用户名: 密码: 验证码:
天然气水合物热管式孔底快速冷冻机构及蒸汽法试开采试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气水合物是一种高效且清洁的新能源,具有燃烧热值高、清洁无污染、资源量巨大等优点,被广泛公认为常规油气的首选替代能源,成为世界各国在能源战略平衡发展中必须考虑的重要后备能源。
     从20世纪90年代开始,天然气水合物就成了国内外的研究热点。目前,人类对于天然气水合物物性的研究已经形成相当成熟的理论,然而,在天然气水合物层的勘探、开采方面却成绩寥寥。要想使天然气水合物真正的成为一种可以替代传统能源的新型能源,这就需要对天然气水合物的勘探与开发进行研究。
     钻探取心获得高保真的天然气水合物岩心是验证水合物存在的最直接的方法。目前,根据天然气水合物的温压特性,国内外的天然气水合物取样器设计思路主要有两种:1.以孔内的保压为主,保温为辅;2.以孔底冷冻为主,保压为辅或者不保压。基于天然气水合物的特点,天然气水合物的开采方法主要包括以下六类:加热法、降压法、注化学剂法、CO2置换法、斜井法和开矿法。其中研究较多的是前三类。目前从世界范围来看,至今在5个地方进行了天然气水合物的试采研究。
     本文对天然气水合物的钻探和开采技术进行了研究。在钻探技术方面,通过对FCS型天然气水合物孔底冷冻取样器的结构、工作原理以及室内和室外试验的结果进行分析,FCS型取样器干冰储存效果好,但是冷冻机构中储存的冷量较少,同时消耗的冷量无法得到及时的补充,冷冻岩心的能力具有一定的局限性。将高效的传热原件——热管引入到天然气水合物样品孔底冷冻取样器中,设计了孔底快速冷冻机构。
     为确定热管在冷冻机构中的使用效果,采用ANSYS有限元分析软件对无热管的冷冻机构和有热管的快速冷冻机构进行传热模拟。从两种结构的纵向传热模拟结果中温度随时间变化的云图上可以看出,有热管的冷冻机构对于岩心的冷冻作用要明显好于没有热管的冷冻机构,无论从传热速度,传热效率,还是传热范围上,都具有更好的效果。从两种结构的纵向模拟过程中岩心温度变化曲线可以看出,岩心表面的温度要比岩心中心的温度下降的要快,岩心上部的温度比岩心下部的温度下降的快,岩心冷冻的过程是一个由上到下,由外到内的过程。当岩心的温度降到-9℃左右的时候,就会保持稳定,基本不再降低。对快速冷冻机构进行横向传热模拟,从温度随时间变化的云图中可以看出,尽管在快速冷冻机构中热管不是密实包裹着岩心,但是热管的间隔分布所产生的温度场的不均匀性只对环状间隙中的酒精有影响,对于岩心并没有什么影响,不会在冷冻岩心的过程中造成一部分冻结,而另外一部分没有冻结的这种不良情况。
     为进一步研究热管在冷冻机构中的使用效果,设计并建立了孔底快速冷冻机构试验台,对无热管的孔底冷冻机构和有热管的孔底快速冷冻机构进行对比试验。第一次试验的试验条件为:岩心冷冻腔不加保温,岩心管内不加岩心。试验结果表现为:在岩心管内壁的上部和中部、岩心管腔环状间隙的上部和中部,有热管和无热管的冷冻机构在温度降低的速度以及1300s时的温度上没有太大的差别。在岩心内壁的下部和岩心管腔环状间隙的下部,有热管的冷冻机构在温度下降的速度上相比无热管的要快很多,同时在1300s的温度上,有热管的冷冻机构也要比无热管的要低。通过分析得出结论:有热管的快速冷冻机构能够有效的扩大冷量传递的范围,提高冷量传递的效率。第二次试验的试验条件为:岩心冷冻腔加保温,岩心管内加岩心。试验结果表现为:岩心表面和岩心中心的上、中、下三部分,有热管的冷冻机构相对于无热管的冷冻机构温度降低的速度要快,最低温度以及最终1300s的温度要低。通过分析得出结论:有热管的快速冷冻机构能提高传热速度,增加传热效率。
     为提高孔底冷冻取样钻具的工作能力,将绳索取心的快速取心方法和热管式孔底快速冷冻的保样方法结合起来,设计了天然气水合物绳索取心式孔底热管快速冷冻取样钻具,提高了取心速度,增加了岩心冷冻是速度和范围,增加了可应用的取心深度。钻具分为三大部分:启动部分、控制部分和冷冻部分。其中启动部分包括:捞矛和弹卡定位机构,悬挂和启动机构,单动和内管保护调节机构;控制部分括:控制机构、酒精储存机构;冷冻部分包括:冷源储存机构、扶正机构、岩心快速冷冻机构和取心机构。对钻具各个部分和主要机构的结构组成和工作原理进行了介绍,并对主要的零件进行了设计。
     对冻土区天然气水合物开采技术进行研究,以天然气水合物加热开采的原理,设计了蒸汽加热试采系统,其中蒸汽发生器的加热功率为40kW。经过室内调试确定试采系统的排气阀开启压力为1.0MPa,关闭压力为0.5MPa。在中国冻土水合物一号试采井进行了野外试验。并成功使水合物分解,取得了天然气。对试采过程中降压法和蒸汽加热法取得的数据进行了分析:在本次的野外试采试验中,降压法的效率要高于蒸汽加热法;蒸汽加热法的瞬时开采流量要大于降压法的瞬时开采流量;采用蒸汽加热法取得的气体的能量要小于加热蒸汽消耗的能量。
     本文提出了天然气水合物热管式孔底快速冷冻机构,并进行了传热模拟和室内试验,表明热管可以提高冷冻机构冷冻岩心的效果,但是没有对热管的选择进行优化,需要进一步的试验研究。本文设计了天然气水合物蒸汽开采系统并进行了试采研究,虽然试采成功,但是由于条件限制,没有取得完整的数据,同时能量转换率也不理想,需要在今后的工作进行进一步的研究。
Natural gas hydrate is a kind of new energy which is efficient andclean, and has the advantages of high burning calorific value,pollution-free and huge amount of resources. So all countries in theworld regard it as an important reserve of energy strategy development,and it will be the first choice to replace the conventional oil and gasresources in the future.
     From the1990s, natural gas hydrate has become a research hotspotat home and abroad. At present, scientists have carried out a lot ofresearch for the physical properties of natural gas hydrate, and havemade significant progress. However, the achievement of exploration andexploitation of natural gas hydrate is few. In order to make the naturalgas hydrate become a new energy alternative to conventional energysources veritably, it is requisite to research the exploration andexploitation of natural gas hydrate.
     Drilling for coring to obtain high fidelity of natural gas hydrate isthe most direct method to verify the existence of natural gas hydrate. Atpresent, according to the temperature and pressure characteristics ofnatural gas hydrate, there are mainly two kinds of sampler, pressuremaintaining and freezing, for natural gas hydrate at home and abroad,the pressure maintaining sampler is mainly to maintain the pressure inthe hole, and to make the hydrate sample keeping high pressure, so doesnot decompose in the normal temperature; Freezing sampler is mainlyfreezing at the bottom of the hole, and to make the hydrate samplekeeping low temperature, so does not decompose under ordinary pressure.
     Based on the characteristics of natural gas hydrate, there are avariety of exploitation methods for natural gas hydrate, in which theresearch of heating method, the press dropping method, Chemicalinjection method and CO2displacement method is more, additionallythere are and slope well method and mining method. Currently, from aworld-wide perspective, there are at least five places has carried out theresearch exploration of natural gas hydrate so far.
     In this paper, the drilling and production technology of natural gashydrate is studied. On the drilling technology, and through the FCS typegas hydrate in frozen sampler of the bottom of the hole structure,working principle and indoor and outdoor test results were analyzed,the dry ice storage effect of FCS is good, but the storage of coldquantity in the freezing mechanism is less, at the same time, theconsumption of cold quantity cannot get timely supplement, the abilityto frozen core has certain limits. Efficient heat transfer original--heatpipe is introduced into the bottom of the hole gas hydrate samplesrefrigerated sampler, designed the papid freezing mechanism of naturalgas hydrate samples of hole bottom.
     In order to study the use of heat pipe in the freezing mechanism,Used the ANSYS finite element analysis software to carry out thecomparative analysis of heat transfer simulation between the freezingmechanism which don’t have heat pipe and the rapid freezingmechanism which have heat pipe. From the nephogram of temperaturechanged over time of the longitudinal heat transfer simulation results ofthe two kind of mechanism we can know, the freezing function for coreof the freezing mechanism which have heat pipe is significantly betterthan the freezing mechanism which don’t have heat pipe. No matter the heat transfer speed, the heat transfer efficiency, or the heat transferrange, the freezing mechanism which have heat pipe is better. From thetemperature variation curve of core of the longitudinal simulation of thetwo kind of mechanism we can know, the temperature of core peripherydropped quickly than the temperature of core center, and thetemperature of core upper part dropped quickly than the temperature ofcore under part. The freezing process of core is from top to bottom, andfrom outside to inside, that is the temperature of core upper partdropped first and then the temperature of core under part dropped, thetemperature of core periphery dropped first and then the temperature ofcore center dropped., The core came out a tendency of temperature whenthe temperature reach-9℃. And carried out the horizontal heat transfersimulation of rapid freezing mechanism. From the nephogram oftemperature changed over time of the horizontal can know, despite theheat pipe in rapid freezing mechanism is not tightly hold the core,because of the non-uniformity of the temperature field produced by theinterval distribution of the heat pipe only influence the alcohol inannular gap and don’t have influence on core, there won’t occur the badsituation that one part of core is frozen but others is not frozen duringthe process of freezing core.
     In order to further study the use of heat pipe in the freezingmechanism, designed and established the hole bottom rapid freezingmechanism test bench, carried out two comparative test of between thefreezing mechanism which don’t have heat pipe and the rapid freezingmechanism which have heat pipe. The test condition of first test is: thecore freezing chamber don’t add insulation, core tube don’t add core.The test result is: at the upper part and middle part of the inner wall ofthe core tube and upper part and middle part of the annular gap of core tube chamber, there is no much difference of the temperature droppingspeed and the final temperature of1300s between the freezingmechanism have or not have heat pipe. And at the under part of innerwall of the core tube and under part of the annular gap of core tubechamber, the temperature dropping speed of the freezing mechanismwhich have heat pipe is much faster than freezing mechanism whichdon’t have heat pipe, and the final temperature of1300s of freezingmechanism which have heat pipe is lower than freezing mechanismwhich don’t have heat pipe. Through the analysis can arrive at theconclusions: freezing mechanism which have heat pipe can expand thescope of the cold transfer effectively, and increase the cold transferefficiency. The test condition of second test is: the core freezingchamber add insulation, core tube add core. The test result is: at theupper part, middle part and under part of core surface and core center,not only the temperature dropping speed but also the lowest temperatureand the final temperature of1300s of freezing mechanism which haveheat pipe have a better result than freezing mechanism which don’t haveheat pipe. The temperature dropping speed of freezing mechanism whichhave heat pipe is faster, the lowest temperature and the finaltemperature of1300s of freezing mechanism which have heat pipe islower. Through the analysis can arrive at the conclusions: freezingmechanism which have heat pipe can increase the heat transfer speedand heat transfer efficiency.
     To improve the ability to work for the bottom of the hole frozensampling drill, combined the quick coring method of wire line coringand preserving sample method of rapid freezing of hole bottom,designed the natural gas hydrate wire line coring hole bottom rapidfreezing sampling drilling tool, increase the core is freezing speed and scope, increasing application of coring depth. Drilling tools are dividedinto three parts: start part, control part and frozen part. Start partincluding: the spear and positioning mechanism, suspension andactivation mechanism, single-action and inner tube protectionmechanism; Control part including: control mechanism, alcohol storedmechanism; Freezing part includes: cold source storage mechanism,centering mechanism, core rapid freezing mechanism and coringmechanism. Parts of drilling tools and the main mechanism of structureand working principle are introduced, and the main parts are designd.
     Research for the permafrost regions of natural gas hydrate miningtechnology.According to the principle of natural gas hydrate heatmining, designed the steam heating trial mining system, and the steamgenerator heating power of40kw. Determined after the indoordebugging test mining system exhaust valve opening pressure of1.0MPa,close the pressure of0.5MPa. Carried out the field test in the Chinesepermafrost hydrate first trial mining well. And made the hydratedecomposition successfully, obtained the natural gas. The data obtainedduring trial mining process of press dropping method and steam heatingmethod were analyzed. In this field trial mining test, the efficiency ofpress dropping method is higher than steam heating method; theinstantaneous flow rate of press dropping method is less than steamheating method; the energy of the natural gas obtained by steam heatingmethod is less than the energy consumed by steam heating.
     In this paper, heat pape papid freezing mechanism of natural gashydrate samples of hole bottom was put forward, and carried out theheat transfer simulation and indoor test, how that heat pipe can improvethe effect of freezing cores by freezing institutions, but not to optimizethe choice of heat pipe, need further studied. Design and test for the gas hydrate steam mining system, but can’t obtain complete data because ofthe conditional limitation, energy conversion rate is not ideal at thesame time, the need to further research in the future work.
引文
[1] Beneley R W.Global Oil&Gas Depletion:an Overview[J].Energy Policy,2002;189-205.
    [2] Al-Fattah S M,Startzman R A.Forecasting World Natural Gas Supply[J].SPE59798.2000.
    [3]刘玉山,祝有海,吴必豪.天然气水合物——21世纪的新能源[J].矿床地质,2012, v.3102:401-405.
    [4]雷怀彦,王先彬,郑艳红,等.天然气水合物地质前景[J].沉积学报,1999,17(S1):846-852.
    [5]钱伯章,朱建芳.天然气水合物:巨大的潜在能源[J].天然气与石油,2008,26(4):47-52.
    [6]李桂菊,庄新国.天然气水合物资源潜力评价[J].海洋地质动态,2004,20(10):19-22.
    [7] COLLETT T S, DALLIMORE S R. Permafrost-related natural gas hydrate[C]∥Max M D.Natural gas hydrate in oceanic and permafrost environments.The Netherlands:Kluwer Academic Publishers,2000:43-60.
    [8]王佟,王庆伟.我国陆域天然气水合物勘查技术理论与实践[J].煤炭科学技术,2012,v.40;No.45510:27-29+60.
    [9]雷怀彦,王先彬,房玄,郑艳红.天然气水合物研究现状与未来挑战[J].沉积学报,1999,(03):493-49.
    [10]张洪涛,张海启,祝有海.中国天然气水合物调查研究现状及其进展[J].中国地质,2007,No.32306:953-961.
    [11]吴传芝,赵克斌,孙长青,孙冬胜,徐旭辉,陈昕华,宣玲.天然气水合物开采研究现状[J].地质科技情报,2008,No.11801:47-52.
    [12]李芳芳,刘晓栋.天然气水合物开采新技术及其工业化开采的制约因素[J].特种油气藏.2010.06.
    [13]郭威.天然气水合物孔底冷冻取样方法的室内试验及传热数值模拟研究[D].吉林大学,2007.
    [14] Collins M J, Ratc;liffe C I, Ripmeester J A, Nuclearmagnetic;resonance studies of guest species inclathratehydrates: line hape anisortopies chemical shift,and the determinationof cage occ;upanc;yratios and hydration number[J].J. Phys. Chem.,1990,94(1):157.
    [15]梁学进.天然气水合物开采模拟实验方法研究[D]中国石油大学.2008
    [16] Holder G D, Zele S, Enic;k R, et rvl.,Modeling thermodynamic;s andkinetics of hydrate formation[A]. nt. Conf. on Nat. Gas Hydrates[C]1st, New York Academy of Seience,1994,715:344.
    [17] Rodger, The stability of gas hydrates [J].Phys.Chem,1990(94):6080.
    [18] Hendriks, E.M., B.Edmonds, R.A.S.Moorwood, Gas Hydrate StructureStability in simple and mixed hydrates [J].Fluid Phase Equilibrium,1996,117:193~200.
    [19]蒋国盛,王荣璟,黎忠文,汤凤林等.天然气水合物的钻进过程控制样技术[J].探矿工程,2001(3):33~35.
    [20] Sloan E D·Clathrate Hydrates of Natural Gases (2ndedit)[M]·New York:Dekker,1998.
    [21]潘克立.天然气水合物储层稳定性研究[M].中国石油大学硕2009.
    [22] Rueff R M, sloan E D, Yesavage V F.Heat capacity and heat ofdissociation of methane hydrate[J].AIChEJournal,1988,34(9):1468-1476.
    [23] Reuff R M.The heat capacity and heat of dissociation of methanehydrates: a new approach[D].Colorado: Colorado School of Mines, PhDThesis,1985.
    [24] John L Cox.Natural Gas Hydrates: Properties, Occurrence andRecovery[M].Boston: Butterworth,1983.
    [25]周怀阳,彭小彤,叶瑛.天然气水合物[M].北京:海洋出版社,2000.
    [26] Anderson G K.Enthalpy of dissociation and hydration number of carbondioxide hydrate from the Clapeyron equation[J].J Chem Thermodynamics,2003,35:1171.
    [27] Handa Y P.Composition, enthalpy of dissociation, and heat capacitiesin the range85to270K for clathrate hydrates of methane, ethane,and propane, and enthalpy of dissociation of isobutene hydrate, asdetermined by heat-flow calorimeter[J].J Chem Thermodynamics,1986,18:915-921.
    [28]许红,黄群权,夏斌,蔡乾忠.最新国际天然气水合物研究现状与资源潜力评估[J].地质与勘探,2005,5:21~25.
    [29]许红,吴河勇等.区别于DSDP-ODP的深海保压保温天然气水合物钻探取心技术[J].海洋地质动态,2003,19(6):24~27.
    [30]蒋国盛,王达等.天然气水合物的勘探与开发[M].武汉:中国地质大学出版社,2002,1~19,65~96.
    [31]秦华伟,陈鹰等.海底沉积物保真采样技术研究进展[J].热带海洋学报.2009,9.
    [32]张永勤.国外天然气水合物勘探现状及我国水合物勘探进展[J].探矿工程(岩土钻掘工程),2010,v.37;No.28910:1-8.
    [33] Dickens G R, Paull C K, Wallace P, et al. Direct easurement of insitumethane quantities in a large gas hydrate reservoir [J].Nature,1997.
    [34] K venvolden K A, Barnard L.A, Cameron D H. Pressure core barrel:application to the study of gas hydrates, deep sea drilling projectsite533,leg76[R]. Washington: U S Government Printing Office,1983.
    [35] Pettigrew T L. Design and operation of a wire line pressure coresample(PCS)[R].Galveston: Texas A&M University,1992.
    [36] D’Hond t S L, Jorgensen B B, Miller D J, et al. Proceedings of theocean drilling program[R].Galveston: Texas A&M University,2003.
    [37] Abegg F, Hohnberg H J, Pape T, et al. Development and application ofpressure-core-sampling systems for the investigation of gas-andgas-hydrate-bearing sediments[J].Deep Sea Research Part I:Oceanographic Research Papers,2008,55(11):1590-1599.
    [38]赵建国.天然气水合物孔底冷冻绳索取心钻具的设计与室内冷冻试验的研究[D].吉林大学硕士论文.2010.
    [39] Gerald R D, Derryls, Kaiuwe H, et al. The pressure core sampler(PCS)onODP Leg201:general operations and gas release[R]. Texas: Texas A&MUniversity, the National Science Foundation and Joint OceanographicInstitutions,INC,2003.
    [40]王海亮.FCS-108型天然气水合物孔底冷冻取样器的研制及试验研究[D].吉林大学硕.2009.
    [41]祝有海,张永勤,文怀军,等.青海祁连山冻土区发现天然气水合物[J].地质学报,2009,v.8311:1762-1771.
    [42]张永勤,祝有海.祁连山永久冻土带天然气水合物钻探工艺与应用[J].地质通报,2011,v.30;No.19912:1904-1909.
    [43]张永勤,孙建华,赵海涛.天然气水合物保真取样钻具的试验研究及施工方案研究[J].探矿工程(岩土钻掘工程).2007(增刊):57~60.
    [44] Collett T S.Natural gas hydrates of the Prudhoe Bay and Kupruk Riverarea, North Slope, Alaska [J].AAPG Bulletin,1993,77(5):793-812.
    [45] Collins M J.Natural gas hydrates[J].Journal Petroleum Technology,1991,43(12):1414-1417.
    [46] Islam M R.A new recovery technique for gas production from Alaskangas hydrates [J].Journal of Petroleum Science andEngineering,1994,11(4):267-281.
    [47]胡奥林.天然气水合物资源勘探开发现状[J].石油与天然气化工,1995,24(2):101-106.
    [48]张志杰,于兴河,郑秀娟等.天然气水合物的开采技术及其应用[J].天然气工业,2005,25(4):128-130.
    [49] Jarle Huseb, Arne Graue, Bjrn Kvamme.Experimental investigation ofmethane release from hydrate formation in sandstone through both hydatedissociation and CO2sequestration[C]//Proceedings of the6thInternational Conference on Gas Hydrates. Vancouver British Columbia,CANADA:2008.
    [50]周锡堂,樊栓狮,梁德青.CO2置换开采天然气水合物研究进展[J].化工进展,2006,25(5)524-527.
    [51] Ohgaki K, Takano K, Sangawa H, Matsubara T, Nkano S. Methaneexploitation by carbon dioxide from gas hydrates phase equilibria forCO2-CH4mixed hydrate system[J]. Chem. Eng. Jpn.,1996,29(3):478-483.
    [52] Comparative Assessment of Advanced Gas Hydrate ProductionMethods[EB/OL]. http:∥www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/projects/DOE Projects/MH_42666AssessProdMethods.html.2006.
    [53]李宽.冻土区天然气水合物蒸汽法开采系统数值模拟与野外试验[D].吉林大学.2012.
    [54]龚建明.Mallik天然气水合物国际研讨会综述[J].海洋地质动态,2004,20(2):28-31.
    [55]张卫东,王瑞和,任韶然等.由麦索雅哈水合物气田的开发谈水合物的开采[J].石油钻探技术,2007,35(4):94-96.
    [56] Makogon.Y F, Holditch S A, Makogon T Y.Russian field illustratesgas-hydrate production [J].Oil&Gas Journal,2005,103(5):43-50.
    [57]吴茂炳,王新民,李在兆.天然气水合物的形成分布特征及其开发前景[J].中国石油勘探,2003,8(2):75-78.
    [58] Williams T E, Millheim K,King B.Methane hydrate production fromAlaskan permafrost: Technical progress report[EB/OL]. http:∥www.osti. gov/energycitations/servlets/purl/828282-kfvMhc/native/828282.pdf.
    [59] Ignik Sikumi Gas Hydrate Exchange Trial Project Team.Ignik Sikumi gashydrate field trial completed[J].Fire In The Ice,2012,12(1):1-3.
    [60] Jung J W,Santamarina J C.CH4-CO2replacement in hydrate-bearingsediments:A pore-scale study[J].Geochemistry,Geophysics,Geosystems,2010,11(12).
    [61] U.S. National Energy Laboratory (NETL).Gas hydrate production trialusing CO2/CH4exchange[EB/OL].http://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/projects/DOEProjects/MH_06553HydrateProdTrial.html.
    [62] U.S. National Energy Laboratory (NETL).2012Ignik Sikumigas hydratefield trial [EB/OL].(2012-05-07). http://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/rd-program/ANSWell/co2_ch4exchange.html.
    [63] Collett T S, Lewis R, Dallimore S R,et al.Detailed evaluation of gashydrate reservoir properties using JAPEX/JNC/GSC Mallik2L-38gashydrate research well downhole well-log displays[C]∥Dallimore S.R,Uchida T, Collett T S.Scientificresults from JAPEX/JNC/GSCMallik2L-38gas hydrateresearch well, Machenzie Delta, NorthwestTerritories,Canada,Ottawa:Canadian Government PublishingCentre,1999:295-311.
    [64]张金昌.天然气水合物勘探开发:从马里克走向未来——加拿大北极地区天然气水合物勘探开发情况综述[J].地质通报.
    [65] Fischer P A.Gas hydrates research continues to increase[J].World Oil,2000,221(12):66-68.
    [66]祝有海.加拿大马更些冻土区天然气水合物试生产进展与展望[J].地球科学进展,2006,21(5):513-520.
    [67] Yakushev V,Istomin V.Gas-Hgdrates Self-Preservation Effect, Physicsand Chemistry of Ice.Hokkaido University Press,Sapporo,1992,136-139
    [68]秦明举.天然气水合物分解的自保护机理及热动力学特性研究[D].中国地质大学,2011.
    [69] Gudmundsson J S, Parlaktuna M, Khokhar A A. Storage of Natural Gasas Frozen Hydrate.1994, SPE Paper24924,699-707.
    [70] Stem, Bishno I P R. Measuring and modeling the rate of decomposition of gas hydrates formed from mixtures of methane and ethane.Chemical Engineering Science,2001,56(3):471524724.
    [71] Milkov A V,Sassen R.Economic geology of offshore gas hydrateaccumulations and pronvinces.Marine and Petro1eum Geology19(2002)1-11.
    [72]张鑫.电子器件复合型热管散热器的性能分析与试验研究[D].北京工业大学,,2006.
    [73] GAUGLER R S.Heat transfer device[P].US: US2350348,1944--09.
    [74]马永昌,张宪峰.热管技术的原理、应用与发展[J].变频器世,2009,(07):70-75.
    [75]蒋朝勇.新型微型平板热管的传热性能实验研究[D].长沙理工大学硕士论文.2009.
    [76]赵晓军.热管在动载状态下的传热研究[D].南京航空航天大学,2008.
    [77]李永赞,胡明辅,李勇.热管技术的研究进展及其工程应用[J].应用能源技术,2008,(06):45-48.
    [78]庄骏等,热管与热管换热器。上海交通大学出版社,1989,5.
    [79]马同泽,候增祺,吴文光,热管。科学出版社出版,1983.
    [80]乔国辉.热管技术在高强化柴油机中的应用研究[D].北京交通大学.2007.
    [81]赵蔚琳.高温热管翅性能及其强化传热过程的研究[D].南京工业大学.2004.
    [82]陈继辉,童明伟,严嘉.干冰升华特性的实验[J].重庆大学学报(自然科学版),2005,(04):50-52.
    [83]殷平.保冷材料的性能和选择[J].暖通空调.2005,2:44~51.
    [84]孙刚,刘预,冯芳.聚氨酯泡沫材料的研究进展.材料导报,2006,3:29~30.
    [85]王保国,刘淑艳,王新泉等.传热学[M].北京:机械工业出版社,2009.
    [86]杨世铭.传热学(第四版)[M].北京:高等教育出版社,2010.
    [87]巩彦如.蛭石隔热材料隔热性能的实验与数值模拟研究[D].东华大学.2010.
    [88]张朝晖.ANSYS12.0热分析工程应用[M].北京:中国铁道出版社,2010,12,51-52.
    [89]李世忠.钻探工艺学(上册)[M].北京:地质出版社,1992:62~125.
    [90]郭绍什.钻探手册[M].武汉:中国地质大学出版社,1993,71~96.
    [91]刘广志.金刚石钻探手册[M].北京:地质出版社,1991,148~175.
    [92]《钻探管材手册》编写组.地质、水文、石油钻探管材手册[M].北京:地质出版社,1975,87~90.
    [93]张春波等.绳索取心金刚石钻进技术[M].地质出版社.1985,12:12~19,20~23.
    [94]邓文英.金属工艺学(第三版)[M].北京:高等教育出版社,1991,20~27.
    [95]成大先.机械设计手册(第三版)第2卷[M].北京:化学工业出版社,1994,207~217,132~152,3~16.
    [96]杨可桢,程光蕴.机械设计基础[M].北京:高等教育出版社1996,06:155~156.
    [97]祝有海,张永勤,文怀军.祁连山冻土区天然气水合物科学钻探工程概况[J].地质通报,2011,(12):1816-1822.
    [98]王平康,祝有海,卢振权,郭星旺,黄霞.祁连山冻土区天然气水合物岩性和分布特征[J].地质通报,2011,(12):1839-1850.
    [99]卢振权,祝有海,张永勤,文怀军,李永红,贾志耀,刘昌岭,王平康,李清海.青海省祁连山冻土区天然气水合物基本地质特征[J].矿床地质,2010,(01):182-191.
    [100] Li X S, Yang B, Li G, Li B. Numerical Simulation of Gas Productionfrom Natural Gas Hydrate Using a Single Horizontal Well byDepressurization in Qilian Mountain Permafrost. Industrial&Engineering Chemistry Research.2012,51(11), pp4424–4432.
    [101]贺行良,刘昌岭,孟庆国,祝有海,业渝光,夏宁.祁连山冻土区天然气水合物气体组分的气相色谱法测定[J].地质通报,2011,(12):1857-1862.
    [102]黄霞,祝有海,王平康,郭星旺.祁连山冻土区天然气水合物烃类气体组分的特征和成因[J].地质通报,2011,(12):1851-1856.
    [103] Sun Y H,Jia R,Guo W.Design and Experimental Study of the Steam MiningSystem for Natural Gas Hydrates[J]. Energy&Fuels,2012,26(12),7280–7287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700