用户名: 密码: 验证码:
基于视觉技术的GMAW-S熔滴过渡瞬时过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
短路过渡是熔化极气体保护焊中的一种重要的熔滴过渡方式,其以优质、高效、低成本、节能、生产率高的特点,广泛应用于中、薄板焊接。对于短路过渡这一燃弧-短路交替的复杂非线性时变系统,其瞬时过程决定了焊接过程中产生飞溅的可能性以及焊缝的最终成形,因此国内外广大焊接工作者对熔化极气体保护焊短路过渡(GMAW-S)的熔滴、熔池等行为过程进行了大量的研究与探索工作。但长期以来由于受试验技术、研究手段等多方面的限制,此类研究工作主要集中在基于电信号的过程建模及工艺优化、基于电弧声信号的过渡状态判断、基于图像信号的熔深熔宽控制、还有部分基于熔滴图像信号的状态分析等,研究平台相对分散,建模数据较为单一,直接性和可验证性较差。因此整合研究平台,对GMAW-S焊接过程中瞬时状态所蕴含的机理进行研究,能够进一步加深对GMAW-S焊接过程的理解,为提出新的GMAW-S焊接过程控制思路提供科学依据。
     论文研制了一套由背光系统、滤光系统和成像系统所组成微距高速视觉传感系统。在背光系统设计中,根据所采用的AlGaInP半导体激光空间模式,基于高斯光束传输和光学波动成像理论,通过模拟计算,确定了空间滤波器和准直扩束光学系统的最优光学参数,获得了理想的平顶光束。在滤光系统设计中,根据偏振光学原理,设计偏振光学系统取代传统的小孔光阑以达到连续滤光的目的,并与保护镜片和干涉滤光片通过螺纹式连接装配组成了同轴调节系统。在成像系统设计中,根据所采用的高速摄像机参数,采用C/F转接座配置中微距可变焦镜头,获得了成像比率较高的GMAW-S、GMAW-P的熔滴细节图像。该系统的出现突破了以往焊接过程图像高速采集所面临的设备搭建耗时、参数设置复杂、焊接规范适用性差、成像质量不高的技术瓶颈,为广泛开展基于图像监测的各类焊接过程研究提供了可能。
     论文构建了由焊接控制系统、保护气混配供给系统、焊接电信号实时采集系统和高速视觉传感系统四部分组成的GMAW-S焊接试验平台,并进通过基于保护气配比的GMAW-S焊接试验,研究了不同组分保护气对GMAW-S熔滴过渡状态的影响。
     针对GMAW-S瞬时过程图像存在大量焊接烟尘、衍射条纹等复杂背景噪声,提出了一种结合频率域运算的线性图像处理算法。通过图像频率域转换,经过衰减低通滤波、灰度映射、高斯低通滤波和Laplacian锐化,最终获得不改变图像性质、主体细节突出、背景噪声大量减少的GMAW-S瞬时过程图像。并在此基础上,根据Mallat塔式算法构造3次B样条小波,通过多尺度小波边缘检测算法实现了GMAW-S瞬时过程图像中熔滴、液桥、熔池等目标物的边缘提取。
     论文研究了熔滴成形瞬时过程,并建立了该过程的力学模型,通过该模型进行计算分析后认为:表面张力提供的支持力为主要的熔滴成形驱动力,焊丝在熔滴成形过程中的熔化速度与小滴体积扩展速度相符,因此小滴在扩展过程中仍能保持滴状形状。
     论文以磁流体动力学理论和计算流体动力学方程为基础,综合考虑熔滴所受的电磁力、表面张力、等离子流力和重力的作用,建立了二维GMAW-S熔滴受激变形瞬时过程的动态数学模型。通过对该过程的模拟计算,研究分析了熔滴在长大和电流下降后的形态演变、内部液态金属流动机制以及速度场分布规律。
     论文对瞬时短路过渡过程进行深入研究,建立了瞬时短路过程力平衡临界方程,通过图像分析技术结合电信号定量计算,证明该临界方程能够真实的反映瞬时短路进程,并进一步探讨了瞬时短路过程的定义,认为以往对瞬时短路的定义“电极在非常短的时间和熔池发生接触,但没有发生金属过渡”是不完全的,建议应该摒弃时间概念,定义瞬时短路过程为熔化电极和熔池接触但没有建立液桥的短路现象,而把液桥建立但没有完全铺展开的短路过渡过程定义为瞬时短路过渡过程。
Short-circuit transfer is an important metal transfer mode in gas metal arc welding. Featured with high-quality, great efficiency, low-cost, energy-saving, and high-productivity, it is widely used in sheets welding. And as it belongs to the complex nonlinear time-varying systems, the possibility of the generation of the welding spatter as well as the forming of the final weld are determined by the GMAW-S instantaneous processes. Therefore, researchers over the world have carried out a lot of studies and exploratory work on the behavior of droplet and weld pool in GMAW-S. Such studies, however, have been for a long time conditioned by limited experimental techniques, researching tools and other restrictions, thus have been mainly focused on modeling and process optimization based on signal process, judgment of transferring state based on arc acoustic signal, width and penetration control based on image signal and partly state analysis based on droplet images. The research platforms are relatively dispersive; the models are simplex; the results are not obvious and hard to verify. Therefore, a thorough study of the mechanism of GMAW-S instantaneous process based on integrated research platforms will further deepen the understanding of GMAW-S process and provide scientific basis for new GMAW-S welding process control ideas.
     In this paper, a set of macro high speed vision sensor system which is composed of backlight system, filtering system and imaging system, was developed.
     In the design of backlight system, based on the spatial mode of the semiconductor laser AlGaInP adopted in the research, the optimal optical parameters of spatial filter and collimated expander were determined by the results of the calculations based on Gaussian beam transmission and the theory of fluctuations in optical imaging and the top-hat beam was eventually obtained.
     In the design of filtering system, according to the principles of polarized light, a polarized optical system was designed to replace the traditional pinhole for the purpose of achieving continuous filtering. Together with the protection lens and interference filter, a coaxial-conditioning system was assembled through threaded connectors.
     In the design of imaging system, based on the parameters of the high speed camera adopted, detailed droplet images of GMAW-S and GMAW-P of higher imaging ratio were obtained by using C/F adapter and macro zoom.
     The establishment of this system eliminates many technological bottlenecks in high speed image capturing of welding process, i.e. long time consumed in equipment structuring, complexity in parameter setting, poor applicability of welding parameters and low quality of image. It thus provides possibility for carrying out wider range of welding process studies based on image monitoring.
     In this paper, a GMAW-S welding experimental platform which is composed of welding control system, shielding gas mixing system, real-time electrical signal acquisition system and high speed vision sensor system were developed. Based on this platform, the influence of different components of shielding gas to the state of GMAW-S droplet transfer was studied based on the GMAW-S welding experiment with the same ratio shielding gas as in simulation.
     For the complex background noise in GMAW-S instantaneous process images such as mass welding fume, diffraction fringes, etc., a linear image processing algorithm which combines frequency-domain calculation was proposed. Through image spatial-frequency domain transformation, attenuation of low-pass filtering, gray-scale mapping and Gaussian low-pass filtering, as well as Laplacian sharpening, the GMAW instantaneous process images with distinct details and much lower background noise were obtained while the nature of the images remain unchanged. On this basis, the cube B-spline wavelet was constructed according to Mallat tower algorithm and the edge extraction of droplet, liquid bridge and weld pool in GMAW-S instantaneous process images was achieved by the means of multi-scale wavelet edge detection algorithm.
     In the paper, the droplet forming instantaneous process was studied and the mechanical model of this process was established. Based on the calculation of this model, the results demonstrated that the surface tension was the major driving force in droplet forming process, and the drop can maintain droplet shape in the expansion process since the wire melting speed is the same with the drop expansion speed.
     Based on the magneto hydrodynamics (MHD) theory and computational fluid dynamics equations, a two-dimensional dynamic mathematical model of instantaneous GMAW-S droplet stimulated deforming process was established, with consideration of electromagnetic force, surface tension, plasma flow and gravity. The evolution of droplet profile in growing in shape and falling of current, the flow mechanism of internal metal liquid and the velocity distribution were analyzed, based on numerical simulation.
     The instantaneous short circuits (ISC) process was thoroughly studied in this paper and an ISC force equilibrium critical equation was established. Using image analysis technology combined with quantitative calculation of electrical signals, it is proved that the critical equation can reflect the real ISC process. Further, the definition of ISC was discussed and the past definition“the electrode touches the weld pool for a very short period of time, but no metal transport takes places”was considered to be inaccurate. The time concept in definition was recommended to be abandoned, and ISC should be defined as a short-circuit phenomenon where melting electrode makes contact with the weld pool without liquid bridge formed. Moreover, a short-circuit transfer process in which liquid bridge formed but not completely extended was defined as instantaneous short circuit transfer (ISCT) process.
引文
[1]何德孚.焊接与连接工程学导论[M].上海:上海交通大学出版社,1998.
    [2]殷树言,徐鲁宁,丁京柱.熔化极气体保护焊的高效化研究[J].焊接技术,2000,29(12):4-7.
    [3] Dennis,S. Gas metal arc welding process celebrates a 50th anniversary, Welding Journal , 1998, Vo1.77,No.9:53-54.
    [4] Anon. Innovations in welding technology in 1997.Welding and Cutting, 1998, 6: 8-21.
    [5] Masao Toyoda. Prospect of welding research and technology in 21st century[C]. The First Osaka University and TWI Joint Seminar 22, March2001, Osaka, Japan.
    [6]区智明.逆变弧焊机的现状和发展[J].电焊机,2000,Vo 1.30,No.7:9-13.
    [7]殷树言,刘嘉,黄鹏飞等.从电弧物的角度看GMA焊的发展[J].焊接技术,2001,30(11):5-8.
    [8]朱志明.熔化极气体保护焊熔滴控制的发展现状及关键技术[J].电焊机,2004(增刊),69-77.
    [9] Esser W. G., Walter R.. Proc. Int. Conf. On Arc Physics and Weld pool Behaviour[C].Cambridge: The Welding Institute,1979: 289-300.
    [10] Essers W. G., Walter R.. Heat transfer and penetration mechanisms with GMA and plasma GMA welding [J]. Welding Journal, 1981, 60(2): 37~42.
    [11] Waszink J. H., Graat L, H. J.. Experimental investigation of the forces acting on a drop of weld metal [J]. Welding Journal, 1983, 62(4): 108~116.
    [12] Ogunbiyi B., Norrish J..GMAW metal transfer and arc stability assessment using monitoring indices Computer Technology in Welding, Six International Conference, Lanaken, Belgium, 1996(6):9-12.
    [13] Nemchinsky V. A.. The effect of the type of plasma gas on current constriction at the molten tip of an arc electrode [J]. J. Phys. D: Appl. Phys., 1996, 29:1202-1208.
    [14] Nemchinsky V. A. Heat transfer in a liquid droplet hanging at the tip of an electrode during arc welding [J]. J. Phys. D: Appl. Phys. 1997, 30:1120-1124.
    [15] Rajasekaran S., Kuikarni S. D., Mallya U. D., et,al. Droplet Detachment and Plate Fusion Characteristics in Pulsed Current Gas Metal Arc Welding[J].Welding Journal,1998,77(6): 254-269.
    [16] Zhang Y. M., Liguo E., Kovacevic R. Active metal transfer control by monitoring excited droplet oscillation [J]. Welding Journal (Miami), 1998, 77(9): 388-395.
    [17] Deam R. T., Simpson S. W., Haidar J.. A semi-empirical model of the fume formation from gas metal arc welding [J]. J. Phys. D: Appl. Phys. 2000, 33: 1393-1402.
    [18] French I. E., Tyagi V. K., Brooks G.. The influence of power source characteristics on particulate fume generation and composition[C]. IIW Asian Pacific Welding Conference. Auckland, New Zealand, 1996(2):939-957.
    [19] Bosworth M. R., Deam R. T.. Influence of GMAW droplet size on fume formation rate [J]. J. Phys. D: Appl. Phys. 2000(33):2605-2610.
    [20] Mendez P., Jenkins N. T., Eagar T. W.. Effect of electrode droplet size on evaporation and fume generation in GMAW[C]. Proceedings of the Gas Metal Arc Welding for the 21st Century, American Welding Society, Miami,Florida 2000.
    [21]余文松,薛家祥,黄石生等. CO_2电弧焊动态过程的MATLAB仿真研究[J].焊接学报,1999,3(20):153-157.
    [22]张军红,黄石生.熔滴短路过渡动态过程的数学建模与仿真[J].焊接学报, 2001,4(22):81-83.
    [23]李桓,胡连海,李俊岳等.波控CO_2焊短路过渡过程的计算机仿真及试验[J],焊接学报, 2002,2(23):1-4.
    [24]马跃洲,张鹏贤,梁卫东等.小波包分解Welch平均法在焊接电弧声功率谱估计中的应用[J].甘肃工业大学学报, 2001,2(27):5-8.
    [25]马跃洲,王春柏,陈剑虹. CO_2焊接过程动态信号的特征分析[J].焊接学报, 2001,22(2):67-70.
    [26] Saini D., Floyd S.. An investigation of gas metal arc welding sound signature foron-line quality control [J], Welding Journal ,1998,77(4):172s-179s .
    [27] Dolfsson S., Bahrami A., Bolmsjo G., et al. On-line quality monitoring in short-circuit gas metal arc welding [J]. Welding Journal , 1999 78(22):59-73.
    [28]杨学勤,王建军,林涛等.铝合金交流TIG焊接熔池动态控制图像传感方法的研究[J].焊接, 2002, 23(5):73-76.
    [29]张华,陈强,金建敏等.基于焊缝CCD图象模式特征的焊缝轨迹识别[J].机械工程学报, 1996, 32(6):31-36.
    [30]李桓,李国华,李俊岳等.熔化极电弧焊熔滴过渡过程的高速摄影[J].中国机械工程, 2002, 13(9):796-798.
    [31]朱志明,吴文楷,陈强.基于高速CCD摄像的短路过渡焊接熔滴检测与分析[J].焊接学报, 2006, 27(3):29-33.
    [32] Darren Barborak.. THROUGH-ARC process monitoring techniques for control of automated gas metal arc welding[C]. Proceeding of the 1999 IEEE International Conference on Robotics & Automation. Detroit Michigan 1999.
    [33] Farson D.. Arc Initiation in Gas Metal Arc Welding[J]. Welding Journal 1998 (8):315- 321
    [34] Mita T.. The estimation of arc stability on CO2 gas shielded arc welding[C]. Proc Lst Int Conf in Advanced Welding Systems.The Welding Institute 1987.
    [35] Siewert T.. Contact tube wear detection in gas metal arc (GMA) welding[J]. Welding Journal, 1995, 74(4):115-121.
    [36] Johnson J.. Process Control of GMAW Sensing of Metal Transfer Mode[J]. Welding Journal, 1991,70(4): 91-99.
    [37]徐忻,吴毅雄,张勇等. CO2弧焊过程质量评价技术的研究发展及发展趋势[J].电焊机, 2003, 33(10):1-5.
    [38]张晓囡,李俊岳,李国华. CO2电弧焊电源动特性评定指标的实验分析[J].电焊机, 2001, 31(12): 12-15.
    [39]易志平,薛家祥. CO2焊电信号的小波分析[J].华南理工大学学报(自然科学版) , 2002, 30(6):27-29.
    [40] Yu Jian Rong, Jiang Li Pei, et al. Synthetically quantitative evaluation function ofcharacteristic parameters for real time control on CO2 arc welding process. China Welding , 2001, (1):19-26.
    [41]胡广书.数字信号处理—理论算法与实现.北京:清华大学出版社,1997.
    [42] Mei Kobayashi.. Listening for Defects:Wavelet-Based Acoustical Signal Processing in Japan[J]. SLAM News.1996,29(2).
    [43]胡光锐.信号与系统[M].上海:上海交通大学出版社,1986.
    [44] Simpson S.W.. Information Processing in Welding: Welding Signatures and Applications in Industry[J]. Welding in the world.1999, 43(4):7-8.
    [45]俞建容等. CO2弧焊特征参数的检测分析系统[C].第三届计算机在焊接中的应用技术交流会议文集, 2001,11:12-15.
    [46]薛家祥,李海宝,张丽玲等.弧焊过程电信号的频谱分析[J].电焊机, 2005,8(35): 43-46.
    [47]罗怡.应用联合时频分析研究CO2焊接过程中的电信号[J].焊接学报, 2007,28(2):75-78.
    [48]薛家祥,张晓囡,黄石生.弧焊过程电信号小波软阈值消噪[J].焊接学报, 2000, 21(2) :18-21.
    [49]黄石生,张晓囡.用子波变换提取CO2焊焊穿信息特征的研究[J].机械工程学报,1999, 35(3):47-50.
    [50]薛海涛,李桓,杨立军等.CO2焊短路过渡过程缩颈信息的小波提取[J].焊接学报, 2004, 25(1): 75-79.
    [51]张晓囡,黄石生.评定CO2电弧焊电源动特性的统计分析法[J].焊接学报. 2001, 22(6): 12-18.
    [52]薛海涛,李俊岳等.焊接电弧信息测试分析系统[J].焊接学报2003, 24(1):19-22.
    [53] Kang M.J., Rhee S.. The statistical models for estimating the amount of spatter in the short circuit transfer mode of GMAW [J].Welding Journal. 2001, 80(1):1-8.
    [54]崔朝宏,李午申.人工神经网络在焊接中的应用现状及发展趋势[J].焊接技术, 2000, 29(1):40-42.
    [55] Subba P.V., Rao P.K., Sikdar, et al. Another insight into artificial neural networksthough behavioral analysis of access mode choice[J]. Comput Environ and Urban Systems, 1998, 22(5):485-496.
    [56]于秀萍,孙华.基于人工神经网络的焊缝宽度预测[J].焊接学报.2005, 26 (5):17-19.
    [57]蔡艳,杨海澜.人工神经网络在CO2短路过渡焊质量评估中的应用[J].焊接技术, 2001, 30(6):7-9.
    [58]任玉林,张滨等.主成分分析近红外漫反射光谱法对去痛片的非破坏性分析[J].计算机与应用化学, 1997, 14(3):191-196.
    [59]杜绍敏,刘琦.主成分分析在水文地质分析中的应用[J].黑龙江水专学报. 1999, 26(4):10-12.
    [60]白杰,范作民.主成分分析在发动机状态监控与故障诊断中的应用[J].中国民航学院学报. 1998, 16(1):1-8.
    [61]何尧启.主成分分析在喀斯特土壤环境退化研究中的初步运用以贵州麻山地区紫云县宗地乡为例[J].贵州师范大学学报自然科学版. 1999,17(1):12-19.
    [62]韩国明,云绍辉等.熔滴过渡类型光谱信号自动识别软件系统[J].焊接学报. 2001, 22(1):19-23.
    [63]杨海澜,蔡艳等.主成分分析结合神经网络技术在焊接质量控制中的应用[J].焊接学报. 2003, 24(4):55-58.
    [64]杨海澜,吴毅雄.主成分分析结合人工神经网络用于焊接过程质量控制[J].电焊机. 2003, 33(4):5-8.
    [65]王伟,朱六妹.焊接电弧电压模糊模型的相关辨识[J].电工技术学报. 1998, 13(1):59-64.
    [66] Wold S., Albano C., Dunn W.,et cl.. Pattern recognition: Finding and using regularities in multivariate data[M]. In Food research and data analysis, London: Applied Science Publishers, 1983:147-188.
    [67]蔡艳,杨海澜等.基于偏最小二乘回归方法的CO2焊飞溅模型.焊接学报. 2004, 25(5):125-128.
    [68]陈丙森.计算机辅助焊接技术[M].北京:机械工业出版社, 1999.
    [69]林尚扬.焊接机器人及其应用[M].北京:机械工业出版社, 2000.
    [70]高向东,丁度坤,宋要武等.熔池图像质心算法的焊缝位置测量模型[J].焊接学报, 2007, 28(3):3-6.
    [71]何景山,杨春利,林三宝等.无辅助光源图像法TIG焊焊缝跟踪传感系统[J].焊接学报, 2000, 21(1): 37-40.
    [72]孙立新,岳宏,赵霞等.基于结构光的焊缝检测系统设计中参数的确定[J].河北工业大学学报, 1998(3) : 59-64.
    [73]吴林,陈善本.智能化焊接技术[M].北京:国防工业出版社, 2000
    [74] Agapiou G., Kasiouras C., Serafetinides A..A detailed analysis of the MIG spectrum for the development of laser-based seam tracking sensors. Optics & Laser Technology, 1999(31) :157-161.
    [75] Hilpert A. Material transference in the welding arc[J]. J.A.W.S.Weld Eng., 1930,15(4):2-10.
    [76] Hilpert A. Investigation on phenomena of arc welding and gas cutting by slow motion pictures[J], J.A.W.S. 1993,12(7): 4-8.
    [77]尾上久浩.溶接のアーク現象[J].溶接技术. 1963,11(10).
    [78]杨运强,张晓琪,李俊岳等.焊接电弧高速摄影技术及其同步装置[J].电焊机, 2003, 33(1):11-12.
    [79]朱志清,吴文楷,陈强.基于高速CCD摄像的短路过渡焊接熔滴检测与分析[J].焊接学报, 2006, 27(3):29-33.
    [80]刘占民,李明利,薛龙.熔化极电弧焊熔滴过渡过程的高速摄像[J].激光与红外, 2006, 36(2):131-134.
    [81] Peiyuan Zhu, Simpson.S.. Voltage change in the GMAW process due to the influence of a droplet traveling in the arc[J]. Science and Technology of Welding and Joining, 2005, 10(2):244-248.
    [82] Yudodibroto B.Y.B, Hermans M.J.M., Y.Hirata, et al. Pendant droplet oscillation during GMAW[J]. Science and Technology of Welding and Joining, 2006, 11(3):308-311.
    [83] Zhang Y M, Liguo E, Kovacevic R. Active metal transfer control by monitoring excited droplet oscillation[J]. Welding Journal, 1998, 76(9): 388-394.
    [84]郑相锋,王庆,牛晓光.灰度形态学提取焊接熔池图像边缘技术[J].焊接学报. 2007, 28(1):105-107.
    [85]杨福刚,孙同景,张光先等.基于图像过渡区的CO2气体保护焊焊缝识别算法[J].焊接学报, 2007, 28(2):89-91.
    [86]王建军,杨学勤,林涛等.铝合金TIG焊熔池正面图像模式识别[J].焊接学报, 2002, 23(10): 73-76.
    [87]李来平,林涛,陈善本.用从明暗恢复形状方法提取焊接熔池的表面高度[J].焊接学报, 2005, 26(5):5-8.
    [88]吴鑫,齐铂金,吴红杰.薄板焊缝轨迹图像处理方法研究[J].北京航空航天大学学报, 2002, 28(6): 648-651.
    [89]朱振友,朴永杰,林涛等.基于LabView的焊缝视觉识别[J].焊接学报, 2004, 25(1): 57-60.
    [90]李明利,刘占民.焊接坡口激光检测图像处理及跟踪信息的提取[J].焊接学报, 2005, 26(5):31-35.
    [91]李世凯.脉冲GMAW焊接熔滴过渡主动控制模式的数值分析[D].山东大学硕士学位论文, 2004,5.
    [92] Amson J. C.. An analysis of the gas shielded consumable metal arc welding system [J]. Welding Journal, 1962, 41(4): 232-249.
    [93] Lancaster J. F.. The physics of welding, 2nd ed[M]. New Yok: Pergamon, 1986.
    [94] Waszink J. H., Graat L.H.J.. Experimental investigation of the forces acting on a drop of weld metal [J]. Welding Journal, 1983, 62(4): 108-116.
    [95] Kim Y. S., Eagar T. W.. Analysis of metal transfer in gas metal arc welding [J]. Welding Journal, 1993, 72 (6): 269-277.
    [96] Allum C.J.. Metal transfer in arc welding as a varicose instabilitiy: part 2- Development of model for arc welding [J]. J Phy. D: Appl Phys, 1985, 18(3): 1447-1468.
    [97] Allum C. J.. Metal transfer in arc welding as a varicose instability: part 1-Varicose instability in a current carrying liquid cylinder with surface charge [J]. J Phy. D: Appl Phys, 1985, 18(3):1431-1446.
    [98] Rhee S., Kannatary A.E. J.. Analysis of arc pressure effect on metal transfer in gas metal arc welding [J]. J Phy D: Appl. Phys, 1991, 24(8): 5068-5075.
    [99] Lancaster J. F.. The physics of welding, 2nd ed. New Yok: Pergamon, 1986.
    [100] Joo T. M.. Analysis of molten tip shape by energy method in GMA process[J]. MS Thesis, Korea Advanced Institute of Science and Technology (KAISI), 1994.
    [101] Choi S. K., Kang H. L., Chong D. Y., et al. Analysis of Metal Transfer Through Equilibrium Shape of Pendent Drop in GMAW [J]. Quarterly Journal of Japan Welding Society, 1996, 14(2): 243-247.
    [102] Joo T. M., Yoo C. D., Lee T. S.. Effects of welding conditions on molten drop geometry in arc welding [J]. Welding Journal, 1996, 75(4): 62-67.
    [103]杨世彦.附加机械力的MIG/MAG熔滴过渡控制[D].哈尔滨:哈尔滨工业大学工学博士学位论文, 1998.
    [104]何建萍.短路过渡GMAW动态过程建模及系统动态过程的研究[D].上海交通大学工学博士学位论文, 2005.9.
    [105] Robert Shaw. The dripping faucet as a model chaotic system[M]. The Science Frontier Express, Aerial Press, Inc., 1984.
    [106] Watkins A.D., Smartt H.D., Johnson J.A.. A dynamic of droplet growth and detachment in GMAW[C]. 3rd international conference on trends in welding research, Gatlinburg. Tennessee. 1992,6: 1-5.
    [107] Reutzel E.W., Einerson C.J., Johnson, J.A.,et al. Derivation and Calibration of a Gas Metal Arc Welding Dynamic Droplet Model[C]. Recent Trends in Welding Science and Technology Proc. 4th International Conference on Trends in Welding Research, 1995, 377-384.
    [108] Watkins A.D., Smartt H.D., Johnson J.A.. A dynamic of droplet growth and detachment in GMAW, 3rd international conference on trends in welding research, Gatlinburg. Tennessee: 1992, June 1-5.
    [109] Jones L. A., Eagar T. W., Lang J. H.. A dynamic model of drops detaching from a gas metal arc welding electrode [J]. Journal of Physics D:Applied Physics 1998, 31:107-123.
    [110] Harlow F.H., Welch J.E.. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[J]. Physics of Fluids, 1965, 12(8):2182-2189.
    [111] Maruo H., Hirata Y., Goto N.. Bridging transfer phenomena of conductive pendent drop- the effects of electromagnetic pinch force on the bridging transfer [J]. Quarterly Journal of the Japan Welding Society, 1992, 10:43-50.
    [112] Maruo H., Hirata Y.. Bridging transfer of pendent drop[C]. The 5th Int. Symposium of JWS (1990), 5JWS-III-5, 471-476.
    [113] Haidar J., Lowke J. Prediction of metal droplet formation in arc welding [J]. J.Phys.D: Appl.Phys, 1996, 29(6): 2951-2960.
    [114] Haidar J., Lowke J. Effect of CO2 Shielding Gas on Metal Droplet Formation in Arc Welding [J]. IEEE Transactions on Plasma Science, 1997,25(5): 931~936.
    [115] Choi S. K., Yoo C. D., Kim Y.S.. Dynamic analysis of metal transfer in pulsed current gas metal arc welding [J]. J. Phys. D: Appl.Phys. 1998, 31:207~215.
    [116] Choi S. K., Ko S. H., Yoo C. D, et al. Dynamic simulation of metal transfer in GMAW part 2: short circuit transfer mode [J]. Welding Journal, 1998, 77(1):45~51.
    [117] Wang F., Hou W. K., Hu S. J., et al. Modeling and analysis of metal transfer in gas metal arc welding [J]. J. Phys. D: Appl. Phys. 2003, 36:1143-1152.
    [118]吕百达.固体激光器器件[M].北京邮电大学出版社,2002.1.
    [119] F.C. Zumsteg, J.D. Bierlein, T.E. Gier.. K.x.Rb.1?x.TiOPO. 4: a new nonlinear optical. Material[J]. J. Appl. Phys. 1976,47(11): 4980–4985.
    [120]栖原敏明著,周南生译,半导体激光器基础[M].北京:科学出版社, 2002.7
    [121]黄德修,刘雪峰.半导体激光器及其应用[M].北京:国防工业出版社1999.
    [122]金国藩,李景镇.激光测量学[M].北京科学出版社. 1998.
    [123]傅恩生.半导体二极管激光器光学[J].激光与光电子学进展.2004, 41(2):15-20.
    [124] Torsten Possner, Bernhard Messerschmidt, Anke Kraeplin, et al. Assembly of fast-axis collimating lenses with high power laser diode bars[J].SPIE. 2000,39(52): 392-399.
    [125] Collins. Lens-system diffraction integral written in terms of matrix optics[J].Journal of the Optical Society of America, 1970,60(9):1168-1177.
    [126]魏光辉,朱宝亮.激光束光学[M].北京:北京工业学院出版社,1988.
    [127]曲林杰,物理光学[M].北京:国防工业出版社,1980.
    [128] Peter M. Celliers , Kent G. Estabrook , Russell J . Wallace et al. Spatial filter pinhole for high-energy pulsed lasers[J]. Appl.Opt , 1998 , 37 (12) :2371-2378.
    [129]徐世祥,管富义,林尊琪等.高功率激光系统空间滤波器透镜焦距的选择及其测量[J].中国激光, 1996 , A23 (12) :1077-1080.
    [130] Wen J.J., Breazeale M.A.. A diffraction beam field expressed as the superposition of Gausssian beams [J]. J. Opt. Soc. Am. A., 1988, 83(5): 1752-1756.
    [131]林洪榕,迟晓玲,李利军.光滤波器:结构原理与特性[J].激光与光电子进展, 2001,11:31-36.
    [132]杨坤涛.激光测试原理与技术[M].武汉:武汉华中理工大学,1999.
    [133]李小彤,岑兆非.几何光学·像差·光学设计[M].杭州:浙江大学出版社,2003.
    [134]林大键.工程光学系统设计[M].北京:机械工业出版社,1987.
    [135]姜俊华.增透膜原理[J].物理通报, 1991(7):20-24.
    [136]阿查姆R.M.A.,巴夏拉N.M..椭圆偏振测量术和偏振光[M].北京:科学出版社,1986:50-85.
    [137] M. Born, E. Wolf. Principles of optics 7th(expanded) edition[M]. Cambridge: Cambridge university press, 1999.
    [138]廖延彪.偏振光学[M].北京:科学出版社,2003.
    [139]殷纯永.现代干涉测量术[M].天津:天津大学出版社,1999.
    [140] Suban. M, Tusek J.. Dependence of melting rate on MIG/MAG welding on the type of shielding gas used[J]. Journal of materials processing technology. 2001, (119):185-192.
    [141]殷树言.气体保护焊工艺基础[M].北京:机械工业出版社, 2007.
    [142]赵宏,马立彦,贾青.基于变异系数法的灰色关联分析模型及其应用[J].黑龙江水利科技, 2007,35(2): 26-27.
    [143]卡斯尔曼,朱志刚.数字图像处理[M].北京:电子工业出版社, 1998.
    [144] Mallat S.. Multi-resolution approximation and wavelet orthonormal bases of( )L2 R [J]. Trans. Amer.Math.Soc, 1989, 93(315):59-87.
    [145] Meyer Y.. Wavelets and operators. Advanced mathematics[M]. Cambridge University Press, 1992.
    [146] Unser M., Aldroubi A., Eden M.. B-spline Signal Processing: Part I—Theory [J]. IEEE Trans. On SP. 1993, (41):821-833.
    [147] Unser M, Aldroubi A, Eden M.. B-spline Signal Processing: Part II—Efficient Design and Application [J]. IEEE Trans. On SP. 1993,41: 834-848.
    [148] Chuick. An introduction to wavelets[M]. Boston: Academic Press, 1992.
    [149] Chui K.L., Wang J.Z.. On compactly supported spline wavelets and a duality principle[J]. Trans Amer Math Soc, 1992, 330(2):903-915.
    [150]姜杭毅,蔡元龙.用于边缘检测的Laplace样条算子[J].中国科学, A辑, 1989, (10): 1113 -1120.
    [151]王玉平,蔡元龙.多尺度B样条小波边缘检测算子[J].中国科学, A辑1995, 25 (4): 426-437.
    [152]解梅,马争,顾德仁.一种改进的基于小波边缘图像边缘检测算法[J].系统工程于电子技术, 1998, 10:67-70.
    [153]全书海,凌毓涛,柴苍修.基于小波变换的技加工表面SEM图像边缘检测[J].武汉理工大学学报(信息与管理工程版), 2002, 24(2):10-13.
    [154]郭玮玮,黄贤武,葛轶.基于样条小波的有噪图像边缘的方法[J].计算机应用, 2003, 21(10): 47-48.
    [155]蒋晓悦,赵荣椿. B-样条子波在图像边缘检测中的应用[J].中国体视学与图像分析, 2002, 7(4):198-201.
    [156]高国荣,刘冉,羿旭明.一种改进的基于小波变换的图像边缘提取算法[J].武汉大学学报(理学报), 2005, 5(51): 615-619.
    [157]冯曰海,卢振洋,刘嘉等.基于Matlab/Simulink的短路过渡动态行为建模与仿真[J].北京工业大学学报, 2006, (32)1:1-4.
    [158]何建萍,华学明,吴毅雄等. GMAW短路过渡动态模型的建立[J].焊接学报, 2006, (27)9: 77-80.
    [159] Choi J.H., Lee J.Y., Yoo C.D.. Simulation of dynamic behavior in a GMAW system[J]. Welding Journal, 2001, 80(10):293-245.
    [160] Hirata Y., Ji T.O., Osamura T., et al. Modelling of the short-circuiting transfer process in GMA welding: A numerical model for metal transfer phenomena in GMA welding[J]. Welding International. 2005, 19(4): 262-271.
    [161] Choi S.K., KO S.H., Yoo C.D.,et al. Dynamic simulation of metal transfer in GMAW II: Short-circuit transfer mode[J]. Welding Journal, 77(11): 45-51.
    [162]杨力军,李桓,李俊岳等. CO2焊短路液桥的力学分析[J].电焊机, 2004, (34)3: 4-7.
    [163]张赋升,程功善,王震澄. CO2焊接短路过渡过程的动态分析—短路液桥的动态变化与力学测算[J].光子学报, 1994, 23(1):73-76.
    [164]王新之,陈武柱,赵子祥.短路CO2焊电磁力与表面张力自均衡过渡方法[J].焊接学报, 2000, 4(21):24-28.
    [165]朱志明,吴文楷.短路过渡CO2焊接短路历程分析与控制[J].中国机械工程学报, 2005, 16(21):1970-1973.
    [166] Jones L. A., Eager T. W., Lang J. H.. Magnetic forces acting on molten drops in gas metal arc welding[J]. J. Phys. D: Appl. Phys. 1998(31): 93-106.
    [167] G. Wang, P. G. Huang, Y. M. Zhang.. Numerical analysis of metal transfer in gas metal arc welding under modified pulsed current conditions[J]. Metallurgical and materials transactions B, 2004, B(35):857-866.
    [168] Choi S. K., Yoo C. D., Kim Y. S.. The dynamic analysis of metal transfer in pulsed current gas metal arc welding[J]. J. Phys. D: Appl. Phys. 1998(31):207-215.
    [169]陈茂爱,武传松,廉荣. GMAW焊接熔滴过渡动态过程的数值分析[J].金属学报, 2004, 40(11): 1227-1232.
    [170] F. Wang, W. K. Hou, S. J. Hu,et al. Modelling and analysis of metal transfer in gas metal arc welding[J]. J. Phys. D: Appl. Phys. 2003(36):1143-1152.
    [171]朱志明,吴文楷,陈强.短路过渡CO2焊接熔滴形状数值模拟与控制[J].机械工程学报, 2006, 42(7):164-168.
    [172] Choi J. H., LEE J. Y., Yoo C. D.. Simulation of dynamic behavior in a GMAWsystem[J]. Welding Journal, 2001(10):239-245.
    [173] Aper?u des développements récents dans le domaine du soudage MIG/MAG [EB/OL]. http://www.bil-ibs.be/fr/Recherche/Recherche-2007_haut_rendement_proc%C3%A9d%C3%A9s.htm
    [174] Green, W. J.. An analysis of transfer in gas shielded welding arcs[C]. A.I.E.E Winter General Meeting, New York, 1960.
    [175]安藤弘平,长谷川光雄.焊接电弧现象[M].北京:机械工业出版社, 1985.
    [176] Joo T.M.. Analysis of molten tip shape by energy method in GMAW process[D]. MS Thesis, Korea Advanced Institute of Science and Technology (KAIST), 1994.
    [177] Chio S. K., Lee K.H., Yoo C.D, et al. Analysis of metal transfer through equilibrium shape of pendent drop in GMAW[J]. Quarterly Journal of Japan Welding Society, 1996,14(2): 243-247.
    [178]怀特,陈建宏.流体力学[M].上海:世界图书出版公司, 1992.
    [179] Hirt C.W., Nichols B. D.. Volume of Fluid (VOF) Methods for the Dynamics of Free Boundaries[J], Journal of Computational Physics, 1981,(39):201-225.
    [180] G. Wang, P. G. Huang, Y. M. Zhang.. Numerical analysis of metal transfer in gas metal arc welding[J]. Metallurgical and materials transactions B, 2003(34B):345-353.
    [181] Brackbill J. U., Kothe D. B., Zemach C.. A continuum method for modeling surface tension[J]. Journal of Computational Physcis, 1992, 100(2): 335-354.
    [182] Kothe D. B., Mjolsness R. C., Torrey M. D.. 1994 RIPPLE: a computer program for incompressible flows with free surface. Los Alamos National Laboratory LA-12007-MS.
    [183]洪若瑜,任志强,张世忠等.磁性液体-硅油两层流动界面的数学模拟[J].计算机与应用化学, 2006,23 (12):1169-1174.
    [184]李维仲,赵大勇,陈贵军.竖直流道宽度对气泡运动行为影响的数值模拟[J].计算力学学报, 2006, 2(23): 196-201.
    [185]黄伟峰,刘秋生,李勇.存在残余液体的微管道中的表面张力驱动流动[J].清华大学学报(自然科学版), 2006, 46(2):280-283.
    [186] Kunugi T.. MARS for multiphase calculation[J]. Computational Fluid Dynamics Journal, 2000, 9(1):1-10.
    [187] Kothe D. B., Rider W. J., Mosso S. J., et al. Volume tracking of interfaces having surface tension in two and three dimensions. AIAA 96-0859(Reno, NV), 1996.
    [188] Meier M., Yadigaroglu G., Smith B. L. A novel technique for including surface tension in PLIC-VOF methods[J]. European Journal of Mechanics, 2002, 21(2):61-73.
    [189] Wang G.. Finite element simulations of free surface flows with surface tension in complex geometries[J]. Journal of fluid engineering, 2002, 124(9):584-594.
    [190] J. F. Lancaster., The physics of welding, 2nd ed[M]., Oxford: Pergamon Press, 1986.
    [191] Choi S. K., Yoo C. D., Kim Y. S. Dynamic simulation of metal transfer in GMAW-part 1: globular and spray transfer modes[J]. Welding Journal, 1998, 77(1):38-44.
    [192] Wang F., Hou W. K., Hu S. J., et al. Modeling and analysis of metal transfer in gas metal arc welding[J]. J. Phys. D: Appl. Phys. 2003, 36:1143-1152.
    [193]王方,侯文考,胡仕新.熔化极气体保护焊的仿真系统[J].焊接学报, 2003, 24(1):35-39.
    [194] Jones L. A., Eager T. W., Lang J. H.. A dynamic model of drops detaching from a gas metal arc welding electrode[J]. Journal of Physics D: Applied Physics 1998, 31: 107-123.
    [195] Kim C. H., Zhang W., Debroy T.. Modeling of temperature field and solidified surface profile during gas metal arc fillet welding[J]. Journal of Applied Physics, 2003, 94(4):2667-2679.
    [196] Rhee S., Kannatey-Asibu E.. Observation of metal transfer during gas metal arc welding[J]. Welding Journal, 1992, 71(10): 381-386.
    [197] Wang Y., Tsai H. L.. Impingement of filler droplets and weld pool dynamics during gas metal arc welding process[J]. International Journal of Heat and Mass Transfer, 2001, 44(11):2067-2080.
    [198]安籐,長谷川,豐原.裸電極棒使用の溶接電弧における短路の二形態[J],溶協誌.194.10:425-429.
    [199] Cooksey, C. J., and Milner, D. R. Metal transfer in gas-shielded arc welding. Proc. Symp. Physics of the Welding Arc[M]. The welding Institute, London, U.K., 1962:123-132.
    [200] Budai P.. Measurement of droplet transfer stability in weld process with short circuiting drop transfer[C]. Conf. Computer Technology in Welding, 1988,13(6): 149-155.
    [201] Gupta S.R., Gupta P.C.. Effect of some variables on spatter loss[J].Welding and Metal Fabrication, 1984 54(11/12):361-364.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700