用户名: 密码: 验证码:
MEMS汽车传感器设计关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着MEMS技术的深入发展、需要采用多种手段在器件材料、结构、制作工艺或器件工作原理等方面进行针对汽车具体应用问题的技术改进,传感器件性能价格比的进一步提高可以有力促进MEMS汽车传感器面向应用实现实用化和产品化。
     MEMS要实现市场化和产业化,提高MEMS产品的设计能力是急需解决的问题。研究MEMS的设计方法和理论以及优化设计、建模仿真等,使其更加快速和准确,能够缩短产品的研发周期,降低反复试制和试验的高额成本;研究MEMS的多学科优化设计方法可以更快速、更准确的建立优化模型,降低设计难度,提高MEMS的整体设计水平,更好的改善器件的综合性能。
     在研究中,本论文不仅对MEMS汽车传感器的理论和设计方法进行了研究,对MEMS传感器智能化设计和器件的可靠性研究做了有益的探索,并且对MEMS设计中的多域耦合和仿真,以梳齿结构微谐振器为例进行了分析;并针对MEMS的多学科特性,以梳齿式MEMS加速度计这种典型MEMS器件为例,对MEMS的多学科优化设计和算法进行了深入地研究和探讨。这些研究对MEMS汽车传感器的研究和发展具有一定的促进。
     本文主要的创新点如下:
     1、本文研究了MEMS汽车传感器可靠性,提出了基于阶段主导可靠性因素的MEMS汽车传感器可靠性设计方法。通过分析在传感器开发过程中不同阶段的可靠性因素的实现,以及设计过程中器件结构、材料特性与设计参数的相互影响,在MEMS汽车传感器整体可靠性设计中提出基于阶段主导可靠性因素的方法。对汽车应用环境下的失效模式、失效机理进行了讨论,建立了失效分析模型和可靠性因素评估方法;并对如何对MEMS传感器系统寿命分布模型进行定量描述做了研究。提高了MEMS汽车传感器可靠性设计的准确性和效率。
     2、在分析MEMS系统的多域耦合特性的基础上,利用数值计算、有限元等方法以梳齿结构微谐振器为例详细进行了多域耦合分析;提出了基于边缘效应的微尺度下的平板电容和静电梳齿的静电场的分析方法,推导出了驱动静电力、位移等参数表达式以及考虑边缘效应之后的静电力表达式;分析了动力学模型,求解振动频率,研究了影响梳齿结构动态特性的空气阻尼。提高了MEMS系统多域耦合分析的准确性。
     3、运用多学科设计优化思想与MEMS系统优化相结合的设计方法,建立了梳齿式MEMS加速度计分解为子系统的优化模型;采用多学科变量耦合的优化策略与方法,构造耦合函数,建立了梳齿式MEMS加速度计的整体系统协调与优化模型。进行了结构、稳定性、静电力、最大量程、分辨率以及热学影响设计分析;运用模拟随机搜索算法、多目标遗传算法和差分进化算法分别进行优化设计,利用有限元进行了仿真,结果表明系统性能得到提高。
Along with the further development of Micro-Electro-Mechanical System (MEMS) technology, researches into the improvement of automobile application technology and cost performance of the sensors are carried out in aspects of material, structure, manufacturing process and working principle of parts. Consequently, both application and production of the automotive sensors based on MEMS are promoted effectively.
     In order to realize the marketization and industrialization of MEMS, what shall be resolved urgently is to improve the design capacity of MEMS. It is essential for the study on design methods and theories, modeling optimization and simulation of MEMS to make designing more rapid and accurate, so that the development cycle of product is shortened, and the expensive cost of repetition tests reduced. The Multidisciplinary Design Optimization method of MEMS can help establish the Optimization model more quickly and accurately and increase the ease of design, thus improve the overall design and the comprehensive function of parts.
     On the basis of a research on theories and design methods of MEMS, the paper makes a beneficial exploration on intelligent design and reliability of parts:by the example of comb-finger micro-resonator, it analyses the coupling between multi physics fields and Simulation of MEMS; with the example of the comb-finger micro-accelerometer, a typical kind of MEMS part, it researches into the Multidisciplinary Design Optimization and calculation of MEMS.
     The three main innovative points of this paper are as following:
     1. The paper studies reliability of the MEMS automotive sensor and puts forward the design method of it that is based on predominant reliability factors at different stages. Through the analysis of realization of reliability factors at different stages of the sensor development process, and the mutual influence among part structure, material characteristics and design parameter, the paper not only comes up with the design method based on stage predominant reliability factors, but also discusses expiration model and mechanism of automobiles in application environment, establishes integral analytical model and reliability factors valuation system, and studies how to quantitatively describe the model of life distribution of the MEMS automotive sensor.
     2. Based on the characteristic of multi physics fields of the MEMS system, illustrated by the example of comb-finger micro-resonator, the paper carries out the analysis of multi physics fields coupling analyses in detail by means of numerical calculation and finite element method, etc.: firstly, it analyzes the static electricity field edge effect of a Flat panel electric capacity and static electricity comb structure under the micro measure, and deduces parameter expressions such as static electricity drive and move, and static electricity drive expressions with consideration of the edge effect; secondly, it analyzes dynamics model to solve vibration frequency problems, and studies the air damping that influences comb-finger structure dynamic characteristics.
     3. The paper makes use of the design method of combining the MEMS system Optimization with the idea of Multidisciplinary Design Optimization and adopts the optimization tactics and means of Multidisciplinary variable coupling to analyze the structure, stability, static electricity power, the maximum, resolution, and the influence analysis of calorifics by the example of a comb-finger micro-accelerometer. In the paper, the system is broken down into 2 or 3 sub-systems, so as to build up optimization model respectively, to optimize with simulation random search algorithm, multi-objective genetic algorithm, and difference evolution algorithm, and to simulate with finite element method. Eventually, the paper constructs the coupling function, and builds up the whole system's coordinated optimization model of comb-finger MEMS accelerometer.
引文
[1]Mayer Felix. Innovation for commercial Sensors:From stepping into an opportunity Gap to continuous Innovation.24th Eurosensors Conference. Linz, Austria, September 5,2010-September 8,2010
    [2]Krueger S, Grace R. New challenges for microsystems technolog in automotive applications [J]. Mstnews,2001, (1):4-7.
    [3]W. Menz, J. Mohr, O, Paul. Microsystem Technology. Wiley,2001
    [4]Marek Jiri. MEMS for automotive and consumer electronics,2010 IEEE International Solid-State Circuits Conference, ISSCC 2010, San Francisco,CA,United states. February 7,2010-February 11,2010
    [5]David S. Eddy, Douglas R. Sparks. Application of MEMS technology in automotive sensors and actuators[J]. Proceedings of The IEEE, Vol.86, No.8, August 1998
    [6]Stephen D, Senturia. Microsystem Design. Kluwer Academic Publishers,2001
    [7]Grace R.MEMS/MST provide updated solutions go many automotive application:the great migration from electromechanical and discrete approaches[J].Mstnews,2002, (10):12-14.
    [8]吕良,邓中亮,刘玉德,辛洪兵.基于MEMS技术的汽车传感器研究进展[J].电工技术学报,2007,22(4):77-84
    [9]李伟东,吴学忠,李圣怡.一种压阻式微压力传感器[J]. 仪表技术与传感器,2006,(7): 2-5
    [10]Eloy J C, Roussel P, Mounier E. Slalus of the Inertial MEMS-Based Sensors in the Automotive[J]. Yole Development France 2002.
    [11]Dong Y, Zwahlen P, Nguyen A.-M, Rudolf F, Stauffer J.-M. High performance inertial navigation grade sigmadelta MEMS accelerometer [J]. IEEE/ION Position, Location and Navigation Symposium, PLANS 2010, Indian Wells, CA, United states.May 4,2010-May 6,2010
    [12]Kaienburg J R, Schellin R. A novel silicon surface micromachining angle sensor[J]. Sensors and Actuators,1999, (73):68-73.
    [13]胡明,马家志,邹俊,张之圣.微机械加工技术在微传感器中的应用[J].压电与声光,2002,(4):268-270
    [14]傅建中,胡晓旭.微系统原理与技术[M].北京:机械工业出版社,2005
    [15]许高斌.MEMS表面微加工工艺技术[J].测控技术,2006,(4):26-29
    [16]戴亚春,周建忠,王匀,马欣涛.MEMS的微细加工技术[J].机床与液压,2006,(12):15-19
    [17]王振宇,成立,祝俊.微/纳米级微电子机械系统制造新技术[J].半导体技术,2005,(8):27-33
    [18]Suriadi A, Luxbacher T. Photolithography on microrrnchined 3-D surfaces using spray coating technology of photo resist[C]. SPIE 2001,4404:245-253
    [19]黄树森,李昕欣,王跃林,鲍敏杭.MEMS传感器性能提高相关技术研究[J].仪表技术与传感器,2003,(1):8-9
    [20]Stout, Phillip, Yang, H.Q, Dionne, et al. CFD-ACE+MEMS:A CAD system for simulation and modeling of MEMS. Proceedings of SPIE-The International Society for Optical Engineering,1999(3680):328-339
    [21]Liateni K L, Hee Jung, Maher M A, et al. Moving from analysis to design: A MEMS CAD tool evolution. Proceedings of SPIE-The International Society for Optical Engineering,2000(4019):188-192
    [22]Maseeh, Fariborz. IntelliCAD:the CAD for MEMS. Wescon Conference Record,1995:320-324
    [23]Liu, Jie, Wu Bicheng, Liu Xiaojun, et al. nteroperation of heterogeneous CAD tools in Ptolemy Ⅱ. Proceedings of SPIE-The International Society for Optical Engineering,1999(3680):249-258
    [24]Romanowicz B F, Bart S F, Gilbert, J R. Integrated CAD tools for top-down design of MEMS/MOEMS systems. Proceedings of SPIE-The International Society for Optical Engineering,1999 (3680):171-178
    [25]S.D.Senturia, et al. A computer-aided design system for microelectro- mechanical systems (MEMCAD). Journal of MEMS.1992,1(1):3-13
    [26]S.D.Senturia. CAD for microelectromechanical systems. Pro. Transducer 1995, Stockholm, Sweden, June 25-29 1995:5-8
    [27]S.D.Senturia. The future of microsensor and microactuator design. Sensors and Actuators A.1996, A (56):125-127
    [28]S.D.Senturia, CAD Challenges for Microsensor, Microactuators and Microsystem, Pro.IEEE,1998,86(8):1611—1626.
    [29]S.D. Senturia. Microsystem design. Boston:Kluwer Academic Publishers.2002
    [30]N.Zhou. J.V.Clark. K.S.J.Pister. Nodal Analysis for MEMS Design Using SUGARv0.5. Santa Clara, CA, April 6-8.1998
    [31]G.K.Fedder. Simulation of Microelectromechanical Systems. Ph.D Thesis. U.C.Berkeley, EECS,1994
    [32]闻飞纳MEMS器件系统级仿真技术研究[D].东南大学,2004
    [33]Sarihan Vijay,Wen Jian,Li Gary. Package designs and associated challenges for environment sensitive MEMS sensors.2009 ASME InterPack Conference, IPACK2009. San Francisco, CA, United state.July 19,2009-July 23,2009
    [34]常洪龙,苑伟政,马炳和.微机电系统集成设计方法与实现技术[J].中国机械工程2004,5(10):916-920
    [35]Jakel A,Clobes J,Li Q,Viereck V, Hillmer H. Integration of actuable MEMS in networked sensing systems [J].7th International Conference on Networked Sensing Systems, INSS 2010. Kassel, Germany. June 15,2010-June 18,2010
    [36]J. Marek, H.-P. Trah, Y. Suzuki. Sensors for Automotive Technology. Wiley, 2003
    [37]吕良,邓中亮,刘玉德,连美霞.汽车电气系统MEMS传感器可靠性设计研究[J].电气应用2007,26(8):61-65
    [38]S. Arney. Designing for MEMS reliability[J]. MRS Bulletin,2001,26(4): 296-299
    [39]Ingrid De Wolf. Reliability of MEMS.7th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE 2006,24-26 April 2006 Page(s):1-6
    [40]Tai-Ran Hsu. Reliability in MEMS Packaging. IEEE International Reliability Physics Symposium Proceedings, March 2006 Page(s):398-402
    [41]Lafontan X, Pressecq F, Beaudoin F,etal. The advent of MEMS in space. Microelectronics Reliability,2003,43:1061-1083.
    [42]Xingguo Xiong, Yu-Liang Wu, Wen-Ben Jone. Reliability Analysis of Self-Repairable MEMS Accelerometer. Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06), Oct.2006 Page(s):236-244
    [43]李伟剑.微机电系统的多域耦合分析与多学科设计优化[D].西北工业大学,2004
    [44]Petersen, K.E. Dynamic Micromechanics on Silicon:Techniques and Devices, IEEE Trans. Electr. Dev., VoI.ED-25,1978:1242-1249
    [45]X.Cai, et al. Self-consistent electromechanical analysis of complex 3D Microelectromechanical Structures using relaxation/multiple accelerated method. Sensors and Materials.1994,6(2):85-99
    [46]Li.Beerschwinger, et al. Coupled electrostatic and mechanical FEA of a micromotor. Journal of Microelectromechanical Systems.1994,3(4):162-171
    [47]J.R.Gilbert, QK.Ananthasuresh, and S.D.Senturia.3D modeling of contact problems and hysteresis in coupled electromechnics. Proc.IEEE Workshop Microelectromechanical Systems.1996,11(15):127-132
    [48]H.Yie, X.Cai, and J.White. Convergence properties of relaxation versus the surface Newton generalized conjugate residual algorithm for self-consistent electromechancial analysis of 3D microlelctromechanical structures. Proc NUOAD V,1994:137-140
    [49]N.R.Aluru, J.White, A Multilevel Newton Method for Mixed-energy domain simulation of MEMS. Journal of MEMS,1999,8(3):299-301
    [50]R.Mullen, S.K.Hsu. Boundary element methods in coupled electro-mechanical systems. Boundary Elements XU Stress Analysis.Comp. Mech.pub.1993(2):517-525
    [51]R.Mullen, et al. Theoretical modeling of boundary conditions in microfabircation beams. Proc.IEEE.Microelectromechanical Systems. Nara Japan,1987:70-77
    [52]F.Shi, P.Ramesh and S.Mukhe. Simulation Methods for Microelectromechanical Structures (MEMS) with Application to A Microtweeze. Computers&Structures.1995,56(5):769-783
    [53]S.CxAdams, C.YHui, and N.C.Macdonald. Simulation of microelectro-mechanical systems using a hybrid BEM/FEM code with the application to the stability analysis of a tunable oscillator. Proc.ASME. Dynamic Systems Control Division.1995,57(2):931-939
    [54]J.R.Gilbert, R.Legtenberg, and S.D.Senturia.3D coupled electro- mechanical for MEMS:Application of Cosolve-EM. Proc.IEEE. Microelectromechcainical Systems.1995,2:122-127
    [55]王从舜,张为斌等.微电子机械系统中典型构件的力电祸合分析及其应用研究.机械强度.2001,23(4):503-506
    [56]Olivier Francais, Isabelle Dufour. Dynamics simulation of an electrostatic micropump with pull-in and hysteresis phenomena. Sensors and Actuators.1998, A(70):56-60
    [57]Marc Dequesnes, S.V.Rotkin, N.RAluru. Calculation of pull-in voltages for carbon-nanotube-basednanoelectromechanical switches. Nanotechnology.2002 (13):120-131
    [58]Yael Nemirovsky, Ofir Bochobza-Degani. A Methodology and Model for the Pull-in Parameters of Electrostatic Actuators. Journal of microelectromechanical systems,2001,10(4):601-614.
    [59]Ofir Bochobza-Degani, David Elata, Yael Nemirovsky. An efficient relaxation based DIPIE algorithm for computeraided design of electrostatic actuators.2002 IEEE:200-204
    [60]Eva-Renate KSnig, Peter Groth, Gerhard Wachutka. New Coupled-field simulation tool for MEMS based on the TP2000 CAD platform. Sensors and Actuators 1999 (76):9-18
    [61]Gang Li, N.R.Aluru. Linear, nonlinear and mixed-regime analysis of electrostatic MEMS. Sensors and Actuators 2001 A (91):278-291
    [62]Robert M.Kirby, George Em Karniadakis, et al. An Integrated Simulator for Coupled Domain Problems in HEMS Journal of Microelectromechanical Systems.2001,10(3):379-391
    [63]卢凉,杜平安,黄志奇 微机电系统计算机辅助设计的研究[J],微电子学,2003,33(6):477-479
    [64]Vandemeer J E. Nodal Design of Actuators and Sensors. Technical Report, Carnegie Mellon University,1998.http://www.ece.cmu.edu/~mems/
    [65]Gabbay L D. Computer Aided Macromodeling of MEMS. MIT, In:PhD Thesis,1998. http://www.ece.cmu.edu/~mems/
    [66]Tamal Mukherjee, Fedder Gary K. Structured design of microeletro-mechanical systems[J]. DAC97, Anaheim, California 1997 ACM 0-89791-920-3/97/06.
    [67]Wei Huang, Ganyu Lu.Analysis of lateral instability of in-plane comb drive MEMS actuators based on a two-dimensional model[J]. Sensors and Actuators A,2004,113:78-85
    [68]William C Tang, TuCuong H Nguyen, Michael W Judy, et al.Electrostatic-comb Drive of Lateral Polysilicon Resonators, Sensors and Actuators A,1990,21-23: 328-331
    [69]徐泰然MEMS和微系统——设计与制造(王晓浩,译者).北京:机械工业出版社,2004
    [70]李平梁,李碧洲,赖宗声,等.静电梳微振子结构和特性研究[J].传感技术学报,1996,(4):6-12
    [71]董林玺.微机械电容式传感器及其相关特性研究.[D],浙江大学,2004
    [72]Minhaug Bao.Micro mechanical transducers-pressure sensors, accelerometers and gyroscopes. ELSEVIER,2000
    [73]N Rott.Theory of time-dependent laminar flow.In:theory of laminar flows, F K Moors. Ed, Princeton, NJ:Princeton University,1964, Section D
    [74]Yong Ho Cho, Albert P Pisano, Roger T Howe.Viscous damping model laterally oscillating microstructures[J]. Journal of Microelectro- mechanical systems, 1994,3(2)
    [75]钟莹,李醒飞,张国雄.有限元法在谐振式硅微机械加速度计设计中的应用[J].天津大学学报,2003,36(4)
    [76]河野照哉,宅间董(日).电场数值计算法.尹克宁译.北京:高等教育出版社,1985
    [77]ANSYS manual
    [78]余雄庆.飞机设计新技术—多学科设计优化.航空科学技术,1999(1):19-21
    [79]Jan Blachut, Hans A.Eschenauer, Emerging Methods for Multidisciplinary Optimization. NewYork:Springer Press.2001
    [80]Tappeta R V, Nagendra S, Renaud J E. A Multidisciplinary design optimization approach for high temperature aircraft engine components. Structural Optimization,1999,18(2-3); 134-145
    [81]Sobieszczanski, Emiley M S,et al. Advancement of Bi-level integrated system synthesis (BLISS)..AIAA:2000-0421
    [82]Jason Bostjancic, Gabriel Tomes, Beau Massenburg. Multidisciplinary Optimization Report for U.F.O:University of Florida Observer Aircraft Design and Optimization, Second annual, ISSMO Micro Aerial Vehicle Competition May 9,1998
    [83]Masoud Rais-Rohani, George R.Hicks. Multidisciplinary Design and Prototype Development of a Micro Air Vehicle Journal of Aircraft, Vol 36, NO.1, January-February 1999:227-234
    [84]X Liu, D.W.Begg. On simultaneous optimization of smart structures-Part i: Theory. Computer methods in applied mechanics and engineering.2000 (184): 15-24
    [85]X Liu, D.W.Begg. On simultaneous optimization of smart structures-Part l:Algorithm and examples. Computer methods in applied mechanics and engineering.2000 (184):25-37
    [86]王爱俊,余雄庆,陈大融.复杂微机电系统的多学科设计方法研究.机械设 计.2000(11):7-9
    [87]Cramer,E.J.,Dennis,J.E.,Frank,P.D.,Lewis,R.M.,and Shubin, G. R.Problem Formulation for Multidisciplinary Optimization. SIAM Journal on Optimization.1994,4:754~776.
    [88]Charles D. McAllister. Uncertainty propagation in multidisciplinary design optimization[D]. The Pennsylvania State University.2002.
    [89]Xiaoyu Gu. Uncertainty in simulation based multidisciplinary design optimization[D]. University of Notre Dame.2003.
    [90]Chen-Hung Huang. Development of multi-objective concurrent subspace optimization and visualization methods for multidisciplinary design[D]. State University of New York at Buffalo.2003.
    [91]Goldberg D E. Genetic algorithms:in search, optimization and machine learning. Addison Weely,1989.
    [92]Fogel D B. Evolutionary computation:towards a new philosophy of machine intelligence. IEEE Press, New York, NY,1995.
    [93]Rechenberg Ⅰ. Cybernetic solution path of an experimental problem. Royal aircraft establishment, Library translation No.1122, Farnborough, England, 1965.
    [94]Stom R, Price K. DE-a simple and efficient adaptive scheme for global optimization over continuous space. Technical report TR-95-012, ICSI,1995.
    [95]Storn R, Price K. DE-a simple and efficient heuristic for global optimization over continuous space. Journal of global optimization,114:341-359.
    [96]W Kuehnel, Steven Sherman. A surface micromachined silicon accelero- meter with on-chip detection circuitry[J]. Sensors and Actuators A.1994,45:7-16.
    [97]K Chau, S Lewis, Y Zhao, etal. An integrated force-balanced capacitive accelerometer for low-G applications. The 8th international conference on solid state sensors and actuators, and Eurosensors Ⅸ. Stockholm, Sweden,1995.
    [98]Nagel D J, Zaghloul M E. MEMS:Micro Technology. Mega Impact IEEE Circuits and Devices Magazine,2001,17(2):14-25.
    [99]B Boxenhorn, P Greiff. Monolithic Silicon Accelerometers[J]. Sensors and Actuators A.1990,21-23:273-277.
    [100]Judy J W, Tamagawa T, Polla D L, Surface-machined micromechanical membrane pump[C]. In:Proc. Of MEMS'91. IEEE,1991.182-186.
    [101]梁春广,徐永青,杨拥军,MEMS光开关[J].半导体学报,2001,22(12):1551-1556.
    [102]Edward E.Jones, Matthew R.Begley, Kevin D.Murphy. Adhesion of micro-cantilevers subjected to mechanical point loading--modeling and experiments[J] .Journal of the Mechanics and Physics of Solids,2003,51: 1601-1622.
    [103]张向军、孟永钢、温诗铸.微电子机械系统中的若干固体力学问题[J].力学与实践,2003,25(2):7-11.
    [104]K.L.Johnson, J.A.Greenwood. An Adhesion Map for the Contact of Elastic Spheres. Journal of Colloid and Interface Science[J],192(1997):326-333.
    [105]王立森.微机械加速度计的设计、模拟及力学分析[D].中国科学院力学研究所,2001.
    [106]Mastrangelo C H, Hsu C H. Mechanical stability of and adhesion of microstructures under capillary forces-part Ⅱ:Experiments [J]. Journal of Microelectromechanical systems,1993,2:44-45
    [107]Daniele Marioli. Measurement of small capacitance Variations. IEEE traps on instru and measurement.Vol.40.N0.2.Apri1.1991
    [108]寇剑菊.叉指式微加速度计的系统仿真分析[D].中国工程物理研究院,2003
    [109]何晓平,张德等.静电伺服微加速度计的量程设计[J].中国惯性技术学报,2003,11(6):90-93.
    [110]俞必强.多学科设计优化及在MEMS设计中应用的研究[D].北京科技大学,2006
    [111]李伟剑,苑伟政.基于遗传算法的微机械陀螺的多学科设计优化[J].机械强度,2004,26(2):170-174
    [112]Zhao Chenxu,Kazmierski Tom J. Genetic-based automated synthesis and optimization of MEMS accelerometers with Sigma-Delta control.2010 IEEE International Symposium on Circuits and Systems:Nano-Bio Circuit Fabrics and Systems, ISCAS 2010. May 30,2010-June 2,2010
    [113]李燕斌.静电梳齿结构的MEMS分析和优化设计[D].华中科技大学,2008
    [114]朱毅.微梳齿谐振器力学特性的仿真研究[D].清华大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700