用户名: 密码: 验证码:
汽车电动助力转向系统的设计与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在国家科技型中小企业创新基金“基于冗余容错的汽车电动助力转向系统的研发”(05C26115101374)和四川省科技厅重点科技攻关项目“汽车电动助力转向系统(EPS)研究与开发”(03GG008-001)的资助下,以转向管柱助力式EPS系统为研究对象,借助现代控制理论、现代设计方法和计算机仿真技术,紧密结合EPS产品开发的关键技术,着重研究转向管柱助力式EPS系统的总体设计方案、控制过程的理论模型与动态性能、EPS系统的控制策略、鲁棒容错控制原理与方法、提高转向跟随性的途径和方法、分析转向回正控制方法等关键技术问题。主要研究成果如下:
     (1)在对电动助力转向系统功能需求分析的基础上,提出了转向管柱助力式EPS系统的总体设计方案,应用三维CAD技术进行了系统的结构设计。通过分析EPS转向系统的组成和结构形式,确定了系统总体性能参数。详细分析了EPS所涉及的技术领域以及关键技术问题,确定了研发EPS系统的需要解决技术难点问题。
     (2)通过对EPS系统组成中各部件包括助力电动机、扭矩传感器和齿轮齿条传动轴、方向盘等环节的分析,建立了EPS系统的动力学模型,并进一步变换得到了适合控制的状态方程模型。通过对初始系统模型的动态性能仿真,分析了其初始状态下的性能表现,指出了研究对象非控制状态下的动态性能非常脆弱。为此,提出了基于极点配置的状态反馈控制策略。利用状态反馈与极点配置,在实现状态反馈极点配置时,利用状态观测器或状态估计器取得系统的状态信号。讨论EPS系统模型满足一定系统性能约束条件下控制的助力特性、路感特性。
     (3)在探讨状态反馈控制下电动转向系统的转向路感问题的基础上,提出了在方向盘固定时转向阻力矩作用下方向盘反向转矩(T_h)与转向阻力矩(T_1)之比就能够代表EPS系统的转向路感的评价方法。通过建立以T_1为输入,T_h为输出的状态方程,来研究当转向阻力矩(T_1)变化时,方向盘反向转矩(T_h)的变化规律,从而得出状态反馈控制下的EPS系统路感特性。
     (4)分析了制约EPS系统转向跟随性提高的因素,提出了角跟随性是影响EPS跟随性能提高的主要因素的观点。采用在动态过程中PID参数模糊自整定的控制算法,将线性PID控制与模糊控制两者结合起来,组成的模糊PID控制,在动态过程中使PID参数得到改变,以便提l木本文受国家科技型中小企业创新基金(编号:05C26115101374)、四川省重点科技攻关项目(考i}号:030G008一D01)j奄助高EPS系统角跟随性控制响应速度,达到提高EPS系统转向跟随性的目的。
     (5)提出了主动回正控制的概念。建立了EPS系统回正时的状态空间模型,制定了基于全状态反馈的PD控制算法。通过对提出的控制算法进行仿真验证,结果表明本文的算法可提高转向盘的回正性和稳定性。
     (6)基于容错控制技术提出了针对传感器故障的、基于能观(或能检)意义上的功能冗余容错的概念并进行了证明。给出了能观意义下传感器重要度的概念和计算公式。该方法能有效地帮助我们确定EPS系统传感器配置的数量,并且该方法对一般系统传感器数量的确定具有普遍性意义。
     (7)针对EPS实际系统中存在的不确定性,作者提出了采用基于鲁棒容错控制技术制定EPS系统控制策略和控制器的设计方法。分别针对传感器故障的基于状态反馈鲁棒容错控制、基于Riccati型方程的鲁棒容错控制、基于状态观测器鲁棒容错控制,应用Lyapunov稳定性理论和Lyapunov方程,研究了EPS在参数摄动的线性不确定性条件下对传感器失效时具有完整性鲁棒容错控制的规律,得出了系统完整性鲁棒容错控制的充分条件,提出了EPS的完整性鲁棒容错控制设计方法和步骤。通过数值仿真分析,研究了EPS系统容错控制器对于给定参数、在传感器故障条件下的容错控制的实现问题。
     (8)将余度容错技术应用于EPS系统控制器的设计中,以两台8086CPU为主机和备份机,组成非表决式的双机冗余系统。每台CPU作为另一CPU的热备份,双机在任务级上同步运行。着重讨论了EPS控制器双机容错系统实现的比较、状态诊断、切换、同步等容错关键技术。
Supported by the national creation fund of technology &science middle-small enterprises-"the research and develop vehicle electric power steering (EPS) system based on redundant and fault-tolerant control (05C26115101374), and of Sichuan province science &technology research fund-"the research and develop vehicle electric power steering (EPS) system (03GG008-001) ", this paper researches the column-type power-aided EPS. Combining modern control theory, modern design method and computer simulation technology, the research mainly focuses upon the system total design project of the column-type power-aided EPS, and the analysis of key technologies and methods of EPS system, such as the theory model and dynamic performance of control process, the control strategy, the robust fault-tolerant control principal and method, the approach and method to improve steering follow performance, and the analysis of method of steering return-to-middle control and so on. The achievements and highlights of this research are as follows:
     (1)System total design project of the column-type power-aided EPS is given and the system total structure design is performed by used of three-dimension CAD technology, based on the function requirement analysis of the EPS. The system total performance parameters is decided by analyzing the configuration and the framework form of the EPS. The paper details the main technology fields have some relationship to EPS. It also deeply analyzes the key technology problems of EPS and gives the method to solve these problems.
     (2)By analyzing of the configuration parts of EPS such as the force-aided motor, the torque sensor, the gear-rack transmit shaft and steering wheel, the EPS dynamics calculous model is founded and transformed to the state space model at first. Then, the dynamic performance of this original model is simulated and discussed in details with the given parameter. A conclusion is formed that the EPS dynamic performance under un-controlled state is frangible to inherent uncertainty as well as environment disturbance. And then, a state feedback control strategy based on pole arrangement method is given. The main idea is that the EPS system is stabilized by its poles are arranged as well as its unknown state signals are deduced by used of the state observer or state estimater. Finally, both the EPS system power-aided performance and its road feeling performance are discussed when the EPS is controlled to meet some system performance restriction.
     (3)Based on the discussion of the steering road feeling of EPS under the state feedback control, a estimate method to steering road feeling of EPS is given at first which defines that the steering road feeling can be represented by the ratio of the steering wheel reverse torque (T_h) and the steering resistance torque(T_l)when the T_l is in the action and the steering wheel is fixed. Then, by forming the state equation which gives the T_l as its input and the T_h as its output, the following change characteristic of the steering wheel reverse torque T_h is researched when the steering resistance torque T_l changes its value. Finally, the steering road feeling of EPS is achieved.
     (4) By analyzing of the factors restricting the improvement of the steering following performance of EPS, a view that the steering angle following performance is the main factor to influence the steering following performance of EPS is pointed. Then, a PID parameter fuzzy self-adjustment control arithmetic is given which combines the linear PID control and the fuzzy control to form the fuzzy PID control arithmetic. This control arithmetic can change the PID parameter during the dynamic process in order to improve the steering angle following speed, and as a result, to improve the steering following ability of EPS.
     (5)The paper gives the concept of the active return-to-middle control. A state space model of the system return-to-middle is formed and a PD control arithmetic based on the full state feedback is given. A simulation to the given control arithmetic justifies that this arithmetic can improve the steering return-to-middle performance and return stability.
     (6)Using the fault-tolerant control principal and method, a concept is given and testified of function redundancy fault-tolerant control in the sense of observability (detectability). This concept is specially pointed to sensor failure. Base on that concept, a concept of the degree of the sensor importance in the sense of observability is given and its calculate formula is also given. By analyzing the simulation result, this method can effectively help to confirm the quantity of the EPS sensors. In fact, this method can also help confirm general system sensor quantity.
     (7) Oriented at uncertainty attribute of actual EPS system, a control strategy and controller design method is discussed in the light of modern robust fault-tolerant control theory. Aiming to sensor failure, the variable control strategies such as the robust fault-tolerant control based on the state feedback, the robust fault-tolerant control based on the Riccati equation, the robust fault-tolerant control based on the state observer are discussed, and by using the Lyapunov stability theory and Lyapunov equation, a integrality robust fault-tolerant control rule for sensor failure is given under the condition of the EPS has some degree of the linear uncertainty of parameter fluctuation. Then, the sufficient conditions of realizing integrality robust fault-tolerant control and its design method and steps are given. Finally, a simulation of the robust fault-tolerant controller realization is given.
     (8)The Fault-tolerant technology to the design of EPS controller is applied. In this controller, there are two 8086 CPUs which function as Dual systems, one 8086 is the main CPU and the other is the online backup one. Both CPU work in the task level at the same time. This paper mainly discusses the dual-system fault-tolerant system's some key technologies such as comparison, synchronization, exchange, and fault diagnosis.
引文
1、季学武等.动力转向系统的发展与节能.世界汽车,1999.10
    2、佚名.电动转向系统fEB/OL].http://www.carcn.net/wxby/qczs2/49.htm,2002—12—19.
    3、Nakayama T, Suda F. The present and future of electric power steering[j]. Int J. of Vchiche Design,1994, 15: 243—254.
    4、Badawy A, Bolourchi F,Gaut S K.E* STEER system redefines steering technoloy[J]. Automotive Engineering, 1997,105(9): 15—18.
    5、Takayuki Kifuku, Shun'iehi Wada.An Electric Power-Steering System[J]. Mitsubishi Electric ADVANCE. March 1997:20-23.
    6、Ji-Hoon Kim, Jae-Bok Song. Control logic for an electric power steering system using assist motor[J]. Mechatronics. 12 (2002) 447-459.
    7、Sanket Amberkar, Mark Kushion, Kirt Eschtruth and Farhad Bolourchi. Diagnostic Development for an Electric Power Steering System[J]. SAE technical paper series. 2000-01-0819
    8、吴文江,杜彦良,季学武.电动转向控制系统跟随性能研究[J].机械工程学报.2004.4(4):77-80
    9、吴文江,杜彦良,季学武,陈奎元.增强电动转向系统助力跟随性能的H.控制[J].汽车工程.2002.No.4:465-467.
    10、吴文江,杜彦良,季学武,陈奎元.电动转向系统稳定性能与抗干扰性能的研究[J].振动工程学报.2004.6(2):196-200.
    11、吴文江,杜彦良,季学武,陈奎元.汽车电动转向控制系统抗干扰策略的仿真[J].汽车工程.2003(4):364-366.
    12、邱明,杨家军,刘照,叶耿.基于H_∞鲁棒控制原理的电动助力转向系统研究[J].华中科技大学学报(自然科学版)2002.12(12):71-73.
    13、刘照,扬家军,廖道训.基于混合灵敏度方法的电动助力转向系统控制[J].中国机械工程2003.5.(10):874-876.
    14、杨树,唐新蓬.汽车电动助力转向系转向盘力特性的初步研究[J].汽车科技.2003.3:19-21.
    15、丁礼灯,扬家军,刘照,廖道训.汽车动力转向器转向力矩的分析与计算[J].三峡大学学报(自然科学版).2001.5(3):43-246.
    16、刘照,扬家军,廖道训.基于动态分析的电动助力转向系统设计与研究[J].华中科技大学.2001.12(12):24-26.
    17、冯樱,肖生发,李春茂.电子控制式电动助力转向系统的控制.[J].汽车研究与开发.2001.6:34-36,40.
    18、陈卫平,陈无畏,郁明.汽车电动助力转向系统的模糊自调整控制研究.合肥工业大学学报(自然科学版).2005.5:497-500.
    19、施国标,林逸,邹常丰,陈万忠,王望予.电动助力转向系统匹配设计的研究.公路交通科技.2003.10:125-128.
    20、徐建平,何仁,苗立冬,徐勇刚.电动助力转向系统回正控制算法研究.汽车工程.2004 VoL26 No.5 p.557-559,541
    21、R. Gianoglio. A Fault Tolerant Four Wheel steering System. American Control conference, 1991, vol2 No.5 P.1557-1561.
    22、葛安林.车辆自动变速理论与设计.北京:机械工业出版社,1993,5.
    23、Joel Carnault. Third Generation Antisldd:Safety Diagnostic Features of the ECU. SAE890093.
    24、Sanket Amberkar, Farhad Bolourchi, Jon Demerly and Scott Millsap. A Control System Methodology for Steer by Wire Systems. SAE TECHNICAL PAPER SERIES. 2004-01-1106.
    25、余志生.汽车理论[M].北京:机械工业出版社.2003.
    26、[德]..M.米奇克著.陈荫三译.汽车动力学[C卷)[M].人民交通出版社.1992.p6~131.
    27、Adamse F J. Power steering road feel. SAE Paper 830998,1983: 326—334.
    28、Sanket Amberkar, Mark Kushion, Kirt Eschtruth ,Farhad Bolourchi.Diagnostic Development for an Electric Power Steering System. SAE TECHICCAL PAPER SERIES 2000-01-0819.
    29、郭孔辉主编.汽车操纵动力学.长春:吉林科学技术出版社,1991.221~223.
    30、Roy M.Variable effort steering for vehicle stability enhancement using an electric power steering svstem.SAE Paver 2000-01-0517,2000.
    31、钟志华,张维刚,曹立刚,何文.汽车碰撞安全技术.北京:机械工业出版社,2003.7.
    32、Yasuo Shimizu. Control of electric power steering system[C]. In:Proc of 68th Conf of Mechanical Society of Japanese: Vol C[C], Tokyo, Japan, 1991.
    33、司利增.汽车计算机控制.北京:人民交通出版社,2000.2.P152~153.
    34、邓楚南.轿车构造(下册).北京:人民交通出版社,2001.6.P335~336.
    35、Rogers K, Kimberley W.Turning to electrie[J].Automotive Engineer,1998,(1): 39~41.
    36、黄李琴.电动助力转向系统关键技术的研究与开发[D].北京:清华大学汽车工程系,2002.
    37、张俊智.车辆电控系统故障检测与诊断新方法,汽车技术,1996(10).
    38、Paul S. Min and William B. Ribbens. A Vector Space Solution to Inipient Sensor Failure Detection with Aplication to Automtive Enviorments.IEEE Transactions on Vehicular Technology, 1989, vol. 38, No3.
    39、Georgio Rizzoni and Richard Hampo. Real Time Detection Filters for Dnboard Diagnosiis of Inipient Failure, SAE890763.
    40、Michael Liubakka, Georgio Rizzoni, William Ribbens. Failure Detection Algorithms Applied to Control system Design for Improved Diagnnsties and Reliability, SAE880726.
    41、W.B. Ribbens. A Mathematical Model Based Method for Diagnosing Failures in Automotive Electronic System. SAE910069.
    42、Frank, P. M. , Ding, x. Woeknik J. Model Based Fault Detection in Diesel Hydraulically Driven Industrical Trucks, Pror, of American Control Conference, 1991.
    43、V. Krishnaswami, A. Soliman, G. Rizzoni. A New Generation of On board and Service Diagnostics for Passanger Vehicles, FISITA' 94, 94524.
    44、Pan Lo Hso, Ken Li Lin and Li eheng shen.IEEE Transatians on Vehicular Technology,1995, vol.44, No. 4.
    45、Randy Frank, Molt Baker. Sensory and Systems Aspeets of Fault Tolerant Electronics Applied to vehicle Systems. SAEg001123
    46、N. Kehtamavaz and W. Sohn. Steering Control of Autonomous Vehicles by Neural Networks.American Control Conference Vol. 3, 1991.
    47、Richard J. Hampo and Kenneth A. Marko. Investigation of the Application of Neural Networks to Fault Tolerant Control of an Aetiue Suspension System, Vol. 1, 1992ACC.
    48、Meiroviteh L.Dynamies and Control of Structures.New York:John Wiley and Sons. 1990.
    49、Hrovat D.Applieations of Optimal Control to Advance Automotive Suspension Design.Transaction of the ASME,1993;115: 328~342.
    50、Karnopp D,Crosby M J.Harwood R A, Vibration Control Using Semi-Active Force Generators.Journal of Engineering for Industroy, 1974;May:619~626.
    51、Raldaeja S,Sankar S. Suspension Designs to Improve Tractor.SAE Technical Paper Series, Concordia University. Montreal,Canada, 1984: Sep.: 10~13.
    52、Walder L A, Yaneske P P.Characteriastics of an Active Feedback System for the Control of Plate Vibrations. Journal of Sound and Vibrations, 1976;46(2): 157~166.
    53、邢向丰,李凤兰,权龙,周文.汽车液压主动悬架的PID控制[J].太原理工大学学报.2000 Vol.31 No.3 P.240-242,258
    54、于建成,宋振环.基于PID控制策略的汽车电动助力转向系统[J].河北理工学院学报.20005 Vol.27 No.2 P.129-132
    55、马乐,王绍銧.电子节气门控制系统的构建.内燃机工程[J].2005 Vol.26 No.4 P.20-23.
    56、沈沉,惠有利,远程.汽车防抱死制动系统的最优控制[J]辽宁省交通高等专科学校学报,2005 Vol.7 No.2 59-61.
    57、郑玲,邓兆祥,李以农,汽车半主动悬架的模型参考自适应控制[J].中国公路学报.2005No.2.P.99-102.
    58、孙建民,柳贡民.基于LMS自适应滤波的汽车主动悬架研究[J].振动与冲击.2004 Vol.23 No.4.P.139-142.
    59、郭纯,王江,乔国栋.自主汽车的侧向H-自适应变论域模糊控制[J]控制理论与应用.2005 Vol.22 No.6 P.905-912.
    60、李翔晟,常思勤.静液储能传动汽车发动机怠速模糊自适应控制[J].车用发动机.2005 No.4
    61、屈求真,刘延柱,张建武.四轮转向汽车自适应模型跟踪控制研究[J].汽车工程.2002.No.2:124-128
    62、陈志林,金达锋,赵六奇.汽车主动悬架系统的渐近稳定自适应控制[J].清华大学学报(自然科学版)1997.12:106-110
    63、月王地.李斌花,谢晖,钟志华.汽车自适应巡航控制跟随模式的仿真建模[J].计算机仿真.2004 Vol.21No.9 P.164-166.
    64、张志远,万沛霖.一种用于电动车辆驱动控制的模糊控制系统设计[J].电机与控制学报.2005 Vol.9 No.3 P.203-206.
    65、李军伟.基于模糊自整定PID的电动汽车驱动控制系统的研究[J].制造业自动化.2005 Vol.27 No.11 P.8-11.
    66、支龙,吴新跃,陈立平,张云清.PID-Fuzzy混合控制汽车主动悬架[J].机械科学与技术.2005 Vol.24 No.8 P.963-965,1008.
    67、侯光钰,张为公,汽车防抱死制动系统的模糊控制[J],测试技术学报,2004 Vol.18 No.z2 P.6-10.
    68、方锡邦,陈无畏,吴乐,王启瑞,范迪彬.李智超.糊控制技术及其在汽车半主动悬架中应用[J].机械工程学报.19996(3):98-100.
    69、姜立标,王薇,谢东,崔胜民,王登峰.汽车半主动空气悬架自适应模糊神经网络控制[J].哈尔滨工业大学学报.2005 Vol.37 No.12 P.1747-1750
    70、刘佳,杜太行,何莉莉,徐东彬.汽车ABS中的模糊神经网络模型参考自适应控制策略[J].汽车电器.2006 No.1 P.4-7.
    71、陈无畏,方锡邦,吴乐,王启瑞,范迪彬.李智超汽车半主动悬架的非线性神经网络自适应控制研究[J].机械工程学报.2000.1(1):75-78.
    72、HAMMOND J M,LEC R M.A non-contact piezoelectric torque sensor.IEEE International Frequency Control Symposium, 1998:715-723.
    73、FLEMING W J. Magnetostrictive torque sensors-comparison of branch, cross, and solenoid designs.SAE 900264.
    74、REIN DL L.Theory and application of passive SAW radio transponders as sensors.IEEE Transactions on Ultrasonics, Ferroelectronics,and Frequency Control, 1998, 45(5): 1281-1291.
    75、BECKLEY J.Non-contact torque sensors based on SAW resonators.IEEE International Frequency Control Symposium and PDA Exhibition,2002:202-213.
    76、WOLFFENBUTTEL R F,FOERSTEK J A.Non-contact capacitive torque sensor for use on a rotationg axle.IEEE Transactions on Instruments and Measurement, 1990, 39(6), 1008:1008-1013.
    77、ANTHONY FALKNER.A capacitor-based device for the measurement of shaft torque. IEEE Transactions on Instruments andMeasurement, 1996,45(4):835-838.
    78、WELL R F.Non-contacting sensors for automotive applications. SAE 880407.
    79、LEMANQUAND V, LEMANQUARD G.Magnetic differential torque sensor.IEEETransactions on Magnetics. 1995,31 (6):3188-3190.
    80、HAZELDEN R J.Optical torque sensor for automotive steering systems.Sensors and Actuators A, 1993,37/38:193-197.
    81、IRONSIDE J M.Enhanced position signals in optical torque sensors.US Patent. No. 5523561. Jun.4.1996.
    82、周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2000.
    83、闻新,张洪钺,周露.控制系统的故障诊断和容错控制.北京:机械工业出版社,1998.2.
    84、胡昌华,许化龙.控制系统故障诊断与容错控制的分析和设计.北京:国防工业出版社,2000.7
    85、李海泉,李刚.系统可靠性分析与设计.北京:科学出版社,2003.10.P189~422.
    86、Daqing Tian , Yin, Guofu , Gang Xie. Model and H- Robust Control Design for Electric-power Steering System, Proceedings-2004 International Conference on Intelligent Mechatronics and Automation, 2004, p 779-783.
    87、彭旭东,郭孔辉,单国玲.汽车轮胎侧偏特性影响因素的试验研究[J].汽车工程.2004.No.6:675-677.
    88、郭孔辉.侯永平.轮胎非稳态转向特性非线性仿真模型[J].汽车工程.1999.No.6:321-325.
    89、王士宏,周思永.控制理论基础.北京理工大学出版社.2002.9.p96~99,190.
    90、王翼.现代控制理论[M].北京机械工业出版社,2005.1.p18~43.
    91、钟秋海,付梦印.现代控制理论与应用.北京:机械工业出版社,1997.1.p170.
    92、宋贵勇,张洪欣.常规转向系统的路感特性及其改善途径[J].上海汽车.2000.5:17-23
    93、毕大宁.汽车转阀式动力转向器设计与应用.北京:人民交通出版社,1998.p4.
    94、汤兵勇,路林吉,王文杰.模糊控制理论与应用技术.北京:清华大学出版社,2002.9.p41~42.
    95、徐延海.基于主动转向技术的汽车防侧翻控制的研究.汽车工程.2005.Vol.27 No.5.p518~521.
    96、薛立军.前轮定位角对汽车转向回正作用的影响.汽车工程.2005.Vol.25 No.2.p198~200.
    97、林逸,施国标,邹常丰,王望予.电动助力转向系统转向性能的客观评价.农业机械学报.第34卷.第4期.p4~7.
    98、孙金生,李军,胡寿松.鲁棒容错控制系统设计.控制理论与应用,1994,11(3):376~380.
    99、孙金生,李军,王执铨.离散系统鲁棒容错线性调节器设计.控制与决策,1996,11(1):68~72.
    100、孙金生,李军,王执铨.不确定离散系统的D稳定鲁棒容错控制.控制理论与应用,1998,15(4):636~641.
    101、Patton R J,Chen LRobust fault detection and isolation systems, in Control and Dynamic Systems( Leondes Ced.), Mira Press, 1996,74:171~224.
    102、张俊智,王丽芳,葛安林,高延令.汽车容错控制技术.汽车技术.1997.2.p56~58.
    103、周克敏,J.C.Dolye,K.Glover.鲁棒与最优控制(中译本)[M].北京:国防工业出版社,2002.
    104、黄书鹏,王诗宓.带状态观测器系统的鲁棒容错控制[J]控制理论与应用,2001,18(2):249-252.
    105、张银萍,具有完整性的不确定连续系统反馈控制[J].上海海运学院学报,2001,22(3):135-136.一
    106、韩清龙,俞金涛.不确定性连续系统具有完整性的反馈设计新方法[J].自动化学报,1998,24(6):768~775.
    107、王福利,张颖伟,容错控制.沈阳:东北大学出版社,2003.
    108、冯纯伯,田玉平,忻欣.鲁棒控制系统设计.东南大学出版社,1995.12.p2.
    109、梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用.北京:清华大学出版社.2003.9.p7~8.
    110、Zhou K, Khargonekar P P. Robust stabilization of linear systems with norm—bounded time-varying uncertainty systems and Control Letter, 1988, 10(1); 17~20.
    111、李人厚.智能控制理论和方法[M].西安:西安电子科技大学出版社,1999。p86~91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700