用户名: 密码: 验证码:
中华绒螯蟹螺原体重要功能基因的筛选和研究及螺原体与WSSV的多重PCR检测技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中华绒螯蟹螺原体(Spiroplasma eriocheiris)是首次在水生甲壳动物中发现的螺原体类病原微生物,是一种新型的水生甲壳动物病原体,归属于柔膜体纲(Mollicutes)、虫原体目(Entomoplasmatales)、螺原体科(Spiroplasmataceae)、螺原体属(Spiroplasma);在螺原体属内属于第XLⅢ血清族。它无细胞壁,具典型的螺旋形态,能透过0.22μm的滤膜,具运动性,还能在R2或M1D培养基中生长。该病原具有广泛的宿主范围,能引起中华绒螯蟹颤抖病,也能侵染克氏原螯虾、南美白对虾和罗氏沼虾并引发大规模的死亡,给水产养殖业造成重大经济损失。本课题组前期已经对其生理生化性质、分类地位、病原检测、敏感药物的筛选和有效治疗药物的药代动力学进行了研究并且完成了全基因组的测序和注释,但是其分子生物学研究还有待于深入,尤其是那些与该病原感染宿主相关的重要功能基因的研究。因此,本博士学位论文在前期中华绒螯蟹螺原体研究的基础上,开展了中华绒螯蟹血细胞的原代培养,并运用选择性捕获转录序列(SCOTS)技术在中华绒螯蟹整体水平和细胞水平上开展了螺原体感染宿主过程中的重要功能基因的筛选和研究,开展了中华绒螯蟹螺原体诱导刺激后,原代培养的血细胞的病变效应和免疫相关基因表达分析的研究。此外,还选取中华绒螯蟹螺原体特异性的重要功能蛋白类螺旋蛋白SLP31进行了基因的克隆表达分析。最后构建了利用多重PCR技术同时快速检测克氏原螯虾体内中华绒螯蟹螺原体和白斑综合症病毒的方法。本论文的主要研究结果包括以下4个方面:
     1.中华绒螯蟹血细胞原代培养体系的建立
     为研究中华绒螯蟹螺原体与中华绒螯蟹在细胞水平上的相互作用,更好地阐述中华绒螯蟹颤抖病的病理以及螺原体的分子致病机理,本文建立了一种体外培养中华绒螯蟹血细胞的方法。在实验中选用抗凝剂anticoagulant citrate dextrose solution B (ACD-B)和phosphate buffered saline (PBS),结果显示ACD-B的抗凝效果优于PBS。实验中选择了在甲壳动物组织培养中最常用到的两种培养基(改良的L-15培养基和M199培养基)。结果显示,改良的L-15培养基能更有效地促进河蟹血细胞的生长和细胞的存活。中华绒螯蟹血细胞培养的合适生长温度是25-28℃高于其它水生无脊椎动物细胞的合适生长温度(16-20℃)。优化的血细胞原代培养体系最佳条件为:改良的L-15培养基(15%胎牛血清,青霉素和链霉素均为100 U ml-1, pH 7.2-7.4),5%CO_2,28℃孵育。血细胞在培养箱中生长良好,存活且保持完整形态可达5周以上。此外,所培养细胞的细胞膜完整性和细胞大小也得到了荧光染色实验的证实。
     2.中华绒螯蟹螺原体诱导刺激下中华绒螯蟹血细胞数量的变化及原代培养血细胞的免疫反应分析
     根据以前建立的中华绒螯蟹颤抖病模型,本文研究了中华绒螯蟹颤抖病发病过程中血细胞数量的变化。从症状上来看,在回感前期没有明显的变化,有的中华绒螯蟹在回感前期的活力甚至还要比对照组强。在回感中期,实验组的中华绒螯蟹活力明显下降;到了回感后期,中华绒螫蟹的活力下降更加明显,绝大多数都趴在原地,少有活动,基本都表现出了明显的颤抖症状,有些实验组开始出现集中死亡的现象。在血细胞的变化上,阴性对照组中血细胞的数量基本保持稳定在1.13×107m1-1。回感2天时,血细胞的数量出现了一定的下降(3.65×106m1-1)。回感4天时,血细胞的数量出现了显著的上升(10.8×106m1-1)。回感8天时,血细胞的数量又出现了一定程度的下降(8.75×106m1-1)。回感10天时,血细胞的数量出现了大幅下降(6.25×105ml-1)。回感12天时,血细胞的数量继续下降(5.0×105ml-1),此时实验组中出现了明显的颤抖症状和集中性的死亡
     本文用中华绒螯蟹螺原体诱导刺激原代培养的中华绒螫蟹血细胞,探讨了中华绒螯蟹免疫相关因子表达的影响。当中华绒螯蟹螺原体诱导刺激原代培养的血细胞之后,anti-lipopolysaccharide factor (ALF) mRNA的相对表达丰度在2-6 h时上调,并且在12h的时候达到峰值(10-fold, P< 0.05); Peroxinectin (Pox) mRNA的相对表达丰度在2-12h之间逐渐下调,随后迅速上升并在24h的时候达到峰值(36-fold, P<0.05),24 h之后又开始了下调。而对于clip domain serine protease (cSP) mRNA的相对表达丰度变化,首先在2h的时候出现下调,然后开始逐渐上调并且在48h的时候达到峰值(2.4-fold, P<0.05),随后在72 h的时候出现了明显的下调。实时定量PCR结果显示ALF, Pox和cSP的表达量都发生了不同程度的变化,特别是Pox基因的变化最为显著,我们推测在中华绒螯蟹螺原体感染血细胞的过程中Pox基因起到了比ALF和cSP更为重要的作用。
     3.基于选择性捕获转录序列技术的中华绒螯蟹螺原体重要功能基因的筛选及类螺旋蛋白SLP31的原核表达
     通过利用SCOTS技术,从中华绒螯蟹螺原体感染的不同样品中(整体水平和细胞水平)捕获到了57条有效序列,经过比对在基因组中找到了27个有功能注释的基因。在这些基因编码的蛋白中,有一些是与代谢相关的蛋白,如各种酶类等参与细菌的脂代谢,糖代谢以及核酸代谢。有一些蛋白是与病原的致病性相关的,如类黏附蛋白和EF-Tu与病原的粘附侵染相关。硫醇过氧化物酶、铁蛋白、甘油吸收促进蛋白、核酸内切酶、丝氨酸/苏氨酸蛋白磷酸酶、NAD依赖的甘油三磷酸脱氢酶、N-乙酰葡糖糖胺酶等与病原的代谢相关并通过相关的代谢调控实现毒力效应。此外还捕获到了螺原体的特有蛋白-螺旋蛋白。本论文基于选择性捕获的结果对中华绒螯蟹螺原体的独特蛋白类螺旋蛋白基因(SLP31)进行了序列分析和克隆表达。该序列全长837bp,编码一个279个氨基酸的蛋白,预测的蛋白分子量和等电点分别是31kDa和PI7.72。SLP31的氨基酸序列与其它物种螺旋蛋白的序列相似性提示它可能是螺旋蛋白家族中的一员。本文从中华绒螯蟹螺原体基因组中克隆出了SLP31蛋白基因,我们也试图利用相同的引物序列从S. mirnm的基因组中克隆到该蛋白基因,然而却没克隆出来。这些结果显示SLP31蛋白基因是一个特异的基因,可以用来区分亲缘关系很近的中华绒螯蟹螺原体和非凡螺原体。SLP31被克隆后,经过从TGA到TGG的点突变,在大肠杆菌中进行了全长基因的表达。Western blotting实验显示,纯化的重组蛋白具有一定的免疫原性。SLP31还可以在中华绒螯蟹颤抖病的免疫诊断中作为一个很好的抗原应用。
     4.利用多重PCR技术同时检测水生甲壳动物螺原体和白斑综合症病毒检测方法的建立
     中华绒螯蟹螺原体和白斑综合症病毒是重要的水生甲壳动物病原微生物,近年来这两种病原都能感染克氏原螯虾并引起严重的疾病进而造成重大经济损失。本实验的目的是建立一种利用多重PCR同时检测克氏原螯虾体内中华绒螯蟹螺原体和白斑综合症病毒的方法。在一个PCR反应体系中,3对引物按照1:3:1比例混合分别扩增中华绒螯蟹螺原体、白斑综合症病毒和克氏原螯虾的特异性DNA片段。利用两种病原体攻击实验组中的克氏原螯虾,提取DNA模板并用多重PCR进行检测,出现四种不同的结果。克氏原螯虾的特异引物扩增出1195 bp特异条带作为内部参照,衡量整个PCR体系的稳定性。(1)阴性对照组只检测到1195 bp特异条带说明没有这两种病原体感染。(2)中华绒螯蟹螺原体感染组检测到1195 bp和271 bp两条条带。(3)白斑综合症病毒感染组检测到1195 bp和530 bp两条条带。(4)两种病原体同时感染组检测到1195 bp、271 bp和530 bp三条条带。这种方法可以同时检测两种病原微生物,这对克氏原螯虾的养殖监控很重要。实验证明直接利用多重PCR对这两种病原进行同时检测是可行的。本文提供了一种同时检测中华绒螯蟹螺原体和WSSV的新颖而实用的方法,这种方法高效、快捷,可以广泛应用于水产养殖业和出入境检验检疫的检测。
Spiroplasma eriocheiris is a first found and isolated spiroplasma pathogenic microorganisms from aquatic crustaceans. It is a novel aquatic crustacean pathogen. Taxonomically, S. eriocheiris belong to the domain Bacteria, phylum Firmicutes, class Mollicutes, order Entomoplasmatales, family Spiroplasmataceae and genus Spiroplasma. It belongs to a new Spiroplasma group XLIII. S. eriocheiris possess wall-less, helical morphology and motility, it also be able to pass through the 0.22μm millipore filter and grow in MID or R2 liquid media at temperatures between 20℃and 40℃(optimum growth occurred at 30℃) in vitro. S. eriocheiris has the extensive host range, which could infect Eriocheir sinensis, Procambarus clarku, Macrobrachium rosenbergii and Penaeus vannamei, and caused serious diseases and catastrophic economic losses in aquaculture. Furthermore, S. eriocheiris also can infect suckling mice and cause cataract. The prevenient studies on the physiological and biochemical properties, evolutionary state, pathogen detection, screening of the effective medications, pharmacokinetic in E. sinensis and the whole genome sequencing and annotation were the base of this work. There is a limited known about the molecular biology of S. eriocheiris, especially for what function genes in the pathogen infection process. In the present study, we establish a primary cell culture system for in vitro culture of the hemocytes of E. sinensis with high viability. Selection and study of the important function genes from the infected host (on individual level and cellular level) by S. eriocheiris was performed. Meanwhile, the cytopathic effects and the direct immune relationship between S. eriocheiris and host's hemocytes were presented. Based on the result of SCOTS, Spiralin-like protein SLP31 from S. eriocheiris was cloned and expressed which could be as a potential antigen for immunodiagnostics of tremor disease in E. sinensis. We also establish a multiplex PCR method for simultaneous and rapid detection of S. eriocheiris and white spot syndrome virus (WSSV) in P. clarkii. Main results of this dissertation included the following four parts:
     1. Establishing a primary cell culture system for in vitro culture of the hemocytes of E. sinensis
     A primary culture system for in vitro culture of the hemocytes of E. sinensis with high viability was developed. Sterile anticoagulant citrate dextrose solution B (ACD-B) and phosphate buffered saline (PBS) were employed, the results showed ACD-B had the better anticoagulant effect than PBS. We chose two kinds of common culture mediums (Modified L-15 medium and M199 medium) to culture the hemocytes. Our results demonstrated that the Modified L-15 medium were more efficiency for promoting growth and cell survival of hemocytes of E. sinensis than M199 medium. In disagreement with other crustacean cell lines culture work, the cell cultures were achieved at a temperature of 25-28℃rather than 16-20℃which has been favored for other freshwater invertebrates. In brief, the modified Leibovitz's L-15 medium consisting of 15% fetal bovine serum,100 U ml-1 penicillin, and 100 U ml-1 streptomycin was suitable for hemocytes culture from the E. sinensis adjusting pH 7.2-7.4, and incubated at 28℃with 5% carbondioxide. The cells survival lasted over 35 days in Modified L-15 medium in the optimization condition.
     2. Variations in the number of hemocytes in E. sinensis and the expression levels of ALF, Pox and cSP genes in primary culture of hemocytes from E. sinensis after S. eriocheiris challenged
     In the former study, we have established the tremor diseased model of E. sinensis. In the study, we used the model to research the variations in the number of hemocytes in E. sinensis after challenged by S. eriocheiris. From the symptoms, there were no significant changes at the early infection stage; the vitality of E. sinensis in experiment groups was declined obviously at the middle infection stage; most of E. sinensis in the experiment groups showed signs of weakness and began to tremor. Some experiment groups began to appear the concentrated death at the late stage. For the variations in the number of hemocytes, the numbers retained stable (1.13×107 ml-1) in the negative group. The hemocytes numbers appear declined (3.65×106 ml-1) after infected two days; the hemocytes numbers appear significant increase (10.8×106 ml-1) after infected four days; the hemocytes numbers appear declined (8.75×106 ml-1 and 6.25×105 ml-1) again after infected eight and ten days; the hemocytes numbers continued to decline (5.0×105 ml-1) after infected twelve days, and the experiment groups appear the concentrated death.
     The effects of S. eriocheiris stimulation on the expression levels of anti-lipopolysaccharide factor (ALF), Peroxinectin (Pox) and clip domain serine protease (cSP) genes in hemocytes of E. sinensis demonstrated that all three immune genes were significantly induced. After S. eriocheiris stimulation, the relative abundance of the ALF mRNA was up-regulated and peaked at 12 h (10-fold, P<0.05). The expression of Pox dropped gradually, after receiving S. eriocheiris. As time progressed, Pox transcripts significantly increased and peaked at 24 h (36-fold, P<0.05), and then after 24 h, the Pox mRNA was down-regulated. In contrast, cSP transcripts were first down-regulated in 2 h, whereafter the relative abundance of cSP was up-regulated and peaked at 48 h (2.4-fold, P <0.05), and then significant reduced at 72 h. The Pox transcripts greatly increased and peaked at 24 h (36-fold, P< 0.05); the fold was outweighing the other two immune genes' greatly (ALF and cSP) which indicated that the Pox gene played more important role after S. eriocheiris challenge.
     3. Selection and study of the important function genes from the infected host by S. eriocheiris based on SCOTS and prokaryotic expression of Spiralin-like protein SLP31 from S. eriocheiris
     Fifty-seven effective sequences were captured from the different infected samples (on individual level and cellular level) by SCOTS. There were 27 effective sequences with the annotation information in the S. eriocheiris genome. Some of these proteins were related with metabolic of S. eriocheiris, such as lipid metabolism, sugar metabolism and nucleic acid metabolism. Some proteins were related with S. eriocheiris pathogenicity. Adhesin-like protein and EF-Tu were related with adhere and infection. Furthermore, the putative spiralin was also be selected in the study. However, NAD-dependent glycerol-3-phosphate dehydrogenase, thiol peroxidase, ferritin, glycerol uptake facilitator protein, ferrous iron transport protein B, endonuclease I, serine-threonine protein phosphatase and N-acetylglucosaminidase were related with the S. eriocheiris metabolism, which control and realize the virulence effect through relevant metabolic. Based on the results of SCOTS, we described here the identification of a spiralin-like protein (SLP31) from S. eriocheiris and expression in Escherichia coli. Analysis of the nucleotide sequence revealed that the clone has an open reading frame of 837 bp encoding a protein of 279 amino acids. Theoretical isoelectric point and molar mass for SLP31 are 7.72 and 31 kDa, respectively. The similarity of SLP31 deduced amino acid sequence shared with the spiralin from other species indicated that the gene may be a member of spiralin family. However, spiralin-like protein gene from S. mirum could not be cloned which confirmed that this is a special gene which can be used to distinguish S. mirum and S. eriocheiris. After cloning the SLP31, the gene was site-mutated from TGA to TGG and transcribed in E. coli to full expression of SLP31. The purified recombinant protein was used to determine the immune reactivity by Western blotting which suggests that SLP31 could be a good antigen for immunodiagnostic of tremor disease in E. sinensis.
     4. Simultaneous and rapid detection of S. eriocheir and white spot syndrome virus (WSSV) by multiplex polymerase chain reaction in P. clarkii
     S. eriocheiris and WSSV are the important pathogenic microorganisms from aquatic crustaceans; both of them could infect crayfish and cause serious diseases and catastrophic economic losses in recent years. The aim of the study is to establish a multiplex PCR method for simultaneous and rapid detection of S. eriocheiris and white spot syndrome virus (WSSV) in P. clarkii. Three primer sets were mixed at a ratio of 1:3:1 to amplify specific fragments of the S. eriocheiris, WSSV, and P. clarkii genomes, respectively. S. eriocheiris and WSSV were used to challenge the different groups. Total DNA of the samples were purified and detected by multiplex PCR. The PCR amplified products produced four cases. One fragment of 1195 bp showing no pathogen amplified by primer set ITS-crayfish/28S-crayfish as an internal control. In samples only challenged by S. eriocheiris or WSSV, two fragments could be seen:either from S. eriocheiris (271 bp) plus the internal control or WSSV (530 bp) plus the internal control, respectively. In cases of double challenged, all three amplified products were detected simultaneously. Simultaneous and rapid detection of two pathogens in P. clarkii is important to crayfish aquaculture. The direct detection of S. eriocheiris and WSSV from P. clarkii is possible with multiplex PCR. The new method provides a novel and highly practical detection assay for S. eriocheirs and WSSV infections, and has the potential to be widely used in the aquaculture industry, entry-exit inspections and quarantines.
引文
[1]Gasparich G E, Whitcomb R F, Dodge D, et al. The genus Spiroplasma and its non-helical descendants:phylogenetic classification, correlation with phenotype and roots of the Mycoplasma mycoides clade. International Journal of Systematic and Evolutionary Microbiology,2004,54:893-918.
    [2]Gasparich G E. Spiroplasmas and phytoplasmas:Microbes associated with plant hosts. Biologicals,2010,38(2):193-203.
    [3]Brown D R, Whitcomb R F, Bradbury J M. Revised minimal standards for description of new species of the class Mollicutes (division Tenericutes). International Journal of Systematic and Evolutionary Microbiology,2007,57: 2703-2719.
    [4]Whitcomb R F, Chen T A, Williamson D L, et al. Spiroplasma kunkelii sp. nov.: characterization of the etiological agent of corn stunt disease. International Journal of Systematic and Evolutionary Microbiology 1986,36(2):170-178.
    [5]Williamson D L, Sakaguchi B, Hackett K J, et al. Spiroplasma poulsonii sp. nov., a new species associated with male-lethality in Drosophila willistoni, a neotropical species of fruit fly. Int J Syst Bacteriol 1999,49(2):611-618.
    [6]Tully J G, Whitcomb R F, Rose D L, et al. Spiroplasma mirum, a new species from the rabbit tick(Haemaphysalis leporispalustris). International Journal of Systematic and Evolutionary Microbiology 1982,32(1):92-100.
    [7]Tully J G, Rose D L, Yunker C E, et al. Spiroplasma ixodetis sp. nov., a new species from Ixodes pacificus ticks collected in Oregon. International Journal of Systematic and Evolutionary Microbiology 1995,45(1):23-28.
    [8]Wolf M, Muller T, Dandekar T, et al. Phylogeny of Firmicutes with special reference to Mycoplasma (Mollicutes) as inferred from phosphoglycerate kinase amino acid sequence data. International Journal of Systematic and Evolutionary Microbiology,2004,54:871-875.
    [9]Ciccarelli F D, Doerks T, Von Mering C, et al. Toward automatic reconstruction of a highly resolved tree of life. Science,2006,311(5765):1283-1287.
    [10]Regassa L B, Stewart K M, Murphy A C, et al. Differentiation of group VIII Spiroplasma strains with sequences of the 16S-23S rDNA intergenic spacer region. Canadian Journal of Microbiology,2004,50(12):1061-1067.
    [11]Whitcomb R F. Evolution and devolution of minimal standards for descriptions of species of the class Mollicutes:analysis of two Spiroplasma descriptions. International Journal of Systematic and Evolutionary Microbiology,2007,57: 201-206.
    [12]Bi K, Huang H, Gu W, et al. Phylogenetic analysis of Spiroplasmas from three freshwater crustaceans(Eriocheir sinensis, Procambarus clarkia and Penaeus vannamei) in China. Journal of Invertebrate Pathology,2008,99(1):57-65.
    [13]Regassa L B, Gasparich G E. Spiroplasmas:evolutionary relationships and biodiversity. Frontiers in Bioscience,2006,11:2983-3002.
    [14]陈永萱,薛宝娣,郭永红.蜜蜂螺原体基本性状的研究.中国科学(B辑),1988,31(2):149-154.
    [15]于汉寿,刘淑园,阮康勤,et al.螺原体的分类及其生物多样性研究进展.微生物学报,2009,49(5):567-572.
    [16]阮康勤,于汉寿,张晶,et al.蜜蜂螺原体南京分离株M10形态的多样性.南京农业大学学报,2007,30(3):58-62.
    [17]Nunan L M, Pantoja C R, Salazar M, et al. Characterization and molecular methods for detection of a novel spiroplasma pathogenic to Penaeus vannamei. Diseases of Aquatic Organisms,2004,62(3):255-264.
    [18]Shaevitz J W, Lee J Y, Fletcher D A. Spiroplasma swim by a processive change in body helicity. Cell,2005,122(6):941-945.
    [19]Kurner J, Frangakis A S, Baumeister W. Cryo-electron tomography reveals the cytoskeletal structure of Spiroplasma melliferum. Science,2005,307(5708): 436-438.
    [20]Stulke J, Eilers H, Schmidl S. Mycoplasma and spiroplasma. In: Schaechter M, ed. Encyclopedia of Microbiology. Oxford:Elsevier; 2009:208-219.
    [21]郁园园,陈志敏.肺炎支原体致病机制的研究进展.国际儿科学杂志,2008,35(3).
    [22]Chambaud I, Wroblewski H, Blanchard A. Interactions between mycoplasma lipoproteins and the host immune system. Trends in Microbiology,1999,7(12): 493-499.
    [23]Razin S, Yogev D, Naot Y. Molecular biology and pathogenicity of mycoplasmas. Microbiology and Molecular Biology Reviews 1998,62(4): 1094-1156.
    [24]Duret S, Berho N, Danet J L, et al. Spiralin is not essential for helicity, motility, or pathogenicity but is required for efficient transmission of Spiroplasma citri by its leafhopper vector Circulifer haematoceps. Applied and Environmental Microbiology,2003,69(10):6225-6234.
    [25]Foissac X, Bove J M, Saillard C. Sequence analysis of Spiroplasma phoeniceum and Spiroplasma kunkelii spiralin genes and comparison with other spiralin genes. Curr Microbiol,1997,35(4):240-243.
    [26]Chevalier C, Saillard C, Bove J M. Spiralins of Spiroplasma citri and Spiroplasma melliferum: amino acid sequences and putative organization in the cell membrane. J Bacteriol,1990,172(10):6090-6097.
    [27]Wroblewski H. Electrophoretic analysis of the arrangement of spiralin and other major proteins in isolated Spiroplasma citri cell membranes. J Bacteriol, 1981,145(1):61-67.
    [28]Castano S, Blaudez D, Desbat B, et al. Secondary structure of spiralin in solution, at the air/water interface, and in interaction with lipid monolayers. Biochimica Et Biophysica Acta-Biomembranes,2002,1562(1-2):45-56.
    [29]Trachtenberg S, Dorward L M, Speransky V V, et al. Structure of the cytoskeleton of Spiroplasma melliferum BC3 and its interactions with the cell membrane. Journal of Molecular Biology,2008,378(4):778-789.
    [30]Killiny N, Castroviejo M, Saillard C. Spiroplasma citri spiralin acts in vitro as a lectin binding to glycoproteins from its insect vector Circulifer haematoceps. Phytopathology,2005,95(5):541-548.
    [31]Mouches C, Candresse T, Barroso G, et al. Gene for spiralin, the major membrane protein of the helical mollicute Spiroplasma citri:cloning and expression in Escherichia coli. J Bacteriol,1985,164(3):1094-1099.
    [32]Trachtenberg S. Mollicutes-wall-less bacteria with internal cytoskeletons. J Struct Biol,1998,124(2-3):244-256.
    [33]Rottem S. Interaction of mycoplasmas with host cells. Physiol Rev,2003,83(2): 417-432.
    [34]Krause D C, Leith D K, Wilson R M, et al. Identification of Mycoplasma pneumoniae proteins associated with hemadsorption and virulence. Infect Immun,1982,35(3):809-817.
    [35]Berg M, Melcher U, Fletcher J. Characterization of Spiroplasma citri adhesion related protein S ARP1, which contains a domain of a novel family designated sarpin. Gene,2001,275(1):57-64.
    [36]Yu J, Wayadande A C, Fletcher J. Spiroplasma citri surface protein P89 implicated in adhesion to cells of the vector Circulifer tenellus. Phytopathology,2000,90(7):716-722.
    [37]Labroussaa F, Arricau-Bouvery N, Dubrana M P, et al. Entry of Spiroplasma citri into Circulifer haematoceps Cells Involves Interaction between Spiroplasma Phosphoglycerate Kinase and Leafhopper Actin. Applied and Environmental Microbiology,2010,76(6):1879-1886.
    [38]Labroussaa F, Dubrana M P, Arricau-Bouvery N, et al. Involvement of a Minimal Actin-Binding Region of Spiroplasma citri Phosphoglycerate Kinase in Spiroplasma Transmission by Its Leafhopper Vector. Plos One,2011,6(2): 191-204.
    [39]黄琪琰.河蟹颤抖病的研究现状(上).科学养鱼,2000,10:13-14.
    [40]薛仁宇 魏中内.中国绒螯蟹颤抖病研究现状.内陆水产,2000,7:41.
    [41]金业,陆承平,李显.引致河蟹颤抖病的病毒的核酸定性.中国病毒学,2004,19:36-38.
    [42]魏育红,薛仁宇,贡成良.呼肠弧病毒引起河蟹颤抖病的人工感染与药物防治研究.内陆水产,2001,4:9-10.
    [43]孙学强,郭爱珍,陆承平.中华绒螯蟹颤抖病的人工复制试验.南京农业大学学报,2000,23:74-76.
    [44]沈锦玉,钱冬.中华绒螯蟹病毒病病原的初步研究.华中农业大学学报,2000,19:487-489.
    [45]陆宏达,金丽华,薛美.中华绒螯蟹小核糖核酸病毒病及其组织病理学.水产学报,1999,23:61-68.
    [46]何介华,贺路,曾令兵,et al.中华绒螯蟹颤抖病病原的初步研究.淡水渔业1999,29:10-11.
    [47]陈辉,薛仁宇,贡成良.中华绒螯蟹1种球形病毒颗粒的电镜观察.中国水产科学,1999,6(3):114-115.
    [48]祖国掌,李槿年,,余为一,,et al.河蟹细菌性颤抖病的诊断与治疗.淡水渔业,2004,34:27-30.
    [49]吴惠仙,薛俊增.中华绒螯蟹细菌性颤抖病的药物敏感性.科技通报,2003,19:239-240.
    [50]魏泽能.河蟹颤抖病的流行病学调查.淡水渔业,1999,29:16-17.
    [51]薛仁宇 曹,魏育红,朱越雄,贡成良.细菌性“颤抖病”病原的体外中药药敏试验.水利渔业,2002,22:39-41.
    [52]潘连德.养殖河蟹“抖抖病”的病原检验与病理学初步研究.水产科技情报, 1998,25:273-277.
    [53]Wang W, Gu Z F. Rickettsia-like organism associated with tremor disease and mortality of the Chinese mitten crab Eriocheir sinensis. Diseases of Aquatic Organisms,2002,48(2):149-153.
    [54]王文,朱宁宁,李正荣,et al.类立克次体侵染中华绒螯蟹神经组织的光镜和电镜观察.动物学研究,2001,22:467-471.
    [55]牟大凯,顾伟,潘建林,et al.中华绒螯蟹酚氧化酶原系统与颤抖病的关系(英文).南京大学学报(自然科学版),2007,5(5):464-471.
    [56]王文,徐在宽.患颤抖病中华绒螯蟹体内类立克次体侵染的光镜和电镜观察.中国水产科学,2001,8:32-35.
    [57]朱宁宁,王文.患“颤抖病”中华绒螯蟹血细胞中类立克次体寄生的超微结构观察.电子显微学报2002,21:21-24.
    [58]Wang W, Wen B H, Gasparich G E, et al. A spiroplasma associated with tremor disease in the Chinese mitten crab (Eriocheir sinensis). Microbiology-Sgm, 2004,150:3035-3040.
    [59]顾伟.中华绒螯蟹颤抖病病原体的生物学特征.In生命科学学院.南京,南京师范大学,2006.
    [60]Wang W, Gu W, Gasparich G E, et al. Spiroplasma eriocheiris sp. nov., a novel species associated with mortalities in Eriocheir sinensis, Chinese mitten crab. International Journal of Systematic and Evolutionary Microbiology,2011,61: 703-708
    [61]Meng Q G, Ou J T, Ji H Y, et al. Identification and characterization of spiralin-like protein SLP25 from Spiroplasma eriocheiris. Veterinary Microbiology,2010,144(3-4):473-477.
    [62]Meng Q G, Li W J, Liang T M, et al. Identification of adhesin-like protein ALP41 from Spiroplasma eriocheiris and induction immune response of Eriocheir sinensis. Fish & Shellfish Immunology,2010,29(4):587-593.
    [63]顾伟,张秋萍,张莉,et al.江苏省中华绒螯蟹螺原体疫病的检测和普查.江苏农业科学,2011,(01):293-295.
    [64]Luedeman R A, Lightner D V. Development of an in vitro primary cell culture system from the penaeid shrimp, Penaeus stylirostris and Penaeus vannamei. Aquaculture,1992,101(3-4):205-211.
    [65]Itami T, Maeda M, Kondo M, et al. Primary culture of lymphoid organ cells and haemocytes of kuruma shrimp, Penaeus japonicus. Methods in Cell Science,1999,21(4):237-244.
    [66]Tong S, Miao H Z. Attempts to initiate cell cultures from Penaeus chinensis tissues. Aquaculture,1996,147(3-4):151-157.
    [67]金伯泉.细胞和分子免疫学.北京:科学出版社,2001.
    [68]王金星,赵小凡.无脊椎动物先天免疫模式识别受体研究进展.生物化学与生物物理进展,2004,31(2):112-117.
    [69]Gross P S, Bartlett T C, Browdy C L, et al. Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific White Shrimp, Litopenaeus vannamei, and the Atlantic White Shrimp, L. setiferus. Developmental and Comparative Immunology,2001,25(7): 565-577.
    [70]管华诗.海水养殖动物的免疫、细胞培养和病害研究.山东科学技术出版社,1999:5-21.
    [71]相建海.海水养殖生物病害发生与控制.海洋出版社,2001:104-133.
    [72]Kang C H, Wang J X, Zhao X F, et al. Molecular cloning and expression analysis of Ch-penaeidin, an antimicrobial peptide from Chinese shrimp, Fenneropenaeus chinensis. Fish & Shellfish Immunology,2004,16(4): 513-525.
    [73]Munoz M, Cede o R, Rodriguez J, et al. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei. Aquaculture,2000,191(1-3):89-107.
    [74]Song Y L, Hsieh Y T. Immunostimulation of tiger shrimp(Penaeus monodon) hemocytes for generation of microbicidal substances:analysis of reactive oxygen species. Developmental and Comparative Immunology,1994,18(3): 201-209.
    [75]Soderhall K, Cerenius L, Johansson M. The prophenoloxidase activating system in invertebrates. In:Soderhall K,Iwanaga S and Vasta GR(editors).New Directions in Invertebrate Immunology,SOS Publications,Fair Haven,1996: 229-253.
    [76]Martin G G, Kay J, Poole D, et al. In vitro nodule formation in the ridgeback prawn, Sicyonia ingentis, and the American lobster, Homarus americanus. Invertebrate Biology,1998,117(2):155-168.
    [77]Hoffmann J A, Kafatos F C, Janeway Jr C A, et al. Phylogenetic perspectives in innate immunity. Science,1999,284(5418):1313-1318.
    [78]薛清刚,张学雷,王雷,et al.虾、贝类免疫反应基础及作用.相建海主编:海水养殖生物病害发生与控制.海洋出版社,2001:74-84.
    [79]Vargas-Albores F, Yepiz-Plascencia G. Beta glucan binding protein and its role in shrimp immune response. Aquaculture,2000,191(1-3):13-21.
    [80]Ling E, Yu X Q. Prophenoloxidase binds to the surface of hemocytes and is involved in hemocyte melanization in Manduca sexta. Insect biochemistry and molecular biology,2005,35(12):1356-1366.
    [81]Cerenius L, S derh 11 K. The prophenoloxidase-activating system in invertebrates. Immunological Reviews,2004,198(1):116-126.
    [82]Yoshida H, Kinoshita K, Ashida M. Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. Journal of Biological Chemistry,1996,271(23):13854-13860.
    [83]Liu H P, Jiravanichpaisal P, Soderhall I, et al. Antilipopolysaccharide factor interferes with white spot syndrome virus replication in vitro and in vivo in the crayfish Pacifastacus leniusculus. Journal of Virology,2006,80(21): 10365-10371.
    [84]Robalino J, Bartlett T C, Chapman R W, et al. Double-stranded RNA and antiviral immunity in marine shrimp:inducible host mechanisms and evidence for the evolution of viral counter-responses. Developmental and Comparative Immunology,2007,31(6):539-547.
    [85]de la Vega E, O'Leary N A, Shockey J E, et al. Anti-lipopolysaccharide factor in Litopenaeus vannamei (LvALF):A broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection. Molecular Immunology,2008,45(7):1916-1925.
    [86]Mates J M, Perez-Gomez C, De Castro I N. Antioxidant enzymes and human diseases. Clinical Biochemistry,1999,32(8):595-603.
    [87]Liu C H, Tseng M C, Cheng W. Identification and cloning of the antioxidant enzyme, glutathione peroxidase, of white shrimp, Litopenaeus vannamei, and its expression following Vibrio alginolyticus infection. Fish & Shellfish Immunology,2007,23(1):34-45.
    [88]Ding Z F, Bi K R, Wu T, et al. A simple PCR method for the detection of pathogenic spiroplasmas in crustaceans and environmental samples. Aquaculture,2007,265(1-4):49-54.
    [89]Wang J H, Huang H, Feng Q, et al. Enzyme-linked immunosorbent assay for the detection of pathogenic spiroplasma in commercially exploited crustaceans from China. Aquaculture,2009,292(3-4):166-171.
    [90]吴霆,毕可然,王文.套式PCR在中华绒螯蟹颤抖病病原螺原体检测中的应用.水产科学,2007,26(010):551-553.
    [91]Liang T M, Feng Q, Wu T, et al. Use of oxytetracycline for the treatment of tremor disease in the Chinese mitten crab Eriocheir sinensis. Diseases of Aquatic Organisms,2009,84(3):243-250.
    [92]吴霆,华伯仙,顾伟,et al.中华绒螯蟹颤抖病诊断和防治技术.中国水产,2010,8(008):59-61.
    [93]陈大显.中华绒螯蟹表达序列标签(est)分析及免疫相关基因的克隆、表达模式研究.In生命科学学院.上海,华东师范大学.2009.
    [94]Zhao D, Song S, Wang Q, et al. Discovery of immune-related genes in Chinese mitten crab(Eriocheir sinensis) by expressed sequence tag analysis of haemocytes. Aquaculture,2009,287(3-4):297-303.
    [95]盖云超.中华绒螯蟹(eriocheir sinensis) cdna文库的构建,est分析及其酚氧化酶系统关键基因的研究.青岛,中国科学院研究生院(海洋研究所),2009.
    [96]Gai Y, Wang L, Zhao J, et al. The construction of a cDNA library enriched for immune genes and the analysis of 7535 ESTs from Chinese mitten crab Eriocheir sinensis. Fish and Shellfish Immunology,2009,27:684-694.
    [97]Li C W, Shields J D. Primary culture of hemocytes from the Caribbean spiny lobster, Panulirus argus, and their susceptibility to Panulirus argus Virus 1 (PaV1). Journal of Invertebrate Pathology,2007,94(1):48-55.
    [98]Jiang Y S, Zhan W B, Wang S B, et al. Development of primary shrimp hemocyte cultures of Penaeus chinensis to study white spot syndrome virus (WSSV) infection. Aquaculture,2006,253(1-4):114-119.
    [99]Shi Z, Wang H, Zhang J, et al. Response of crayfish, Procambarus clarkii, haemocytes infected by white spot syndrome virus. Journal of Fish Diseases, 2005,28(3):151-156.
    [100]Chen S N, Wang C S. Establishment of cell culture systems from penaeid shrimp and their susceptibility to white spot disease and yellow head viruses. Methods in Cell Science,1999,21(4):199-206.
    [101]Lang G, Nomura N, Matsumura M. Growth by cell division in shrimp (Penaeus japonicus) cell culture. Aquaculture 2002,213(1-4):73-83.
    [102]Wang W, Gu W, Gasparich G E, et al. Spiroplasma eriocheiris sp. nov., a novel species associated with mortalities in Eriocheir sinensis, Chinese mitten crab. International Journal of Systematic and Evolutionary Microbiology,2010: doi:10.1099/ijs.1090.020529-020520.
    [103]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta] [Delta]CT method. Methods, 2001,25(4):402-408.
    [104]Li C H, Zhao J M, Song L S, et al. Molecular cloning, genomic organization and functional analysis of an anti-lipopolysaccharide factor from Chinese mitten crab Eriocheir sinensis. Developmental & Comparative Immunology 2008,32(7):784-794.
    [105]Holmblad T, S derh 11K. Cell adhesion molecules and antioxidative enzymes in a crustacean, possible role in immunity. Aquaculture,1999,172(1-2): 111-123.
    [106]Gai Y C, Qu L M, Wang L L, et al. A clip domain serine protease (cSP) from the Chinese mitten crab Eriocheir sinensis:cDNA characterization and mRNA expression. Fish Shellfish Immunol.,2009,27(6):670-677.
    [107]S derh 11 K, Cerenius L. Crustacean immunity. Annual Review of Fish Diseases 1992,2:3-23.
    [108]Roch P. Defense mechanisms and disease prevention in farmed marine invertebrates. Aquaculture,1999,172(1-2):125-145.
    [109]Burge E J, Burnett L E, Burnett K G. Time-course analysis of peroxinectin mRNA in the shrimp Litopenaeus vannamei after challenge with Vibrio campbellii. Fish Shellfish Immunol.,2009,27(5):603-609.
    [110]Faucher S P, Porwollik S, Dozois C M, et al. Transcriptome of Salmonella enterica serovar Typhi within macrophages revealed through the selective capture of transcribed sequences. Proceedings of the National Academy of Sciences of the United States of America,2006,103(6):1906-1911.
    [111]Hou J Y, Graham J E, Clark-Curtiss J E. Mycobacterium avium genes expressed during growth in human macrophages detected by selective capture of transcribed sequences (SCOTS). Infection and Immunity,2002,70(7): 3714-3726.
    [112]Fittipaldi N, Gottschalk M, Vanier G, et al. Use of selective capture of transcribed sequences to identify genes preferentially expressed by Streptococcus suis upon interaction with porcine brain microvascular endothelial cells. Applied and Environmental Microbiology,2007,73(13): 4359-4364.
    [113]Li W, Liu L, Chen H C, et al. Identification of Streptococcus suis genes preferentially expressed under iron starvation by selective capture of transcribed sequences. Ferns Microbiology Letters,2009,292(1):123-133.
    [114]Jin H, Wan Y, Zhou R, et al. Identification of genes transcribed by Haemophilus parasuis in necrotic porcine lung through the selective capture of transcribed sequences (SCOTS). Environmental Microbiology,2008,10(12): 3326-3336.
    [115]Daigle F, Graham J E, Curtiss R. Identification of Salmonella typhi genes expressed within macrophages by selective capture of transcribed sequences (SCOTS). Molecular Microbiology,2001,41(5):1211-1222.
    [116]Baltes N, Buettner F F R, Gerlach G F. Selective capture of transcribed sequences (SCOTS) of Actinobacillus pleuropneumoniae in the chronic stage of disease reveals an HlyX-regulated autotransporter protein. Veterinary Microbiology,2007,123(1-3):110-121.
    [117]Baltes N, Gerlach G F. Identification of genes transcribed by Actinobacillus pleuropneumoniae in necrotic porcine lung tissue by using selective capture of transcribed sequences. Infection and Immunity,2004,72(11):6711-6716.
    [118]Kazachkov M, Hu P, Carson J, et al. Release of cytokines by human nasal epithelial cells and peripheral blood mononuclear cells infected with Mycoplasma pneumoniae. Experimental biology and medicine (Maywood, NJ),2002,227(5):330-335.
    [119]Wetzler L M. The role of Toll-like receptor 2 in microbial disease and immunity. Vaccine,2003,21:S55-S60.
    [120]Seya T, Matsumoto M. A lipoprotein family from Mycoplasma fermentans confers host immune activation through Toll-like receptor 2. The International Journal of Biochemistry & Cell Biology,2002,34(8):901-906.
    [121]Hoffman P S, Garduno R A. Surface-Associated Heat Shock Proteins of Legionella pneumophila and Helicobacter pylori:Roles in Pathogenesis and Immunity. Infectious Diseases in Obstetrics and Gynecology,1999,7(1-2): 58-63.
    [122]郑春福.热休克蛋白在传染病中的免疫保护作用.国外医学:流行病学.传染病学分册,2000,27(004):149-152.
    [123]Huesca M, Goodwin A, Bhagwansingh A, et al. Characterization of an acidic-pH-inducible stress protein (hsp70), a putative sulfatide binding adhesin, from Helicobacter pylori. Infection and Immunity,1998,66(9):4061-4067.
    [124]Bloch D B, San Martin J E, Rauch S D, et al. Serum antibodies to heat shock protein 70 in sensorineural hearing loss. Archives of Otolaryngology-Head and Neck Surgery,1995,121(10):1167-1171.
    [125]肖昆.大肠杆菌EF-Tu多蛋白复合体的研究.厦门大学硕士毕业论文,2007.
    [126]Trachtenberg S. The cytoskeleton of Spiroplasma: A complex linear motor. Journal of Molecular Microbiology and Biotechnology,2006,11(3-5): 265-283.
    [127]Archambaud C, Gouin E, Pizarro-Cerda J, et al. Translation elongation factor EF-Tu is a target for Stp, a serine-threonine phosphatase involved in virulence of Listeria monocytogenes. Molecular Microbiology,2005,56(2):383-396.
    [128]Hantke K. Is the bacterial ferrous iron transporter FeoB a living fossil? Trends in microbiology,2003,11(5):192-195.
    [129]Aranda J, Cort"(?)s P, Garrido M E, et al. Contribution of the FeoB transporter to Streptococcus suis virulence. International microbiology,2010,12(2): 137-143.
    [130]Velayudhan J, Hughes N J, McColm A A, et al. Iron acquisition and virulence in Helicobacter pylori:a major role for FeoB, a high-affinity ferrous iron transporter. Molecular Microbiology,2000,37(2):274-286.
    [131]Watson R J, Millichap P, Joyce S A, et al. The role of iron uptake in pathogenicity and symbiosis in Photorhabdus luminescens TT 01. Bmc Microbiology,2010,10(1):177.
    [132]Naikare H, Palyada K, Panciera R, et al. Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival. Infection and Immunity,2006,74(10):5433-5444.
    [133]Fraser C M, Gocayne J D, White O, et al. The minimal gene complement of Mycoplasma genitalium. Science,1995,270(5235):397-404.
    [134]Wang W, Chen J, Du K, et al. Morphology of spiroplasmas in the Chinese mitten crab Eriocheir sinensis associated with tremor disease. Research in Microbiology,2004,155(8):630-635.
    [135]Wang W, Rong L W, Gu W, et al. Study on experimental infections of Spiroplasma from the Chinese mitten crab in crayfish, mice and embryonated chickens. Research in Microbiology,2003,154(10):677-680.
    [136]Liang T, Ji H, Lian L, et al. A rapid assay for simultaneous detection of Spiroplasma eriocheiris and white spot syndrome virus in Procambarus clarkii by multiplex PCR. Letters in Applied Microbiology,2010,51(5):532-538.
    [137]Wolgemuth C W, Charon N W. The kinky propulsion of Spiroplasma. Cell, 2005,122(6):827-828.
    [138]Veneti Z, Bentley J K, Koana T, et al. A functional dosage compensation complex required for male killing in Drosophila. Science,2005,307(5714): 1461-1463.
    [139]Trachtenberg S. Mollicutes. Curr Biol,2005,15(13):R483-484.
    [140]Whitcomb R, Tully J, Wroblewski H. Spiralin:Major membrane protein specific for subgroup i-1 spiroplasmas. Current Microbiology,1983,9:7-12.
    [141]Foissac X, Saillard C, Gandar J, et al. Spiralin polymorphism in strains of Spiroplasma citri is not due to differences in posttranslational palmitoylation. Journal of Bacteriology,1996,178(10):2934-2940.
    [142]Burgart L J, Robinson R A, Heller M J, et al. Multiplex polymerase chain reaction. Mod Pathol,1992,5(3):320-323.
    [143]Markoulatos P, Siafakas N, Moncany M. Multiplex polymerase chain reaction: a practical approach. Journal of clinical laboratory analysis,2002,16(1): 47-51.
    [144]Stockton J, Ellis J, Saville M, et al. Multiplex PCR for typing and subtyping influenza and respiratory syncytial viruses. Journal of Clinical Microbiology, 1998,36(10):2990-2995.
    [145]Kong R, Lee S, Law T, et al. Rapid detection of six types of bacterial pathogens in marine waters by multiplex PCR. Water Research,2002,36(11): 2802-2812.
    [146]Harris E, Kropp G, Belli A, et al. Single-step multiplex pcr assay for characterization of new world leishmania complexes. J Clin Microbio,1998, 36:1989-1995.
    [147]Lo h, HO C, Peng S, et al. White spot syndrome baculovirus (WSBV) detected in cultured and captured shrimp, crabs and other arthropods. Diseases of Aquatic Organisms,1996,27:215-225.
    [148]Xie X X, Li H Y, Xu L M, et al. A simple and efficient method for purification of intact white spot syndrome virus (WSSV) viral particles. Virus Research, 2005,108(1-2):63-67.
    [149]Miller S A, Dykes D D, Polesky H F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res,1988,16(3): 1215.
    [150]Tsai J M, Shiau L J, Lee H H, et al. Simultaneous detection of white spot syndrome virus (WSSV) and Taura syndrome virus (TSV) by multiplex reverse transcription-polymerase chain reaction (RT-PCR) in Pacific white shrimp Penaeus vannamei. Diseases of Aquatic Organisms,2002,50(1):9-12.
    [151]Henegariu O, Heerema N, Dlouhy S, et al. Multiplex PCR:Critical parameters and step-by-step protocol. BioTechniques,1997,23:504-511.
    [152]Chamberlain J S, Gibbs R A, Rainer J E, et al. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Research,1988,16(23):11141-11156.
    [153]Bastian F O, Dash S, Garry R F. Linking chronic wasting disease to scrapie by comparison of Spiroplasma mirum ribosomal DNA sequences. Experimental and Molecular Pathology,2004,77(1):49-56.
    [154]Tsai M F, Kou G H, Liu H C, et al. Long-term presence of white spot syndrome virus (WSSV) in a cultivated shrimp population without disease outbreaks. Diseases of Aquatic Organisms,1999,38(2):107-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700