用户名: 密码: 验证码:
紫外照射功能化接枝聚合改性丙纶织物及其微观结构性能与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国合成纤维总产量约占世界总产量的50%以上,但除涤纶、锦纶、腈纶等常规品种外,功能性纤维类型不多,特别是功能性丙纶甚少。近十几年来,我国核辐射、电子束照射和等离子体照射改性技术在聚合物改性研究中得到应用,这弥补新材料在合成技术开发方面的不足。相比较而言,紫外光引发接枝改性设备成本低,反应速度快,易于连续化操作,且穿透性小,接枝聚合可严格限定在聚合物的表面,不会损坏聚合物本体力学性能,在改善聚丙烯亲水性、吸附性与染色性有重要推广应用价值。
     本文基于溶液聚合和紫外引发技术,将功能性不饱和单体接枝聚合到丙纶织物表面,赋予丙纶亲水性与吸附性能。论文系统地探讨了七种不同单体(三种类型的单体)接枝聚合规律,三种不同形态结构丙纶织物和三种不同预处理方法对丙纶织物接枝率的影响及接枝织物微观结构和性能,并将接枝丙纶织物应用于模拟染料废水和重金属废水的处理,得到如下主要结论。
     (1)在选定实验条件下,七种单体接枝聚合的活性顺序为:MAPTAC>GMA>AA>HEMA>DADMAC>MAA-AA>MAA
     本质上,当单体聚合活性高、在丙纶表面润湿性好和接枝聚合链在接枝溶剂中溶胀优时,单体的接枝率高。
     (2)三种丙纶织物中,SMS接枝率最高,优先接枝在熔喷层。MPF接枝率最低。MAPTAC接枝使丙纶结晶度明显降低,而AA和DADMAC接枝对丙纶结晶度影响小。
     (3)接枝织物的润湿性与单体、织物结构及接枝聚合物的位置有关。疏水性的GMA接枝物缓慢降低水接触角;亲水性的HEMA接枝物均明显地降低水接触角。在接枝的SMS中,大量接枝的PMAPTAC形成了芯吸效应;而PAA接枝率低时仍表现疏水作用。接枝织物的水通量与织物结构及单体有关。当单位面积、单位质量织物的接枝率相同时,纺粘布水通量最大。疏水性单体接枝后织物水通量明显降低,而亲水性单体接枝后水通量降低较小。
     (4)经电子束照射、高能射线辐射和电晕放电预处理后,在纤维表面富集了自由基,这有利于疏水性的GMA在丙纶工业丝布表面接枝。其中,电晕放电处理效果更明显。但亲水性的HEMA和DADMAC在预处理后的接枝率提高不明显。光敏剂预浸泡、辐射预处理和丙烯酸中和等三种方法并用显著地提高了AA在丙纶工业丝布表面的接枝率,且使接枝物能均匀覆盖织物表面。
     (5)弱酸性红染料趋于团聚和缔合现象使低浓度染料去除率反而减小。染料分子与接枝聚合物之间较弱的作用力使吸附温度依赖性不明显。两种类型的染料分子吸附动力学和吸附平衡均分别服从Lagergren's准二级动力学方程和Freundlich等温吸附式。在动态吸附过程中,强碱性的PMAPTAC吸附作用受小分子电解质和酸碱性等环境影响相对较小,而弱酸性的PAA受环境影响大。吸附质的尺寸效应和吸附质与吸附剂之间的作用力决定分离效果。重金属离子去除率低,但吸附量较高。尺寸大的染料分子去除率高,但吸附量低。
     本文特色与创新之处在于:
     (1)系统地探讨了(三种不同类型)七种单体或者组合对丙纶纺粘织物接枝改性的影响,结果表明:单体本身聚合反应活性、单体在纤维表面的润湿性以及接枝聚合物在接枝溶剂中溶解性是决定接枝率的主要因素。
     (2)系统地研究了三种丙纶织物接枝改性,结果表明:纤维的结晶度与结晶类型和纤维的线密度是决定接枝率的重要因素。
     (3)通过γ射线预照射、高能电子束预照射和放电预处理丙纶工业丝布和继续紫外接枝改性研究发现:三种照射方法促进了GMA接枝聚合,而对HEMA接枝无效。当预照射与预浸泡光敏剂、丙烯酸中和方法并用时,显著改善了丙烯酸接枝率。
China's synthetic fiber production accounts for ca.50%of the world's total throughput, but the variety of functional fibers is limited. In recent years, the polymer modification techniques with y-ray, and electron-beam irradiation and plasma treatment have gained rapid progresses and found a lots of applications, which makes up for the shortage in the development of synthetic and fabrication technologies. Furthermore, the ultraviolet-irradiated graft polymerization has the features of low equipment cost, fast response, and easy operation. Particularly, the low UV penetration can strictly direct grafting to be taken place on the polymer surface, and thus does not damage the polymers. Therefore, UV grafting has already shown important application for improving the hydrophilicity and dyeability of polypropylene (PP).
     In this dissertation, the seven unsaturated monomers were grafted onto the surfaces of PP fabrics to improve their hydrophilicity via the UV-initiated graft copolymerization. The effects of three types of monomers, three kinds of morphologically different PP fabrics, and three different pretreatments on the grafting and the hydrophilicity of the grafted were investigated in detail. The adsorptive separation of simulated dyes and heavy metal ions waste waters were carried out. The major findings and conclusions are listed as follows.
     (1) The order of the graft polymerization reactivity was obtained based on the selected experimental conditions:
     MAPTAC> GMA> AA> HEMA> DADMAC> MAA-AA> MAA
     Essentially, the high reactivity, and the good wettability of the monomers on the surface of PP fibers, and the preferable solubility of the grafting polymer chains in the grafting solvent will result in a high grafting.
     (2) Among the three kinds of PP fabrics, SMS gave the highest degree of grafting since the inner ultrafine meltblown fiber layer soaked a large volume of grafting monomers, while the heavy monofilament MPF had the lowest. The hydrophilic monomer but the hydrophobic polymer of MAPTAC led to reduced crystallinity, whereas the twin hydrophilicity of monomer and polymer was no effect on crystallinity.
     (3) The water wettability of the grafted depends on the grafted polymer component, and fabric structure. The water contact angle of hydrophobic GMA grafts slowly reduced with grafting, while that of hydrophilic HEMA grafts decreased significantly. Although the grafting of hydrophilic AA and MAPTAC prefered to happen in the melt-blown layer in SMS, a lot of MAPTAC grafts produced wicking, whereas the low grafting AA still presented hydrophobic. Graft modification reduced the water flux of the fabrics, and the fluxes of the grafted rely on the fabric structure and the grafted polymer components. When the actual degree of grafting is equivalent to the theoretical degree of unit area and unit mass, the spun-boned fabrics have the largest fluxes. The hydrophobic grafting polymers caused a remarkably decreased flux whereas the hydrophilic polymer led to a trivial reduction.
     (4) The semi-crystalline PP fiber surface enriched free radicals after the electron-beam, and y-ray irradiation and the corona discharge pretreatment respectively, which significantly promoted the grafting of the hydrophobic GMA, with no effect on the grafting of hydrophilic HEMA and DADMAC. Among them, the corona discharge pretreatment is the most effective. The combination of radiation pretreatment, pre-soaked photo-sensitizer and neutralization of acrylic acid significantly improved the grafting of the PP monofilament cloth with uniformly thin layer covered.
     (5) It is the weak acid red aggregation that low initial dye concentration resulted small dye removal unexpectedly. Weak interaction between the dye molecules and grafted polymers led to the adsorption insensitivity towards temperature. Two kinds of dye molecules'adsorption kinetics and equilibrium obeyed Lagergren's quasi-second-order kinetic equation and Freundlich isotherm respectively. The adsorption of strong alkaline polyelectrolyte PMAPTAC wasn't interfered by small molecule electrolyte and acidity, vice verse for weak acidic poly(acrylic acid). The filtration results of simulated heavy metal ions and dyes wastewaters showed that the size of adsorbate, and the force between adsorbate and adsorbent determine the separation efficiency. The removal of heavy metal ions was low, but the adsorption capacity was high, vice verse for the dye molecules. This features and innovations of the dissertation include:
     (1) The comprehensive UV-grafting polymerization was carried out on the spun-bonded PP nonwovens, and the results indicated that monomer reactivity, the wettability of the monomer on the fiber surface and the solubility of the grafting polymer chains in solvent dominate the grafting.
     (2) The graftability of five kinds of polypropylene was investigated, and the results showed that fiber crystallinity, the type of crystalline, and fiber fineness are determining factors for grafting.
     (3) The grafting polymerization of monofilament fabric with the three pretreatments of y-ray, and electron-beam irradiation and corona discharge was studied, and the results demonstrated all pretreatments promote the grafting of hydrophobic glycidyl methacrylate onto the monofilament PP fabric. The combination of the pre-irradiation, the pre-soaking of photosensitizer and neutralization of acrylic acid improve significantly grafting.
引文
[1]Sathe NS, Rao GSS, Devi S. Grafting of maleic anhydride onto polypropylene: Synthesis and characterization[J]. Journal of Applied Polymer Science 53(2):239-45, 1994.
    [2]Badrossamay M R, Sun G. A study of radical graft copolymerization on polypropylene during extrusion using two peroxide initiators[J]. Polymer International 59(2):155-61, 2010.
    [3]Badrossamay M R, Sun G. Graft polymerization of N-tert-butylacrylamide onto polypropylene during melt extrusion and biocidal properties of its products[J]. Polymer Engineering and Science 49(2):359-68,2009.
    [4]Fu Z-S, Xu J-T, Jiang G-X, et al. Influence of the reaction conditions on the solid-state graft copolymerization of methyl methacrylate and polyethylene/polypropylene in situ alloys[J]. Journal of Applied Polymer Science 98(1):195-202,2005.
    [5]费建奇,忻海.聚丙烯水相悬浮溶胀接枝法接枝苯乙烯[J].石油化工35(7):638-42,2006年.
    [6]Wang J, Ran Y-X, Zou E-G, et al. Supercritical CO2 assisted ternary-monomer grafting copolymerization of polypropylene[J]. Journal of Polymer Research 16(6):739-44, 2009.
    [7]Wang J, Wang D-F, Du W, et al. Supercritical carbon dioxide-assisted solid-phase free radical grafting of butyl aery late onto PP, E-Polymers,2009.
    [8]Li Y, Xie X, Guo B, et al. Study on styrene-assist ed melt free-radical graft ing of m al eic anhydride ont o pol ypropylene [J]. Polymer 42(8):3419-25,2001.
    [9]Gaylord N G, Mishra M K. Nondegradative reaction of maleic anhydride and molten polypropylene in the presence of peroxides [J]. Journal of Polymer Science:Polymer Letters Edition 21(1):23-30,1983.
    [10]de Roover B, Sclavons M, Carlier V, et al. Molecular characterization of maleic anhydride-functionalized polypropylene [J]. Journal of Polymer Science Part A: Polymer Chemistry 33(5):829-42,1995.
    [11]Hu G-H, Cartier H, Feng L-F, et al. Kinetics of the in situ polymerization and in situ compatibilization of poly(propylene) and poly amide 6 blends [J]. Journal of Applied Polymer Science 91(3):1498-1504,2004.
    [12]Heinen W, Rosenmoller C H, Wenzel C B, et al.13C NMR study of the grafting of maleic anhydride onto polyethene, polypropene, and ethane-propene copolymers[J]. Macromolecules 29(4):1151-7,1996.
    [13]Mousavi-Saghandikolaei SA, Frounchi M, Dadbin S, et al. Modification of isotactic polypropylene by the free-radical grafting of 1,1,1-trimethylolpropane trimethacrylate[J]. Journal of Applied Polymer Science 104(2):950-8,2007.
    [14]Liu N-C, Xie H-Q, Baker W E. Comparison of the effectiveness of different basic functional groups for the reactive compatibilization of polymer blends [J]. Polymer, 34(22):4680-3,1993.
    [15]Sun Y-J, Hu G-H, Lambla M. Free radical grafting of glycidyl methacrylate onto polypropylene in a co-rotating twin screw extruder [J]. Journal of Applied Polymer Science 57(9):1043-54,1995.
    [16]Sun Y-J, Hu G-H, Lambla M. Melt Free-radical grafting of glycidyl methacryate onto polypropylene [J]. Angewandte Makromolekulare Chemie,229:1-13,1995.
    [17]张鸿,刘辉,杨淑瑞,等.反应挤出制备PP-g-PEGA调温纤维的研究[J].合成纤维工业35(3):10-3,2012年.
    [18]Rengarajan R, Vicic M, Lee S. Solid phase graft copolymerization. I. Effect of initiator and catalyst[J]. Journal of Applied Polymer Science 39(8):1783-91,1990.
    [19]Rengarajan R, Vicic M, Lee S. Solid phase graft copolymerization.2. Effect of toluene[J]. Polymer 30(5):933-5,1989.
    [20]Lee S, Rengarajan R, Parameswaran V R. Solid phase graft copolymerization. Effect of interfacial agent Source[J]. Journal of Applied Polymer Science 41(7-8):1891-4, 1990.
    [21]Ratzsch M, Arnold M, Borsig E, et al. Radical reactions on polypropylene in the solid state[J]. Progress in Polymer Science (Oxford),27(7):1195-282,2002.
    [22]王正洲,刘晓峰,胡淼.马来酸酐悬浮固相接枝聚丙烯[J].合成树脂及塑料23(2):32-5,2006年.
    [23]王文燕,李波,安彦杰,等.固相接枝双单体制备极性聚丙烯的研究[J].塑料工业37(7):17-19+41,2009年.
    [24]Xu Z, Wang J, Shen L, et al. Microporous polypropylene hollow fiber membrane. Part I. Surface modification by the graft polymerization of acrylic acid[J]. Journal of Membrane Science 196(2):221-229,2002.
    [25]李承斌,尹艳红,王辉,等.MBA接枝聚丙烯微孔膜的亲水改性研究[J].化学研究与应用22(11):1371-5,2010年.
    [26]Garg D H, Lenk W, Berwald S, et al. Hydrophilization of microporous polypropylene Celgard membranes by the chemical modification technique[J]. Journal of Applied Polymer Science 60(12):2087-104,1996.
    [27]李维红,刘鹏波,邹华维.聚丙烯微孔膜表面的臭氧处理接枝改性[J].高分子材料科学与工程24(4):97-100,2008年.
    [28]Wang Y, Kim JH, Choo KH, et al. Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization[J]. Journal of Membrane Science 169(2):269-76,2000.
    [29]王翱,魏俊富,赵孔银,等.紫外光接枝改性聚丙烯薄膜的研究[J].功能材料43(20):2851-4,2012年.
    [30]Liang L, Shi M K, Viswanathan V V, et al. Temperature-sensitive polypropylene membranes prepared by plasma polymerization[J]. Journal of Membrane Science, 177(1-2):97-108,2000.
    [31]童刚生,刘涛,赵玲,等.超临界CO2固相接枝法制备马来酸酐改性聚丙烯的分级与表征[J].功能高分子学报19-20(4):386-92,2007年.
    [32]王鉴,冉玉霞,邹恩广,等.超临界C02协助三单体接枝改性聚丙烯[J].化学学报67(10):1141-6,2009年.
    [33]Wang Y, Liu Z M, Han B Q, et al. pH Sensitive polypropylene porous membrane prepared by grafting acrylic acid in supercritical carbon dioxide[J]. Polymer 45(3): 855-60,2004.
    [34]Dokolas P, Qiao G-G, Solomon D H, Graft Copolymerization studies. Ⅲ. Methyl methacrylate onto polypropylene and polyethylene terephthalate[J]. Journal of Applied Polymer Science 83:898-915,2002.
    [35]Wang W, Wang L, Wang C, et al. Study on the Surface Grafting of Polypropylene Fibers[J]. Journal of Applied Polymer Science 99:734-7,2006.
    [36]关克田,宋会芬,禹亚奇.丙烯酸接枝改性丙纶纺粘非织造布探讨[J].河南工程 学院学报(自然科学版)21(1):5-7+28,2009年.
    [37]Bhattacharya S D, Inamdar M S. Polyacrylic Acid Grafting Onto Isotactic Polypropylene Fiber:Methods, Characterization, and Properties[J]. Journal of Applied Polymer Science 103:1152-65,2007.
    [38]李启金,李国忠.聚丙烯纤维化学接枝改性增强水泥基复合材料的界面结合[J].复合材料学报30(4):238-44,2013年.
    [39]肖为维,姚家华,黄学均.丙烯酸接枝聚丙烯纤维的结构与性能[J].功能材料25(4):317-21,1994年.
    [40]Wang W, Wang L, Chen X. Study on the Graft Reaction of Polypropylene) Fiber with Acrylic Acid[J]. Macromolecular Materials and Engineering 291:173-80,2006.
    [41]孙伟娜,曾庆轩,李明愉.聚丙烯纤维接枝苯乙烯的研究[J].合成纤维工业28(3):16-18+21,2005年.
    [42]刘延岳,许素新,孙晶磊.中空聚丙烯基离子交换纤维的制备及表征[J].合成纤维35(1):18-21,2012年.
    [43]杜慷慨,许庆清.丙烯酸悬浮接枝聚丙烯纤维及性能的研究[J].中国塑料19(7):45-8,2005年.
    [44]杜慷慨,庄建平,郑文奇.聚丙烯离子交换纤维研究[J].塑料工业31(4):35-7+40,2003年.
    [45]杜慷慨,庄建平,吴翠玲.对乙烯基苯磺酸钠接枝聚丙烯纤维[J].华侨大学学报(自然科学版)27(2):144-6,2006年.
    [46]陈蕊,赵常礼,白明华,等.聚丙烯纤维表面接枝及其吸附性能的研究[J].沈阳化工大学学报24(4):335-40,2010年.
    [47]Zhao J, Shi Q, Luan S, et al. Polypropylene non-woven fabric membrane via surface modification with biomimetic phosphorylcholine in Ce(Ⅳ)/HNO3 redox system[J]. Materials Science and Engineering C 32(7):1785-9,2012.
    [48]Xu Z, Wang J, Shen L. Microporous polypropylene hollow fiber membrane Part I. Surface modification by the graft polymerization of acrylic acid[J]. Journal of Membrane Science 196:221-9,2002.
    [49]Wang C-C, Wu W-Y, Chen C-C. Antibacterial and swelling properties of N-isopropyl acrylamide grafted and collagen/chitosan-immobilized polypropylene nonwoven fabrics[J]. Journal of Biomedical Materials Research-Part B Applied Biomaterials 96B:16-24,2011.
    [50]石艳锦,封严,李瑞欣.甲基丙烯酸酯接枝改性熔喷聚丙烯非织造布制备及性能研究[J],化工新型材料41(7):54-56+65,2013年.
    [51]刘倩,李宏伟,王建明.等离子体引发DMDAAC接枝丙纶非织造布[J].纺织学报30(9):19-24,2009年.
    [52]刘波,王红卫.丙烯酸等离子体改性电池隔膜用无纺丙纶[J].材料科学与工程学报23(5):564-7,2005年.
    [53]左文瑾,王进,杨志禄,等.聚乙烯吡咯烷酮等离子体接枝改性聚丙烯的亲水性及抗凝血性研究[J].功能材料40(4):667-9+673,2009年.
    [54]许小艳,杨庆,李树金,等.聚丙烯超滤膜的低温等离子体改性方法比较[J].环境工程学报7(7):2536-40,2013年.
    [55]Kou R-Q, Xu Z-K, Deng H-T, et al. Surface modification of microporous polypropylene membranes by plasma-induced graft polymerization of a-Allyl glucoside[J]. Langmuir,19(17):6869-75,2003.
    [56]彭赛平,苏远,贺全国,等.N2等离子体接枝处理丙纶改性及染色的初步研究[J].核聚变与等离子体物理27(3):269-272,2007年.
    [57]王海涛,魏俊富,王翱,等.应用两步接枝法制备新型改性聚丙烯滤嘴材料[J].功能材料44(4):573-576+580,2013年.
    [58]刘丽,刘廷岳.氧气等离子体法制备强酸性离子交换纤维[J].北京服装学院学报28(4):7-11,2008年.
    [59]Zhao J, Shi Q, Luan S, et al. Improved biocompatibility and antifouling property of polypropylene non-woven fabric membrane by surface grafting zwitterionic polymer[J]. Journal of Membrane Science 369(1-2):5-12,2011.
    [60]Song L, Zhao J, Yang H, et al. Biocompatibility of polypropylene non-woven fabric membrane via UV-induced graft polymerization of 2-acrylamido-2-methylpropane sulfonic acid[J]. Applied Surface Science 258(1):425-30,2011.
    [61]Zhang C, Jin J, Zhao J, et al. Functionalized polypropylene non-woven fabric membrane with bovine serum albumin and its hemocompatibility enhancement[J]. Colloids and Surfaces B:Biointerfaces 102:45-52,2013.
    [62]Cho H-K, Park J-S, Han D-H, et al. Radiation-chemical synthesis of polypropylene fabrics with sulfonic acid functional groups[J]. Nuclear Instruments and Methods in Physics Research B 269:636-41,2011.
    [63]Bondar Y, Kim H-J, Yoon S-H, et al. Synthesis of cation-exchange adsorbent for anchoring metal ions by modification of poly(glycidyl methacrylate) chains grafted onto polypropylene fabric[J]. Reactive & Functional Polymers 58:43-51,2004.
    [64]Lee S-W, Bondar Y, Han D-H. Synthesis of a cation-exchange fabric with sulfonate groups by radiation-induced graft copolymerization from binary monomer mixtures [J]. Reactive & Functional Polymers 68:474-82,2008.
    [65]Misra SK, Bhardwaj YK, Gandhi PM, et al. Feasibility of the recovery of uranium from alkaline waste by amidoximated grafted polypropylene polymer matrix[J]. Journal of Radioanalytical and Nuclear Chemistry 295(1):471-5,2013.
    [66]Seko N, Basuki F, Tamada M, et al. Rapid removal of arsenic(V) by zirconium(IV) loaded phosphoric chelate adsorbent synthesized by radiation induced graft polymerization[J]. Reactive & Functional Polymers 59:235-41,2004.
    [67]Fujiwara K. Separation functional fibers by radiation induced graft polymerization and application[J]. Nuclear Instruments and Methods in Physics Research B 265: 150-5,2007.
    [68]Jeun J-P, Hua Z, Kang P-H, et al. Electron-beam-radiation-induced grafting of acrylonitrile onto polypropylene fibers:Influence of the synthesis conditions[J]. Journal of Applied Polymer Science 115(1):222-8,2010.
    [69]Cheng B, Jiao X, Kang W. Studies on grafting of acrylic acid onto polypropylene melt-blown nonwovens induced by electron-beam preirradiation[J], Journal of Applied Polymer Science 102:4971-7,2006.
    [70]Zu J, Nho Y-C, Jeun J-P, et al. Preparation of chelating fabrics by radiation-induced grafting of itaconic acid and acrylonitrile onto polypropylene nonwoven fabrics and subsequent amination of graft copolymer[J]. Journal of Applied Polymer Science 119: 3483-9,2011.
    [71]Kim M, Saito K. Preparation of silver-ion-loaded nonwoven fabric by radiation-induced graft polymerization[J]. Reactive & Functional Polymers 40:275-9, 1999.
    [72]Ehrhardt A, Miyazaki K, Sato Y, et al. Modified polypropylene fabrics and their metal ion sorption role in aqueous solution[J]. Applied Surface Science 252:1070-5,2005.
    [73]陈来,陈捷,王亚华,等.聚丙烯胺肟螯合纤维的辐射合成及其对Pb(II)离子的吸附性能[J].辐射研究与辐射工艺学报22(2):73-76,2004年.
    [74]Kavakli PA, Kavakli C, Seko N, et al. Ra diation-induced grafting of dimethylaminoethyl methacrylate onto PE/PP nonwoven fabric [J]. Nuclear Instruments and Methods in Physics Research B 265:204-7,2007.
    [75]史福霞,俎建华,叶茂松,等.强碱性阴离子交换纤维的辐射接枝法制备及对铼的吸附[J].高分子材料科学与工程29(7):157-160+165,2013年.
    [76]Kavakli P A, Kavakli C, Giiven O. Preparation and characterization of Fe(III)-loaded iminodiacetic acid modified GMA grafted nonwoven fabric adsorbent for anion adsorption[J]. Radiation Physics and Chemistry, in Press.
    [77]Kavakli C, Kavakli P A, Guven O. Preparation and characterization of glycidyl methacrylate grafted 4-amino-1,2,4-triazole modified nonwoven fiber adsorbent for environmental application[J]. Radiation Physics and Chemistry, in press.
    [78]Takeda T, Tamada M, Seko N, et al. Ion exchange fabric synthesized by graft polymerization and its application to ultra-pure water production[J]. Radiation Physics and Chemistry 79:223-6,2010.
    [79]聂月霞,张环,魏俊富,等.功能化聚丙烯纤维及其用于水中苯酚的富集研究[J].天津工业大学学报31(4):14-16,2012年.
    [80]聂月霞,张环,魏俊富.聚丙烯基改性纤维固相萃取水中的苯酚[J].环境工程学报7(9):3380-4,2013年.
    [81]Li R, Wang H, Wang W, et al. Gamma-ray co-irradiation induced graft polymerization of NVP and SSS onto polypropylene non-woven fabric and its blood compatibility [J]. Radiation Physics and Chemistry 91:132-37,2013.
    [82]Anjum N, Gulrez SKH, Singh H, et al. Development of antimicrobial polypropylene sutures by graft polymerization. I. Influence of grafting conditions and characterization[J]. Journal of Applied Polymer Science 101(6):3895-3901,2006.
    [83]Yang J-M, Lin H-T, Wu T-H, et al. Wettability and antibacterial assessment of chitosan containing radiation-induced graft nonwoven fabric of polypropylene-g-acrylic acid[J]. Journal of Applied Polymer Science 90:1331-6, 2003.
    [84]Hou X, Zhang T, Cao A. A heparin modified polypropylene non-woven fabric membrane adsorbent for selective removal of low density lipoprotein from plasma[J]. Polymers for Advanced Technologies 24(7):660-7,2013.
    [85]邓琼,曾庆轩,冯长根.聚丙烯基阴离子交换纤维制备工艺对其性能的影响[J].高分子材料科学与工程22(6):157-60+164,2006年.
    [86]李明愉,曾庆轩,冯长根,等.强碱性离子交换纤维的结构与性能[J].材料科学与工艺14(11):32-5,2006年.
    [87]李明愉,赵红果,曾庆轩.氨基膦酸螯合纤维的制备及性能研究[J].功能材料43(5):550-4,2012年.
    [88]冯长根,孙耀冉,李明愉,等.四乙烯五胺基膦酸螯合纤维的制备与性能研究[J].功能材料44(20):2976-80+1984,2013年.
    [89]Ma N, Chen S, Li T, et al. Removal of mercury by an aminated fiber prepared by irradiation grafting copolymerization[J]. Separation Science & Technology 47(6):867-74,2012.
    [90]Ibrahim S M, El-Salmawi K M, El-Naggar A A. Use of radiation grafting of polyethylene-coated polypropylene nonwoven fabric by acrylamide for the removal of heavy metal Ions from wastewaters[J]. Journal of Applied Polymer Science 102: 3240-5,2006.
    [91]Mostafa T. Chemical modification of polypropylene fibers grafted vinyl imidazole/acrylonitrile copolymer prepared by gamma radiation and its possible use for the removal of some heavy metal ions[J]. Journal of Applied Polymer Science 111: 11-8,2009.
    [92]El-Hag Ali A, Shawky HA, El-Sayed MH, et al. Radiation synthesis of functionalized polypropylene fibers and their application in the treatment of some water resources in western desert of Egypt[J]. Separation and Purification Technology,63:69-76,2008.
    [93]Melendez-Ortiz H I, Bucio E. Radiation synthesis of a thermo-pH responsive binary graft copolymer (PP-g-DMAEMA)-g-NIPAAm by a two step method[J]. Polymer Bulletin 61(5):619-29,2008.
    [94]Llorina-Ranada M, Akbulut M, Abad L, et al. Molecularly imprinted poly(N-vinyl imidazole) based polymers grafted onto nonwoven fabrics for recognition/removal of phloretic acid[J]. Radiation Physics and Chemistry, in Press.
    [95]董缘,兰新哲.聚丙烯无纺布接枝改性研究[J].合成纤维工业31(5):15-17,2008年.
    [96]Rattan S, Sehgal T. Stimuli-responsive membranes through peroxidation radiation-induced grafting of 2-hydroxyethyl methacrylate (2-HEMA) onto isotactic polypropylene film (IPP) [J]. Journal of Radioanalytical and Nuclear Chemistry, 293(1):107-18,2012.
    [97]张晓,兰新哲,董缘,等.聚丙烯无纺布预辐射接枝改性及胺化研究[J].合成纤维工业33(4):7-10,2010年.
    [98]Barsbay M, Guven O. RAFT mediated grafting of poly(acrylic acid) (PAA) from polyethylene/polypropylene (PE/PP) nonwoven fabric via preirradiation[J]. Polymer (United Kingdom) 54(18):4838-48,2013.
    [99]Ikram S, Kumari M, Gupta B. Thermosensitive membranes by radiation-induced graft polymerization of N-isopropyl acrylamide/acrylic acid on polypropylene nonwoven fabric[J]. Radiation Physics and Chemistry 80(1):50-6,2011.
    [100]Kumari M, Gupta B, Ikram S, et al. Characterization of N-isopropyl acrylamide/acrylic acid grafted polypropylene nonwoven fabric developed by radiation-induced graft polymerization[J]. Radiation Physics and Chemistry,81(11): 1729-35,2012.
    [101]董缘,兰新哲.阴离子交换纤维的制备及应用[J].有色金属61(1):81-5,2009年.
    [102]白明,张政朴.聚丙烯纤维预辐照接枝制备弱碱性离子交换纤维及其对链霉素的吸附[J].离子交换与吸附24(4):320-328,2008年.
    [103]陈涛,曾庆轩,冯长根.弱酸离子交换纤维的结构表征与性能研究[J].功能材料38(10):1605-9,2007年.
    [104]陈涛,曾庆轩,冯长根.共辐射引发聚丙烯纤维接枝苯乙烯-二乙烯苯的中试研究[J].化工进展26(8):1116-9,2007年.
    [105]Chi F, Xiong J, Hu S, et al. High performance of amidoxime/amine functionalized polypropylene for uranyl (Ⅵ) from aqueous solution[J]. E-Polymers,2013.
    [106]Contreras-Garcia A, Burillo G, Aliev R, et al. Radiation grafting of N,N-dimethylacrylamide and N-isopropylacrylamide onto polypropylene films by two-step method[J]. Radiation Physics and Chemistry 77(8):936-40,2008.
    [107]Gupta B, Kumari M, Ikram S. Drug release studies of N-isopropyl acry lamide/acrylic acid grafted polypropylene nonwoven fabric [J]. Journal of Polymer Research 20(3):95-100,2013.
    [108]Pan B, Viswanathan K, Hoyle CE, Moore RB. Photoinitiated grafting of maleic anhydride onto polypropylene[J]. Journal of Polymer Science:Part A:Polymer Chemistry 42:1953-62,2004.
    [109]王翱,魏俊富,赵孔银,等.紫外光接枝改性聚丙烯薄膜的研究[J].功能材料43(20):2851-4,2012年.
    [110]Costamagna V, Wunderlin D, Larranaga M, et al. Surface functionalization of polyolefin films via the ultraviolet-induced photografting of acrylic acid: Topographical characterization and ability for binding antifungal agents[J]. Journal of Applied Polymer Science 102(3):2254-63,2006.
    [111]宦庆松,范雪荣,王强,等.紫外辐照改性聚丙烯纤维固定化溶菌酶的研究[J].化工新型材料37(8):63-65,2009年.
    [112]Hu M-X, Yang Q, Xu Z-K. Enhancing the hydrophilicity of polypropylene microporous membranes by the grafting of 2-hydroxyethyl methacrylate via a synergistic effect of photoinitiators[J]. Journal of Membrane Science 285:196-205, 2006.
    [113]邢晓东,王晓工.聚合物表面紫外光接枝技术及应用进展[J].化工进展27(1):50-56+73,2008年.
    [114]Shukla SR, Athalye AR. Ultraviolet radiation-induced graft copolymerization of 2-hydroxyethyl methacrylate onto polypropylene [J]. Journal of Applied Polymer Science 51(9):1567-74,1994.
    [115]Wang H, Brown HR, Li Z. Aliphatic ketones/water/alcohol as a new photoinitiating system for the photografting of methacrylic acid onto high-density polyethylene[J]. Polymer 48:939-48,2007.
    [116]Kim S-Y, Choi C-N. Multi-functional finish of polypropylene nonwoven by photo-induced graft polymerization (Ⅱ)-Grafting of styrene and its ammonia adsorption behavior [J]. Polymer-Korea 25(5):642-8,2001.
    [117]陈大华.高压汞灯原理特性和应用[J].灯与照明26(5):13-5,2002年.
    [118]虞启琏,邱庆军,蒋景英.新型医用冷光源-金属卤化物灯光源[J].中国医疗器械信息5(3):17-21,1999年.
    [119]Zhao Y-H, Zhu X-Y, Wee K-H, et al. Achieving highly effective non-biofouling performance for polypropylene membranes modified by UV-induced surface graft polymerization of two oppositely charged monomers[J]. Journal of Physical Chemistry B114:2422-29,2010.
    [120]Yang Q, Xu ZK, Dai ZW, et al. Surface modification of polypropylene microporous membranes with a novel glycopolymer[J]. Chemistry of Materials 17:3050-8,2005.
    [121]Na C-K, Park H-J. Preparation of acrylic acid grafted polypropylene nonwoven fabric by photoinduced graft polymerization with preabsorption of monomer solution[J]. Journal of Applied Polymer Science 114:387-97,2009.
    [122]Yang Y-F, Li Y, Li Q-L. Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling[J]. Journal of Membrane Science 362:255-64,2010.
    [123]Zhao H, Wang J, Cao Z, et al. Anticlotting membrane based on polypropylene grafted by biocompatible monomers under UV irradiation[J]. Journal of Applied Polymer Science 124(S1-1):E161-E168,2012.
    [124]Wang H, Brown HR. Atomic force microscopy study of the photografting of glycidyl methacrylate onto HDPE and the microstructure of the grafted chains[J]. Polymer 48:477-87,2007.
    [125]Zheng Y, Liu H, PV Gurgel, et al. Polypropylene nonwoven fabrics with conformal grafting of poly (glycidyl methacrylate) for bioseparations[J]. Journal of Membrane Science 364(1-2):362-71,2010.
    [126]Ciobanu M, Siove A, Gueguen V, et al. Radical graft polymerization of styrene sulfonate on poly(ethylene terephthalate) films for ACL applications:"grafting from" and chemical characterization[J]. Biomacromolecules 7:755-60,2006.
    [127]Pavon-Djavid G, Gamble LJ, Ciobanu M, et al. Bioactive poly(ethylene terephthalate) fibers and fabrics:grafting, chemical characterization, and biological assessment J]. Biomacromolecules 8:3317-25,2007.
    [128]Bech L, Elzein T, Meylheuc T, et al. Atom transfer radical polymerization of styrene from different poly(ethylene terephthalate) surfaces:films, fibers and fabrics[J]. European Polymer Journal 45:246-55,2009.
    [129]Zubaidi, Hirotsu T. Graft polymerization of hydrophilic monomers onto textile fibers treated by glow discharge plasma[J]. Journal of Applied Polymer Science 61:1579-84, 1996.
    [130]Ongun N, Karakisla M, Aksu L, et al. Graft polymerization of methacrylamide onto poly(ethylene terephthalate) fibers with benzoyl peroxide as initiator and their characterization[J]. Macromolecular Chemistry and Physics 205:1995-2001,2004.
    [131]Gupta B, Saxena S, Ray A. Plasma induced graft polymerization of acrylic acid onto polypropylene monofilament[J]. Journal of Applied Polymer Science 107:324-30, 2008.
    [132]Zhou J, Li W, Gu J-S, et al. Development of a novel RAFT-UV grafting technique to modify polypropylene membrane used for NOM removal[J], Separation and Purification Technology 71(2):233-40,2010.
    [133]Piletsky SA, Matuschewski H, Schedler U, et al. Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photograft copolymerization in water[J]. Macromolecules 33,3092-8,2000.
    [134]姚红娟,丁宁,王晓琳.膜分离技术在染料行业中的应用研究进展[J].现代化工23(12):15-8,2003年.
    [135]Ranganathan K, Karunagaran K, Sharma DC. Recycling of waste waters of textile dyeing industries using advanced treatment technology and cost analysis-case studies[J]. Resources, Conservation, and Recycling 50:306-18,2007.
    [136]Mo JH, Lee YH, Kim J, et al. Treatment of dye aqueous solutions using nanofiltration polyamide composite membranes for the dye wastewater reuse [J]. Dyes and Pigments 76:429-34,2008.
    [137]Ku Y, Lee P-L, Wang W-Y. Removal of acidic dyestuffs in aqueous solution by nanofiltration [J]. Journal of Membrane Science 250:159-65,2005.
    [138]Petrov SP, Stoychev PA. Ultrafiltration purification of waters contaminated bitinctional reactive dyes with bitinctional reactive dyes [J]. Desalination 154:247-52, 2003.
    [139]Sokker HH, Halim ESA. Cellulosic fabric wastes grafted with DMAEMA for the removal of direct dyes [J]. Adsorption Science & Technology 22(9):679-92,2004.
    [140]李鑫,曾庆轩,冯长根,等.阴离子交换纤维对活性染料废水的脱色研究[J].合 成纤维工业28(5):4-7,2005年.
    [141]冯长根,李鑫,曾庆轩,等.强碱阴离子交换纤维对活性染料的吸附性能研究[J].功能材料36(10):1568-71,2005年.
    [142]李淼,董永春,张未来.铁改性丙纶无纺织物在偶氮染料降解中的应用[J].天津工业大学学报31(3):40-3,2012年.
    [143]韩玉洁,董永春,聂雷.改性聚丙烯腈织物降解染色废水及废水回用[J].针织工业(6):30-2,2012年.
    [144]张显球,张林生,杜明霞.纳滤去除水中的有害离子[J].水处理技术32(1)6-9,2006年.
    [145]Ozaki H, Sharma K, Saktaywin W. Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal:effects of interference parameters[J]. Desalination 144:287-94,2002.
    [146]Yang Y, Ma N, Zhang Q, et al. Adsorption of Hg(Ⅱ) on a novel chelating fiber prepared by preirradiation grafting and amination[J]. Journal of Applied Polymer Science 113:3638-45,2009.
    [147]O'Connell DW, Birkinshaw C, O'Dwyer TF. Removal of lead(Ⅱ) ions from aqueous solutions using a modified cellulose adsorbent[J]. Adsorption Science & Technology 24(4):337-47,2006.
    [148]沙保峰,赵亮,田振邦,等.改性聚丙烯腈纤维处理电镀废水的试验研究[J].中国给水排水24(7):82-4,2008年.
    [149]Jyo A, Kugara J, Trobradovic H, et al. Fibrous iminodiacetic acid chelating cation exchangers with a rapid adsorption rate[J]. Industrial & Engineering Chemistry Research 43,1599-1607,2004.
    [150]Ma N, Yang Y, Chen S; et al. Preparation of amine group-containing chelating fiber for thorough removal of mercury ions[J]. Journal of Hazardous Materials 171(1-3): 288-93,2009.
    [151]Soldatov VS, Sokolova VI, Medyak GV, et al. Binary ion exchange equilibria in systems containing NO3-, Cl- and SO42- on fibrous anion exchangers with tetraalkylammomium groups[J]. Reactive & Functional Polymers 67:1530-9,2007.
    [152]Xu X, Chen S, Wu Q. Surface molecular imprinting on polypropylene fibers for rhodamine B selective adsorption[J]. Journal of Colloid and Interface Science 385: 193-201,2012.
    [153]Zhou J, Li W, Gu J-S, et al. Development of a novel RAFT-UV grafting technique to modify polypropylene membrane used for NOM removal[J], Separation and Purification Technology 71(2):233-40,2010.
    [154]Wang C-C, Yang F-L, Liu L-F, et al. Hydrophilic and antibacterial properties of polyvinyl alcohol/4-vinylpyridine graft polymer modified polypropylene non-woven fabric membranes[J]. Journal of Membrane Science 345:223-32,2009.
    [155]Feng R, Wang C, Xu X, et al. Highly effective antifouling performance of N-vinyl-2-pyrrolidone modified polypropylene non-woven fabric membranes by ATRP method[J]. Journal of Membrane Science 369(1-2):233-42,2011.
    [156]Na C-K, Park H-J, Kim B-G. Optimal amidoximation conditions of acrylonitrile grafted onto polypropylene by photoirradiation-induced graft polymerization[J]. Journal of Applied Polymer Science 125(1):776-85,2012.
    [157]Maziad NA, Abo-Farha SA, Ismail LFM. Radiation induced grafting of glycidylmethacrelate onto polypropylene films for removal of mercury from aqueous solutions[J]. Journal of Macromolecular Science Part A:Pure and Applied Chemistry 46(8):821-31,2009.
    [158]Yoshikawa T, Umeno D, Saito K, et al. High-performance collection of palladium ions in acidic media using nucleic-acid-base-immobilized porous hollow-fiber membranes[J]. Journal of Membrane Science 307:82-87,2008.
    [159]Jyo A, Hamabe Y, Matsuura H, et al. Preparation of bifunctional chelating fiber containing iminodi(methylphosphonate) and sulfonate and its performances in column-mode uptake of Cu(Ⅱ) and Zn(Ⅱ) [J]. Reactive & Functional Polymers 70(8): 508-15,2010.
    [160]Zheng X, Fan R, Zhao J, et al. An ion-imprinted microporous polypropylene membrane for the selective removal of Cu(Ⅱ) from an aqueous solution[J]. Separation Science & Technology 47(10):1571-82,2012.
    [161]Li T, Chen S, Li H, et al. Preparation of an ion-imprinted fiber for the selective removal of Cu(II) [J]. Langmuir 27(11):6753-8,2011.
    [162]Park H-J, Na C-K. Preparation of anion exchanger by amination of acrylic acid grafted polypropylene nonwoven fiber and its ion-exchange property [J]. Journal of Colloid and Interface Science 301:46-54,2006.
    [163]Barsbay M, Kavakli PA, Guven O. Removal of phosphate using copper-loaded polymeric ligand exchanger prepared by radiation grafting of polypropylene/polyethylene (PP/PE) nonwoven fabric[J]. Radiation Physics and Chemistry 79(3):227-32,2010.
    [164]Kavakli PA, Kavakli C, Guven O. Preparation of quaternized dimethyl aminoethyl methacrylate grafted nonwoven fabric for the removal of phosphate[J]. Radiation Physics and Chemistry 79:233-7,2010.
    [165]Awual MR, Urata S, Jyo A, et al. Arsenate removal from water by a weak-base anion exchange fibrous adsorbent[J]. Water Research 42:689-96,2008.
    [166]Awual M R, Shenashen MA, Yaita T, et al. Efficient arsenic(V) removal from water by ligand exchange fibrous adsorbent[J]. Water Research 46:5541-50,2012.
    [167]Hu M-X, Wan L-S, Liu Z-M, et al. Fabrication of glycosylated surfaces on microporous polypropylene membranes for protein recognition and adsorption[J]. Journal of Materials Chemistry 18(39):4663-4669,2008.
    [168]Wang C, Fan Y, Hu M-X, et al. Glycosylation of the polypropylene membrane surface via thiol-yne click chemistry for lectin adsorption[J]. Colloids and Surfaces B: Biointerfaces 110:105-12,2013.
    [169]何明波,胡兴洲.聚丙烯膜表面光接枝聚合[J].感光科学与光化学(2):53-6,1988年.
    [170]Xing C-M, Deng J-P, Yang W-T. Surface photografting polymerization of binary monomers maleic anhydride and n-butyl viny ether on polypropylene film:II:Some mechanistical aspects[J]. Polymer Journal 11:809-16,2002.
    [171]魏无际,俞强,崔益华,高分子化学与物理基础[M],北京:化学工业出版社,pp108,2005年.
    [172]Socrates G. Infrared Characteristic Group Frequencies, Tables and Charts,2nd ed., Wiley:Chichester, United Kingdom,1994.
    [173]李海静,魏俊富,赵孔银,等.含季铵基离子交换纤维的制备研究[J].离子交换与吸附25(6):542-9,2009年.
    [174]曹绪芝,张明刚,平郑骅.紫外辐照接枝制备亲水性荷正电纳滤膜[J].化学学报66(13):1583-8,2008年.
    [175]Collette FM, Lorentz C, Gebel G, et al. Hygrothermal aging of Nafion[J]. Journal of Membrane Science 330:21-9,2009.
    [176]He D, Ulbricht M. Surface-selective photo-grafting on porous polymer membranes via a synergist immobilization method[J]. Journal of Materials Chemistry 16(9):1860-8,2006.
    [177]宋欢,刘颖,石小丽,等.紫外照射季铵盐单体接枝改性丙纶非织造布及其吸附作用[J].高分子材料科学与工程29(7):52-5,2013年.
    [178]Jang J, Go W-S. Continuous photografting of HEMA onto polypropylene fabrics with benzophenone photoinitiator[J]. Fibers and Polymers 9(4):375-379,2008.
    [179]Chiu H-T, Shong Z-J. Application of ultraviolet photografting technology to acrylamide/polyethylene to improve the interfacial adhesion of polyethylene/unsaturated polyester resin composites [J]. Journal of Applied Polymer Science 111:2507-17,2009.
    [180]Bhattacharya A, Misra BN. Grafting:a versatile means to modify polymers Techniques, factors and applications [J]. Progress in Polymer Science 29:7671814, 2004.
    [181]Zhao J, Shi Q, Yin L, et al. Polypropylene modified with 2-hydroxyethyl acrylate-g-2-methacryloyloxyethyl phosphorycholine and its hemocompatibility[J]. Applied Surface Science 256(23):7071-6,2010.
    [182]Goli KK, Rojas OJ, Genzer J. Formation and antifouling properties of amphiphilic coatings on polypropylene fibers[J]. Biomacromolecules 13(11):3769-79,2012.
    [183]Perova TS, Vij JK, Xu H. Fourier transform infrared study of poly(2-hydroxyethyl methacrylate) PHEMA[J]. Colloid and Polymer Science 275(4):323-32,1997.
    [184]Perkin-Elmer Corporation. Physical Electronics Division, Handbook of X-ray Photoelectron Spectroscopy[M],1992.
    [185]Curti PS, de Moura MR, Veiga W. Characterization of PNIPAAm photografted on PET and PS surfaces[J]. Applied Surface Science 245:223-33,2005.
    [186]Forsberg P, Nikolajeff F, Karlsson M. Cassie-Wenzel and Wenzel-Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure[J]. Soft Matter 7: 104-9,2011.
    [187]Dai PS, Cebe P, Capel M, et al. In Situ wide-and small-angle x-ray scattering study of melting kinetics of isotactic poly(propylene) [J]. Macromolecules 36:4042-50,2003.
    [188]K Yamada, S Matsumoto, K Tagashira, et al. Isotacticity dependence of spherulitic morphology of isotactic polypropylene[J]. Polymer 39(22):5327-33,1998.
    [189]周凤娟,朱新生,刘中华,等.两种聚丙烯工程管材的性能及微观结构比较[J].高分子材料科学与工程25(9):90-92+96,2009年.
    [190]倪清兰.聚丙烯接枝与共混改性及其耐疲劳性研究[D].苏州:苏州大学,2011年.
    [191]石小丽,倪清兰,王飞.聚丙烯结晶形态与力学性能及其疲劳稳定性[J].实验室研究与探索30(12):38-41+59,2011年.
    [192]Anjum N, Gulrez SKH, Singh H, et al. Development of antimicrobial polypropylene sutures by graft polymerization. I. Influence of grafting conditions and characterization[J]. Journal of Applied Polymer Science 101(6):3895-3901,200.
    [193]Kumar S, Butola BS, Joshi M. Preparation of hybrid AHO-POSS/polypropylene nanocomposite monofilaments by radiation induced grafting [J]. Fibers and Polymers 14(4):550-5,2013.
    [194]Tao R, Zhu X, Zuo Y-T, et al. Grafting modification of electrospun polystyrene fibrous membranes via an entrapped initiator in an acrylic acid aqueous solution[J]. Journal of Applied Polymer Science 127(5):4102-9,2013.
    [195]Wang YX, Bai YW, Zhong WB, et al. Direct construction of discrete large spherical functional particles onto organic material surfaces by photografting polymerization[J]. Macromolecules 40:756-9,2007.
    [196]Tseng C-H, Wang C-C, Chen C-Y. Polypropylene fibers modified by plasma treatment for preparation of Ag nanoparticles[J]. Journal of Physical Chemistry B110: 4020-29,2006.
    [197]Deng J, Wang L, Liu L, et al. Developments and new applications of UV-induced surface graft polymerizations [J]. Progress in Polymer Science 34:156-93,2009.
    [198]Clough RL. High-energy radiation and polymers:a review of commercial processes and emerging applications [J]. Nuclear Instruments and Methods in Physics Research B 185:8-33,2001.
    [199]Chmielewski A G, Haji-Saeid M, Ahmed S. Progress in radiation processing of polymers[J]. Nuclear Instruments and Methods in Physics Research B 236:44-54, 2005.
    [200]Dogue ILJ, Mermilliod N, Foerch R. Grafting of acrylic acid onto polypropylene-comparison of two pretreatments:y-irradiation and argon plasma[J]. Nuclear Instruments and Methods in Physics Research B 105:164-7,1995.
    [201]Weber Jr. WJ, Morris JC. Kinetics of adsorption on carbon from solution[J]. Journal of Sanitary Engineering Division, American Society of Civil Engineers 89:31-59, 1963.
    [202]Ofomaja AE. Intraparticle diffusion process for lead(Ⅱ) biosorption onto mansonia wood sawdust[J]. Bioresource Technology 101:5868-76,2010.
    [203]Cheung WH, Szeto YS, McKay G. Intraparticle diffusion processes during acid dye adsorption onto chitosan[J]. Bioresource Technology 98:2897-2904,2007.
    [204]Zhao L, Mitomo H. Adsorption of heavy metal ions from aqueous solution onto chitosan entrapped CM-cellulose hydrogels synthesized by irradiation[J]. Journal of Applied Polymer Science 110:1388-95,2008.
    [205]Hamdaoui O. Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick[J]. Journal of Hazardous Materials B135:264-73,2006.
    [206]Chen H, Wang A. Adsorption characteristics of Cu(Ⅱ) from aqueous solution onto poly (acry lamide)/attapulgite composite [J]. Journal of Hazardous Materials 165: 223-31,2009.
    [207]Li K, Zheng Z, Huang X, et al. Equilibrium, kinetic and thermodynamic studies on the adsorption of 2-nitroaniline onto activated carbon prepared from cotton stalk fibre[J]. Journal of Hazardous Materials 166:213-20,2009.
    [208]Musyoka S M, Mittal H, Mishra S B, et al. Effect of functionalization on the adsorption capacity of cellulose forthe removal of methyl violet[J]. International Journal of Biological Macromolecules, in press.
    [209]Kavitha D, Namasivayam C. Capacity of activated carbon in the removal of acid brilliant blue:Determination of equilibrium and kinetic model parameters [J]. Chemical Engineering Journal 139:453-61,2008.
    [210]Bhattacharyya KG, Gupta SS. Removal of Cu(Ⅱ) by natural and acid-activated clays: An insight of adsorption isotherm, kinetic and thermodynamics[J]. Desalination 272: 66-75,2011.
    [211]Mittal A, Kurup L, Mittal J. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers [J]. Journal of Hazardous Materials 146:243-8,2007.
    [212]Rengaraj S, Yeon J-W, Kim Y, et al. Application of Mg-mesoporous alumina prepared by using magnesium stearate as a template for the removal of nickel: kinetics, isotherm, and error analysis[J]. Industrial & Engineering Chemistry Research 46:2834-42,2007.
    [213]Cavus S, Gurdag G, Sozgen K, et al. The preparation and characterization of poly(acrylic acid-co-methacrylamide) gel and its use in the non-competitive heavy metal removal[J]. Polymers for Advanced Technologies 20:165-72,2009.
    [214]Guclu G, Al E, Emik S, et al. Removal of Cu(Ⅱ) and Pb(Ⅱ) ions from aqueous solutions by starch-graft-acrylic acid/montmorillonite superabsorbent nanocomposite hydrogels[J]. Polymer Bulletin 65:333-46,2010.
    [215]O'Connell DW, Birkinshaw C, O'Dwyer TF. A Chelating cellulose adsorbent for the removal of Cu(Ⅱ) from aqueous solutions[J]. Journal of Applied Polymer Science 99: 2888-97,2006.
    [216]S Cavus, G Giirdag. Competitive heavy metal removal by poly(2-acrylamido-2-methyl-l-propane sulfonic acid-co-itaconic acid) [J]. Polymers for Advanced Technologies 19:1209-17,2008.
    [217]Deng S, Ting Y-P. Fungal Biomass with grafted poly(acrylic acid) for enhancement of Cu(Ⅱ) and Cd(Ⅱ) biosorption[J]. Langmuir 21:5940-8,2005.
    [218]Anandkumar J, Mandal B. Adsorption of chromium(Ⅵ) and Rhodamine B by surface modified tannery waste:kinetic, mechanistic and thermodynamic studies[J]. Journal of Hazardous Materials 186:1088-96,2011.
    [219]Gherasima C-V, Bourceanu G. Removal of chromium (Ⅵ) from aqueous solutions using a poly vinyl-chloride inclusion membrane:experimental study and modeling [J]. Chemical Engineering Journal 220:24-34,2013.
    [220]Treybal R E. Mass-Transfer Operations[M],3rd., McGraw Hill,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700