动力学的研究现状和展望[J].中国机械工程,1996,7(2):44-46.
    [102]邱家俊.机电耦联动力系统的非线性振动[M].北京:科学出版社,1996.
    [103]钟掘,陈先霖.复杂机电系统耦合与解耦设计[J].中国机械工程,1999,10(9):1051-1054.
    [104]钟掘,唐华平.高速轧机若干振动问题—复杂机电系统耦合动力学研究[J].振动、测试与诊断,2002,22(1):2-8.
    [105]唐华平,钟掘.一种复杂机电系统的全局建模方法[J].中南工业大学学报,2002,33(5):522-525.
    [106]李兆军.含复合材料构件的机构系统耦合动力学研究[D].武汉:华中科技大学,2006.
    [107]王文龙,蔡敢为.电动机-曲柄滑块机构系统的动态分析祸联方程[J].机械与电子.2002(6):35-38.
    [108]Timo P. Holopainen, Asmo Tenhunen, Antero Arkkio. Electromechanical interaction in rotordynamics of cage induction motor. Journal of Sound and Vibration,2005,284: 733-755.
    [109]邱家俊,张德栋,蔡赣华.发电机组转子轴系机电耦联扭振的二重共振研究[J].机床与液压,2005(1):115-118.
    [110]邱家俊.电机的机电耦联与磁固耦合非线性振动研究[J].中国电机工程学报.2002,22(5):109-115.
    [111]杨志安,李文兰,邱家俊.磁饱和时发电机组转子轴系电磁激发参数共振[J].非线性动力学学报,1998,5(2):110-116.
    [112]塔娜,电机的电磁阻尼理论与转子的非线性振动[D].天津:天津大学,2004.
    [113]T.P.Holopainen, A.Tenhunen, E.Lantto, A.Arkkio. Numerical identification of electromagnetic force parameters for linearized rotordynamic model of cage induction motors. Journal of Vibration and Acoustics,2004,126:384-390.
    [114]牛西泽.发电机组机电耦联非线性系统的暂态过程与失稳振荡的研究[D].天津:天津大学,1999.
    [115]邱家俊.电机的电磁参数对转子共振的影响[J].固体力学学报,1989,(1):65-70.
    [116]杨志安,李文兰,邱家俊.发电机组轴系电磁激发扭振主共振与奇异性[J].天津大学学报,2007,40(7):864-868.
    [117]邱家俊.交流电机由电磁力激发的参、强联合共振.力学学报,1989,21(1):49-57.
    [118]刘建琴,张策.电机—弹性连杆机构系统的动力学分析[J].天津大学学报,1999,32(3):265-269.
    [119]孟宪举,黄永强.弹性连杆机构曲柄参数对电动机转速的影响分析.河北理工学院学报,1998,20(1):36-41.
    [120]梁兴雨,舒歌群,李东海,等.基于柔体曲轴多体动力学的轴系扭振响应分析[J],内燃机工程,2007,28(4):46-49.
    [121]王连昌.关于惯性耦合对内燃机曲柄连杆机构动态特性影响的研究[J].内燃机学报,1993,11(4):352-359.
    [122]尤小梅,马星国.发动机曲轴动力学仿真研究[J].沈阳工业学院学报,2004,23(4):4-7.
    [123]李渤仲.内燃机轴系扭振振动研究[J].内燃机工程,1994(1):51-56.
    [124]雷宣扬,宋希庚,薛冬新.内燃机曲轴的三维振动模拟——基于Timoshenko梁单元[J].内燃机工程,2002,23(6):41-46.
    [125]雷宣扬,宋希庚,徐继承.内燃机曲轴的三维振动模拟[J].振动、测试与诊断,2003,23(2):125-127.
    [126]丁彦闯,牛天兰,吴昌华等.柴油机曲轴整体三维应力精细分析[J].内燃机工程,1999,(4):32-36,42.
    [127]H Priebsch, J Afenzeller, S Gran. Prediction technique for stress and vibration of nonlinear supported, rotating crankshafts[J]. ASME Journal of Engineering for Gas Turbines and Power,1993,115:711-720.
    [128]王永廉.材料力学[M].机械工业出版社.2011.
    [129]柴油机设计手册编辑委员会.柴油机设计手册(上册)[M].北京:中国农业机械出版社.1984.
    [130]张得成,苏铁应,张仙林.内燃机动力学[M].北京:国防工业出版社,2009.7
    [131]徐兀.汽车发动机现代设计[M].北京:人民交通出版社,1995.
    [132]C.N.Bapart, N.Bhutani.General approach for free and forced Vibration of stepped systems governed by the one-dimensional wave equation with non-cla ssic boundary conditions[J].Jounral of Soundand Vibration,1994,172(nl):1-22.
    [133]李渤仲,王义,宋天相.单位气缸阻尼系数问题的研究(一)——阻尼系数随曲轴转角变化的规律[J].内燃机学报.1993,11(2):137-142.
    [134]王义,宋天相,李渤仲.单位气缸阻尼系数问题的研究(二)——阻尼系数变化的实验分析规律[J].内燃机学报.1996,1 4(3):229-234.
    [135]张策.弹性连杆机构的分析与设计[M].北京:机械工业出版社,1997.
    [136]杨建刚.旋转机械振动分析与工程应用[M].北京:中国电力出版社,2007
    [137]粱价.轴系受迫扭振的精确算法[J].内燃机学报,1987,5(4):372-374.
    [138]Naganuma T, Okarnura H, Sogabe K. Experiments and analyses the three-dimensional vibrations of the crankshaft and tensional damper in a four-cylinder in-line high speed engine[J].SAE Paper 971996.1997:3011-3022.
    [139]杨海,邓名华.国内外内燃机示功图的研究与发展[J].内燃机,2005,6:6-8.
    [140]周龙保.内燃机学[M].北京:高等教育出版社,2005.
    [141]邱家俊.机电分析动力学[M].北京:科学出版社,1992.
    [142]杨志勇,李桂青,瞿伟廉.结构阻尼的发展及其研究近况[J].武汉工业大学学报,2000,22(3):38-41.
    [143]褚亦清,李翠英.非线性振动分析[M].北京:北京理工大学出版社,1996.
    [144]闻邦椿,李以农,韩清凯.非线性振动理论中的解析方法及工程应用[M].沈阳:东北大学出版社,2001.10:59-78.
    [145]王玉新.弹性连杆机构的非线性行为[D].天津大学,1994.
    [146]侯书军,陈予恕,刘习军.柔性机械臂的非线性振动分析[J].振动工程学报,1999,12(4):492-498.
    [147]余跃庆,李哲.现代机械动力学[M].北京:北京工业大学出版社,1998.
    [148]Zhang Xinmin. A high efficient frequency analysis method for closed flexible mechanism systems [J]. Mechanism and Machine Theory,1998,33(8):1117-1125.
    [149]J. L. Escalona, J. Mayo, J. Dominguez. A new numerical method for the dynamic analysis of impact loads in flexible beams [J]. Mechanism and Machine Theory,1999, 34:765-780.
    [150]Soong K, Thompson B S. A theoretical and experimental investigation of the dynamic response of a slide-crank mechanism with radial clearance in the gudgeon-pin joint [J]. ASME Journal of Mechanical Design,1990,112(2):183-189.
    [151]Degao Li, Jean W. Zu, Andrew A. Goldenberg. Dynamic modeling and mode analysis of flexible-link, flexibl-joint robots [J]. Mechanism and Machine Theory,1998,33(7): 1031-1044.
    [152]杨建明.机构及机械传动系统的非线性动力学研究综述[J].桂林电子工业学院学报,2001,21(2):42-46.
    [153]Funabashi H, Ogawa K, Horie M, et al. A dynamic analysis of the plane crank-and-rovker mechanisms with clearances [J]. Bulletin of the JSME,1980, 23(177):446-452.
    [154]Furuhashi T, Morita N, Matsuura M. Research on dynamics of four-bar linkage with clearance at turning pairs (including four reports) [J]. Bulletin of the JSME,1978,21: 518-523.
    [155]Hsieh Shang-Ron, Steven W.Shaw. The dynamic stability and nonlinear response of flexible connecting rod:continuous parameter model [J]. Nonlinear Dynamics,1993, 4:573-603.
    [156]Hsieh S R, Shaw S W. The dynamic stability and non-linear resonance of a flexible connecting rod:single-mode model [J]. Journal of Sound and Vibration,1994,170(1): 25-217.
    [157]王玉新.弹性连杆机构的组合共振[J].天津大学学报,1996,29(5):704-708.
    [158]王玉新.弹性连杆机构低阶谐振响应不完全同步机理研究[J].机械工程学报,1996,13(2):37-43.
    [159]黄铁球,吴德隆,阎绍泽.带间隙伸展机构的非线性动力学建模[J].中国空间科学技术,1999,(1):7-13.
    [160]文荣,吴德隆.带间隙空间结构的动力学特性分析[J].中国空间科学技术,1998,(1): 7-12.
    [161]文荣,吴德隆.空间伸展机构动力学实验研究[J].导弹与航天运载技术,1996,(2): 1-10.
    [162]郝淑英,陈予恕,张琪昌.连接结构松动对系统非线性动力学特性的影响[J].天津大学学报,2001,34(4):452-454.
    [163]H. Du, M. K. Lim, K. M. Liew. A nonlinear finite element model for dynamics of flexible manipulators [J]. Mechanism and Machine Theory,1996,31(8):1109-1119.
    [164]张宪民,刘济科,沈允文.计入几何非线性时弹性机构通用动力学方程的建立[J].机械科学与技术,1995,54(2):9-12.
    [165]Yang Zhi'an, Li Wenlan, Qiu Jiajun. Lagrange-Maxwell equation and magnetic saturation parametric resonance of generator set [J]. Applied Mathematics and Mechanics,2007,28(1):1545-1553.
    [166]Guagliano M, Terranova A, Vergani L. Theoretical and Experimental Study of the Stress Concentration Factor in Diesel Engine Crankshafts[J]. ASME J. Mech. Des.1993,115(3):47-52.
    [167]P Metallidis, S Natsiavas. Linear and nonlinear dynamics of reciprocating engines [J]. International Journal of Non-Linear Mechanics,2003,38:723-738.
    [168]Ricardo H R. Some recent research work on the I.C. engine [J]. The Automobile Engineer.1922,12:265-278.
    [169]刘志刚,张天元,王芝秋等.船舶推进轴系横向振动模态试验研究[J].船舶工程,1992,(5):26-30.
    [170]Nagamatsu A, Nagaike M.Vibration analysis of movable part of internal combustion engine:part2.combined system of crankshaft and flywheel [J].Bulletin of JSME, 1983,26(215):827-831.
    [171]顾柏方,刘家鹤,陈法成等.非电量电测法在汽车和发动机实验中的应用[M].北京:机械工业出版社,1985.
    [172]Hideo Okamura, Toshiharu Oka. Experimental study of the correlation between crankshaft vibrations, engine structure vibration and engine noise in high speed engines. SAE931290.
    [173]Cuppo E. Experimental study and calculating method of crankshaft bending stress. CIMAC'75,Barcelona.
    [174]余爱萍,张重超,骆振黄.瞬态声场特性的时域边界元分析和实验研究[J].上海交通大学学报,1989,23(3):82-89.
    [175]舒歌群,吕兴才.高速柴油机曲轴扭/弯/纵三维振动的试验研究[J].农业机械学报,2004,35(6):22-26.
    [176]吕兴才.内燃机轴系扭转/弯曲/纵向振动的研究与控制[D].天津大学,2001.
    [177]李松和.内燃机曲轴轴系扭振数字化测试系统[D].浙江大学,2005.1.
    [178]周迅,俞小莉,李迎.稳态疲劳载荷下曲轴剩余强度模型的试验研究[J].机械工程学报,2006,42(4):213-217.
    [179]广西玉柴工程研究院,广西大学,四缸混合动力装置稳定性试验分析报告[R].南宁:广西玉柴工程研究院试验工程部,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700