用户名: 密码: 验证码:
温度驯化对刺参(Apostichopus japonicus)生长及耐热性的影响及生理生态学机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过一系列实验研究了温度驯化和应激对刺参生长以及其耐热性的影响,结果总结如下:
     1.热历史对刺参耐热性的影响:致死温度上限和热休克蛋白70基因表达
     本研究探讨了不同的热历史对刺参致死温度和热休克蛋白70基因表达的影响。设置两个温度梯度:12(CA)和22℃(WA),将刺参在两个温度下驯化30d后,然后在相同环境17℃下恢复一周。通过实验发现,在12和22℃下驯化的刺参的半数致死温度(ULTs50)分别为30.9℃(30.6~31.3℃)和31.8℃(31.5~32.1℃),致死温度分别为32℃和33℃。将两组刺参在30℃热激2h后于17℃恢复,测定hsp70的表达时序。在热激实验中,将经过驯化的刺参在不同温度(25、27、29、31和32℃)热激2h,然后在17℃下恢复2h。使用半定量RT-PCR的方法测定hsp70表达水平,比较两组刺参基因表达最高值的诱导温度。CA和WA组刺参的表达最高值分别出现在29℃和31℃。结果表明,热历史能改变刺参的耐热上限,这种改变与hsp70的表达模式有关。
     2.驯化温度对刺参生长、代谢及耐热性的影响
     本实验探讨了不同的驯化温度(16、21和26℃)对刺参(Apostichopusjaponicus)生长、代谢及耐热性的影响。实验持续40d,期间进行刺参生长、代谢、摄食以及能量收支的测定。结果表明,16℃下饲养的刺参体重(末体重11.96±0.35g)明显高于21℃(10.33±0.41g)和26℃(8.31±0.19g)处理组(P<0.05),并且16℃下刺参生长能明显高于其它两组(P<0.05)。在16、21和26℃下饲养的刺参临界热极值分别为33.1、34.1和36.6℃,并且26℃下刺参热休克蛋白基因表达量明显高于其它两组。这一结果表明:温度驯化能改变刺参的耐热性,并且能通过临界热极值和热休克蛋白基因表达这两种指标进行反映。
     3.温度和盐度驯化对刺参生长及热休克蛋白基因表达的影响:
     本实验研究了温度和盐度驯化对刺参(Apostichopusjaponicus)幼参生长对热休克蛋白基因表达的影响。设置4个温度梯度(16、20、24和28℃),3个盐度梯度(22、27和32),按双因子4×3的组合分为12个不同的温度盐度驯化组。经过40d的驯化,发现温度和盐度对刺参的体重和特定生长率影响显著,并且高温下的刺参对低盐的耐受性较低温下降低。不同组的刺参热休克蛋白基因表达量不同,说明经过高温驯化,刺参对盐度胁迫的适应性增强,应对高温及低盐环境的能力得到提高。
     4.高温刺激对刺参浮游期幼体生长、存活率及Hsp70表达量的影响
     设计不同温度(21.5、26、28和30℃),对刺参(Apostichopusjaponicus)囊胚期、原肠期和耳状幼体期幼体进行热激处理,热激45min后,将幼体在21.5℃条件下继续培养至耳状幼体后期,每日测量幼体的体长,计算刺参幼体的存活率,并用蛋白杂交方法测定幼体Hsp70的表达量。结果表明,高温刺激对幼体的存活影响显著,各时期幼体的存活率均随热激温度的升高而降低,原肠期的存活率高于囊胚期和耳状幼体时期。原肠期幼体Hsp70表达量比囊胚期和耳状幼体时期高,这表明在发育过程中Hsp70表达量与幼体存活率具有相关性。
     5.浮游期热应激对刺参幼参生长及耐热性的影响
     设计不同温度(21.5、26、28和30℃),对刺参(Apostichopusjaponicus)囊胚期、原肠期和耳状幼体期幼体进行热激处理,热激45min后,将幼体在21.5℃条件下继续培养至幼参。然后分别在17和24℃驯化60天,期间每10d称量体重。驯化结束后,实验刺参在17℃下恢复12天,从31.5℃的2h预热激中恢复4天后,再遭受2h的34℃热激,然后恢复7天,计算死亡率。结果表明,17℃驯化下的刺参体重大于24℃下的个体。同一驯化温度下,囊胚期热激的个体体重大于其它处理组。浮游期经过热激处理的幼参耐热性强于未经热激的个体。这表明在刺参幼体发育的浮游时期进行热激处理可能是一种选择较强耐热性个体的有效方法。
     6.刺参南方育苗以及度夏的初步研究
     本实验对刺参南方(福建)育苗以及幼参高温期培育进行了初步研究。通过夜间提水、提高水位、投喂多维等方法,对刺参度夏有一定的帮助。在福建省春季开展刺参育苗,翌年春天就可收获成品参,生长周期明显缩短。
1. Thermal resistance in sea cucumber (Apostichopus japonicus Selenka) with different thermal history:Upper thermal limit and hsp70gene expression
     Thermal history can affect organisms'thermal resistance, however, effects of thermal history on thermal resistance and roles of heat shock protein70(Hsp70) in sea cucumber Apostichopus japonicus are not well understood. In the present study, the lethal thermal limits and expressions of Hsp70of sea cucumbers that were acclimated at different temperatures (22℃or12℃) for30days were studied. The upper lethal temperatures (ULT50) for sea cucumbers acclimated at22and12℃were31.8℃(31.5~32.1℃) and30.9℃(30.6~31.3℃), respectively. In heat shock experiments, sea cucumbers acclimated at different temperatures (22℃or12℃) were exposed to several high temperatures (25,27,29,31and32℃) for2h, followed by2h recovery at17℃, and the levels of hsp70were measured using semi-quantitative RT-PCR. The maximum induction temperatures for sea cucumbers in22℃and12℃acclimation treatments were31℃and29℃, respectively. These results showed that the temperature acclimation could affect sea cucumbers'upper thermal limit, which was related to the changed expression pattern of Hsp70in the sea cucumber. In practice, sea cucumbers that overwinter in southern China could acquire higher thermal resistance than those reared in the north.
     2. Effects of rearing temperature on growth, metabolism and thermal tolerance of juvenile sea cucumber, Apostichopus japonicus Selenka:Critical thermal maximum and hsps gene expression
     Effects of different rearing temperatures (16,21and26℃) on growth, metabolic performance and thermal tolerance of juvenile sea cucumber Apostichopus japonicus (initial body weight7.72±0.96g, mean±SD) were investigated in the present study. During the40-day experiment, growth, metabolic performance, food intake and energy budget at different reared temperatures were determined. Sea cucumbers rearing at16℃obtained better growth (final body weight11.96±0.35g) than those reared at21(10.33±0.41g) and26℃(8.31±0.19g)(P<0.05), and more energy was allocated for growth at16℃(162.73±11.85J g-1d-1) than those at21(79.61±6.76J g-1d-1) and26℃(27.07±4.30J g-1d-1)(P<0.05). Critical thermal maxima (CTmax) values of juvenile sea cucumbers reared at16,21and26℃were33.1,34.1and36.6℃, respectively. The upregulation of hsps in sea cucumbers reared at26℃was higher than those acclimated at lower temperatures (16and21℃), indicating that temperature acclimation could change the thermal tolerance of the sea cucumber, and CTmax and hsps were sensitive indicators of the sea cucumber's thermal tolerance.
     3. Effects of temperature and salinity acclimation on growth and hsps gene expression of juvenile sea cucumber, Apostichopus japonicus Selenka
     Effects of temperature and salinity acclimation on growth and hsps gene expression of juvenile sea cucumber were investigated in this study. There were12treatments (temperature:16,20,24,28℃; salinity:22,27,32psu), each treatment had3replicates. After40-d culture, the body weight and specific growth rate was different from each other. At high temperature, salinity tolerance of sea cucumber was lower than those rearing at ralatively low temperature. Also, hsps gene expression was different among treatments. Levels of hsps increased with temperature increasing. After acclimation at high temperature, the adaptation to salinity stress of sea cucumber was strengthen, and the ability to cope with high temperature and low salinity was improved.
     4. Effects of heat-shock in pelagic stages on growth, survival and Hsp70expression of juvenile sea cucumber, Apostichopusjaponicus Selenka
     The effects of heat-shock in pelagic stages on growth, survival and Hsp70s expression of juvenile sea cucumber, Apostichopus japonicus Selenka were investigated. Larvae at the stage of blastula, gastrula and auricularia were heat-shocked at selected temperatures (21.5, control;26,28and30℃) for45min and returned to21.5℃for continuous rearing. After the heat-shock, there were significant differences in survival among larvae in the four heat-shocked treatments. The survival rate of larvae decreased with the increasing of heat-shock temperature, and was higher in the stage of gastrula than those in blastula and auricularia. The Hsp70s expression of larvae in the stage of gastrula was higher than those in the stages of blastula and auricularia, suggesting that the survival of larvae partly correlates with the expression of Hsp70s.
     5. Effects of heat-shock selection during pelagic stages on growth and thermal sensitivity of juvenile sea cucumber, Apostichopus japonicus Selenka
     The effects of heat-shock selection during pelagic stages on growth and survival of juvenile sea cucumber Apostichopus japonicus were investigated to test the possibility to acquire high thermal tolerance individuals after the heat-shock. Larvae at the stages of blastula (BLA), gastrula (GAS) and auricularia (AUR) were heat-shocked at selected temperatures (21.5, control;26,28and30℃) for45min and returned to21.5℃for continuous rearing. There was significant difference in thermal sensitivity among different developmental stages. Juveniles after the heat-shock selection at pelagic stages showed higher induced thermotolerance than those without heat-shock. Therefore, heat-shock application at early pelagic development stages is potentially an effective way to select sea cucumbers with a high thermotolerance.
     6. Preliminary study in seeding and summer spending of sea cucumber (Apostichopus japonicus Selenka) in Southern China
     Seeding and summer spending of sea cucumber(Apostichopus japonicus Selenka) in Southern China was investigated in this study. There were some ways to help sea cucumbers to spend summer, such as pumping water at night, raising water level, feeding multiple vitamin. If we carry out seeding in the spring of Fujian province, we can harvest adult sea cucumbers next spring, so the growth cycle could be shorten obviously.
引文
[1]Sloan N A. Echinoderm fisheries of the world:A review. In:Echinodermata (Proceedings of the Fifth International Echinoderm Conference), Keegan B F,O'Connor B D S, eds. Rotterdam:A. A. Balkema Publishers,1984.109-124
    [2]廖玉麟.中国动物志,棘皮动物门,海参纲.北京:科学出版社,1997.334
    [3]Hauksson, E. Feeding biology of Stichopus tremulus a deposit feeding holothurian. Sarsia,1979,64:155-160
    [4]Traer K. The consumption of Posidonia oceanica Delile by echinoids at the Isle of Ischia. In: Jangoux M, eds. Echinoderms:Present and Past,1980.241-244
    [5]张凤瀛,吴宝玲,李万滋,等.刺参的人工养殖和增殖试验的初步报告.动物学杂志,1958,2:65~73
    [6]沈辉,陈静,李华,等.国内外海参养殖技术研究概况.河北渔业,2007,6:3-5
    [7]隋锡林,林祥辉,刘兴盛,等.刺参人工种苗放流试验研究.海洋与湖沼,1991,2:175~180
    [8]刘广斌.刺参Apostichopus japonicus耐高温品系选育的基础研究:[博士学位论文].青岛:中国科学院海洋研究所,2008
    [9]常亚青,于金海,孙培海.刺参育苗及养殖技术(上).科学养鱼,2006,11:16~18
    [10]刘永宏.刺参海胆增养殖技术.青岛:青岛海洋大学出版社,1998
    [11]常忠岳,衣吉龙,慕康庆.关于影响刺参Apostichopus japonicus (Selenka)生长及成活因素的探讨.现代渔业信息,2003,18(5):24~27
    [12]黄华伟,王印庚.海参养殖的现状、存在问题与前景展望.中国水产,2007(10):50~53
    [13]农业部渔业局.中国渔业年鉴2010.北京:中国农业出版社,2010
    [14]李正良,郑雅友,郑乐云,等.刺参南方度夏试验.2010,6(2):26~29
    [15]廖玉麟.我国的海参.生物学通报,2001,35(9):1-3
    [16]孙建璋,庄定根,陈兰涛,等.刺参南移养殖技术研究.浙江海洋学院学报(自然科学版),2006,25(2):148~153
    [17]刘锡胤,徐惠章,周金泉,等.关于推进刺参(Apostichopus japonicus Selenka)养殖业健康发展的思路.现代渔业信息,2007,9:26~28
    [18]Gaspar S, German M, Elisabeth V B. Effect of increasing salinity on physiological response in juvenile scallops Argopecten purpuratus at two rearing temperatures. Aquaculture,2007,270(28):451-463
    [19]隋锡林.海参增养殖.农业出版社,1990
    [20]隋锡林.海参增养殖.北京:农业出版社,1988.15~59
    [21]吴琴瑟.虾蟹养殖高产技术.农业出版社,1992.68~73
    [22]潘鲁青,马甡,王克行.温度对中国对虾幼虫生长发育与消化酶活力的影响.中国水产科学,1997,4:17~22
    [23]王丹丽,徐善良,尤仲杰,等.温度和盐度对青蛤孵化及幼虫、稚贝存活及生长变态的影响.水生生物学报,2005,29(5):495~501
    [24]刘立明.不同温度条件下牙鲆变态期生长发育变化的研究.海洋科学,1996,4:58~63
    [25]李宝泉,杨红生,张涛,等.温度和体重对刺参呼吸和排泄的影响.海洋与湖沼,2002,33:182~187
    [26]Dong Y W, Dong S L. Growth and oxygen consumption of the juvenile sea cucumber Apostichopus japonicus (Selenka) at constant and fluctuating water temperatures. Aquaculture Research,2006,37(13):1327-1333
    [27]Dong Y W, Dong S L, Tian X L, et al. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture,2006,255(1-4):514-521
    [28]于东祥,宋本祥.池塘养殖刺参幼参的成活率变化和生长特点.中国水产科学,1999,6(3):109~110
    [29]王兴章,邢信泽.中国北方刺参(Stichopus japonicus Selenka)增养殖发展现状及技术探讨.现代渔业信息,2000,15(8):20~22
    [30]Chen J X. Present status and prospects of sea cucumber industry in China. In:Lovatelli A, Conand C, Purcell S, et al., eds. Advances in sea cucumber aquaculture and management. Rome:FAO,2004.25-38
    [31]安振华.温度及其周期性波动对刺参Apostichopus japonicus (Selenka)生长和能量收支的影响:[博士学位论文].青岛:中国海洋大学,2008
    [32]Yang H, Zhou Y, Zhang T, et al. Metabolic characteristics of sea cucumber Apostichopus stichopus (Selenka) during aestivation. J. Exp. Mar. Biol. Ecol.,2006,330:505-510
    [33]董云伟,董双林,田相利,等.不同温度对刺参幼参生长、耗氧率及体组成的影响.中 国水产科学,2005,12(1):33~37
    [34]Yang H, Yuan X, Zhou Y, et al. Effects of body size and water temperature on food consumption and growth in the sea cucumber Apostichopus japonicus (Selenka) with special reference to aestivation. Aquac. Res.,2005,36:1085-1092
    [35]An Z H, Dong Y W, Dong S L. Temperature effects on growth-ration relationships of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture,2007,272:644-648
    [36]Weber L A. Relationship of heat shock proteins and induced thermal resistance. Cell Prolif,1992,25:101-113
    [37]Clegg J S, Uhlinger K R, Jackson S A, et al. Induced thermotolerance and the heat shock ptotein-70family in the Pacific oyster Crassostreagigas. Mol Mar Biol Biotech,1999,7(1):21-30
    [38]Piano A, Asirelli C, Caselli F. HSP70expression in thermally stressed Ostrea edulis, a commercially important oyster in Europe. Cell Stress Chaperones,2002,7(3):250-257
    [39]张其中,邱马银,吴信忠,等.热休克诱导近江牡蛎对高温的耐受性.生态科学,2005,24(1):35~37
    [40]Dong Y W, Dong S L. Induced thermotolerance and expression of heat shock protein70in sea cucumber Apostichopus japonicus. Fish Sci.,2008,74:573-578
    [41]Hutchison V H. Factors influencing thermal tolerance of individual organisms. In:Esch G W, McFarlane R W, eds. Thermal ecology II, U.S. Nat. Tech. Inf. Serv., Springfield,1976.10-26
    [42]Wagner E J, Arndt R E, Brough M. Comparative tolerance of four stocks of cutthroat trout to extremes in temperature. West. N. Am. Nat.2001,61:434-444
    [43]Dong Y W, Miller L P, Sanders J G, et al. Heat-shock protein70(Hsp70) expression in four limpets of the Genus Lottia. interspecific variation in constitutive and inducible synthesis correlates with in situ exposure to heat stress. Biol. Bull.2008a,215:173-181
    [44]Lohr S C, Byorth P A, Kaya C M, et al. High temperature tolerances of fluvial Arctic grayling and comparisons with summer river temperatures of the Big Hole River, Montana. Trans. Am. Fish. Soc.,1996,125:933-939
    [45]Strange K T, Vokoun J C, Noltie D B. Thermal tolerance and growth differences in orange throat darter(Etheostoma spectabile) from thermally contrasting adjoing streams. Am. Midl. Nat.,2002,148:120-128
    [46]Selvakumar S, Geraldine P. Heat shock protein induction in the freshwater prawn Macrobrachium malcolmsonii:Acclimation-influenced variations in the induction temperatures for Hsp70. Comp. Biochem. Phys. A,2005,140:209-215
    [47]Das T, Pala A K, Chakrabortyb S K, et al. Thermal tolerance and oxygen consumption of Indian major carps acclimated to four temperatures. J. Therm. Biol.,2004,29:157-163
    [48]Hernandez M. Critical thermal maximum and osmotic pressure of the red sea urchin Strongylocentrotus franciscanus acclimated at different temperatures. J. Therm. Biol.,2004,29:231-236
    [49]王云松,曹振东,付世建,等.南方鲇幼鱼的热耐受特征.生态学杂志,2008,27(12):2136~2140
    [50]Brett W M, Church A R, Maguire G B. A comparison of the heat tolerance and growth of a selected and non-selected line of rainbow trout, Oncorhynchus mykiss, in Western Australia. Aquaculture,2004,241:655-665
    [51]Ji T T, Dong Y W, Dong S L. Growth and physiological responses in the sea cucumber, Apostichopus japonicus Selenka:aestivation and temperature.2008, Aquaculture,283(1-4):180~187
    [52]崔奕波.鱼类生物能量学的理论与方法.水生生物学报,1989,13(4):369~383
    [53]谢小军,孙儒泳.鱼类的特殊动力作用的研究进展.水生生物学报,1991,15(10):82~90
    [54]Warren C E, Davis G E. Laboratory studies on the feeding, bioenergetics and growth of fish in the biological basis of fresh water fish production. In:Gerking S D, eds. Oxford: Blackwell Scientific Publication,1967.175-214
    [55]田相利.变温对中国对虾生长的影响及其生物能量学机制:[博士学位论文].青岛:中国海洋大学,2001
    [56]Wang F, Dong S, Huang G, et al. The effect of light color on the growth of Chinese shrimp Fenneropenaeus chinensis. Aquaculture,2003,228:351-360
    [57]Lucas A. Bioenergetics of Aquatic Animals. Taylor&Francis Publisher,1996
    [58]袁秀堂.刺参Apostichopus japonicus (Selenka)生理生态学及其生物修复作用的研究:[博士学位论文].青岛:中国科学院海洋研究所,2005
    [59]Lawrence J M, Lane J M. The utilization of nutrients by postmetamorphic echinoderms. in: Jangoux M, Lawrence J M, eds. Echinoderm Nutrition,1982.368-371
    [60]Gonzalez J G. Critical thermal maxima and upper lethal temperatures for the Calanoid Copepods Acartia tonsa and A. clause. Marine Biology,27:219-223
    [61]Meng X L, Ji T T, Dong Y W, et al. Thermal resistance in sea cucumbers(Apostichopus japonicus) with differing thermal history:The role of Hsp70. Aquaculture,2009,294(3-4),314-318
    [62]Dong Y W, Ji T T, Meng X L, et al. Difference in Thermotolerance between Red and Green Color Variants of the Japanese Sea Cucumber, Apostichopus japonicus Selenka:Hsp70and Heat Hardening Effect. Biological Bulletin,2010,218:87-94
    [63]Cowles R B, Bogert C M. A preliminary study of the thermal requirements of desert reptiles. Bull. Am. Mus. Nat. Hist.,1944,83:265-296
    [64]Cox D K. Effects of three heating rates on the critical thermal maximum of bluegill. In: Gibbons J W, Sharitz R R, eds. Thermal Ecology. Virginia:Nat. Tech. Inf. Sen, Springfield,1974.158-163
    [65]Becker D C, Genoway R G. Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Environmental Biology of Fishes,1979,4(3):245-256
    [66]Kilgour D M, McCauley R W. Reconciling the two methods of measuring upper lethal temperatures in fishes. Environmental Biology of Fishes1986,17(4):281-290
    [67]Guttman S D, Glover C V, Allis C D, et al. Heat shock, deciliation and release from anoxia induce the synthesis of the same polypeptides in starved Tpyriformis. Cell,1980,22:299-300
    [68]Hahn G M, Li G C. Thermotolerance and heat shock proteins in mammalian cells. Radiation Research,1982,92:452-457
    [69]S(?)rensen J G, Kristensen T N, Loeschcke V. The evolutionary and ecological role of heat shock proteins. Ecol Lett,2003,6:1025-1037
    [70]Currie S, Tufts B L, Moyes C D. Influence of bioenergetic stress on heat shock gene expression in nucleated red blood cells of fish. Am J Physiol.,1999,276:990-996
    [71]Lindquist S. The heat shock proteins. Annu. Rev. Genet.,1988,22(6):631-638
    [72]Ellis R J. The Chaperonins. New York:Academic Press,1996
    [73]Feige U, Morimoto R I, Yahara I, et al. Stress-inducible cellular responses. Berlin, Germany: Birkhauser Verlag,1996
    [74]Gethig M J. Molecular Chaperones:clasping the prize. Curr Biol.,1996,6:1573-1576
    [75]Hartl F U. Molecular chaperones in protein folding. Nature,1996,381:571-580
    [76]Somero G N. Thermal physiology and vertical zonation of interidal animals:optima, limits, and costs of living. Integr Comp Biol.,2002,42:780-789
    [77]Buckley B A, Hofmann G E. Thermal acclimation changes DNA-binding activity of heat shock factor1(HSF1) in the goby Gillichthys mirabilis:implications for plasticity in the heat shock response in natural populations. J Exp Biol.,2002,205:3231-3240
    [78]Moseley P L. Heat shock proteins and heat adaptation of the whole organism. Journal of Applied Physiology,1997,83:1413-1417
    [79]Bosch T C G, Krylow S M, Bode H R, et al. Thermotolerance and synthersis of heat shock protein:these responses are present in Hydra allenuata but absent in Hydra oligactis. PANS,1988,85:7921-7931
    [80]Hofmann G E, Buckley B A, Airaksinen S, et al. Heat-shcok protein expression is absent in the Antarctic fish Trematomus bernacchu (family Nototheniidae). J Exp Biol.,2000,203:2331-2339
    [81]Buckley B A, Owen M E, Hofmann G E. Adjusting the thermostat; the threshold induction temperature for the heat shock responses in intertidal mussels (genus Mytilus) changes as a function of thermal history. J Exp Biol.,2001,204:3571-3579
    [82]LaTerza A L, Miceli C, Luporine P. The gene for the heat shock protein70of Euplotes focardii, an Antartic psychrophilic ciliate. Ant Sci.,2004,16:23-28
    [83]Dubeau S F, Pan F, Tremblay G C, et al. Thermal shock of salmon in vivo induces the heat shock protein (Hsp70) and confers protection against osmotic shock. Aquaculture,1998,168:311-323
    [84]Dong Y W, Dong S L, Meng X L. Effects of thermal and osmotic stress on growth, osmoregulation and Hsp70in sea cucumber (Apostichopus japonicus Selenka). Aquaculture,2008b,276:179-186
    [85]Feder M E, Hofmann G E. Heat-shock proteins, molecular chaperones, and the stress responses. Annu Rev Physiol.,1999,61:243-282
    [86]Lindquist S. Varying patterns of protein synthesis in Drosophila during heat shock: Implications for regulations. Dev Biol.,1980,77:463-479
    [87]Lindquist S. Autoregulation of the heat-shock response. In Illan J, eds. Translational Regulation of Gene Expression2. New York:Plenum Press,1993,279-320
    [88]Storti R V, Scott M P, Rich A, et al. Translational control of protein synthesis in response to heat shock D. melanogaster cells. Cell,1980,22:825-834
    [89]Petersen N S, Mitchell H K. Recovery of protein synthesis after heat shock:Prior heat treatment affects the ability of cells to translate mRNA. Proc Natl. Acad. Sci., USA,1981,78:1708-1711
    [90]Beck S C, De Maio A. Stabilization of protein synthesis in thermotolerant cells during heat shock. J Biol. Chem.,1994,269:21803-21811
    [91]Li G C, Laszlo A. Amino acid analogs while inducing heat shock proteins sensitize CHO cells to thermal damage. Journal of Cellular Physiology,1985,122(1):91-97
    [92]Dahlhoff E P, Buckley B B, Menge B A. Physiology of the rocky intertidal predator Nucella ostrina along an environmental stress gradient. Ecology,2001(82):2816-2829
    [93]Parsell D A, Lindquist S. Heat shock proteins and stress tolerance. In:Morimoto R I, Tissieres A, Georgopoulous C, eds. The Biology of Heat Shock Proteins and Molecular Chaperones. New York:Cold Spring Harbor Laboratory Press,1994:457-494
    [94]Krebs R A, Feder M E. Natural variation in the expression of the heat-shock protein HSP70in a population of Drosophila melanogaster and its correlation with tolerance of ecological relevant thermal stress. Evolution,1997,51:173-179
    [95]Krebs R A, Loeschcke V. Costs and benefits of activation of the heat-shock response in Drosophila melanogaster. Funct Ecol,1994,8:730-737
    [96]Feder J H, Rossi J M, Solomon J, et al. The consequences of expressing Hsp70in Drosophila cells at normal temperatures. Genes Dev,1992,6:1402-1413
    [97]Tomanek L, Sanford E. Heat-shock protein70(Hsp70) as a biochemical stress indicator:an experimental field test in two congeneric intertidal gastropods (Genus:Teguld). Biol. Bull2003,205:276-284
    [98]Lagerspetz K Y H. What is thermal acclimation? Journal of Thermal Biology,2006,31:332-336
    [99]Berger M S, Emlet R B. Heat-Shock Response of the Upper Intertidal Barnacle Balanus glandula:Thermal Stress and Acclimation. Biol. Bull,2007,212:232-241
    [100]Sanders B M. Stress proteins in aquatic organisms:an environmental perspective. Crit Rev Toxicol,1993,23:49-75
    [101]Hochachka P W, Somero G N. Biochemical Adaptation:Mechanism and Process in Physiological Evolution. Oxford:Oxford University Press,2002
    [102]Piano A, Valbonesi P, Febbri E. Expression of cytoprotective proteins, heat shock protein70and metallothioneins, in tissues of Ostrea edulis exposed to heat and heavy metals. Cell Stress Chaperones,2004,9(2):134-142
    [103]Carratu L, Franceschelli S, Pardini C L, et al. Membrane lipid perturbation modifiesthe set point of the temperature of heat shock response in yeast. PNAS,1996,93:3870-3875
    [104]Chatterjee M T, Khalawan S A, Curran B P G. Cellular lipid composition influences stress activation of the yeast general stress response element (SYRE). Microbiology,2000,146:877-884
    [105]Torok Z, Goloubinoff P, Horvath I, et al. Synechocystis hsp is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. PNAS,2001,98:3098-3103
    [106]Hazel J R. Thermal adaptation in biological membranes:is homeoviscous adaptation the explanation. Annu Rev Physiol,1995,57:19-42
    [107]Logue J A, de Vries A L, Foder E, et al. Lipid compositional correlates of temperature-adaptive interspecific differences in membrane physical structure. J Exp Biol.,2000,203:2105-2115
    [1]Precht H, Christophersen J, Hensel H, et al. Temperature and Life. New York:Springer,1973
    [2]Cossins A R, Bowler K. Temperature biology of animals. London:Chapman&Hall,1987
    [3]Hochachka P W, Somero G N. Biochemical Adaptation. New York:Oxford University Press,2002
    [4]Hutchison V H. Factors influencing thermal tolerance of individual organisms. In:Esch G W, McFarlane R W, eds. Thermal ecology Ⅱ. U.S. Springfield:Nat. Tech. Inf. Serv.,1976.10-26
    [5]Lohr S C, Byorth P A, Kaya C M, et al. High temperature tolerances of fluvial Arctic grayling and comparisons with summer river temperatures of the Big Hole River, Montana. Trans. Am. Fish. Soc.,1996,125:933-939
    [6]Strange K T, Vokoun J C, Noltie D B. Thermal tolerance and growth differences in orange throat darter(Etheostoma spectabile) from thermally contrasting adjoing streams. Am. Midi. Nat.,2002,148:120-128
    [7]Selvakumar S, Geraldine P. Heat shock protein induction in the freshwater prawn Macrobrachium malcolmsonii:Acclimation-influenced variations in the induction temperatures for Hsp70. Comp. Biochem. Phys. A.,2005,140:209-215
    [8]Das T, Pala A K, Chakrabortyb S K, et al. Thermal tolerance and oxygen consumption of Indian major carps acclimated to four temperatures. J. Therm. Biol.,2004,29:157-163
    [9]Hernandez M. Critical thermal maximum and osmotic pressure of the red sea urchin Strongylocentrotus franciscanus acclimated at different temperatures. J. Therm. Biol.,2004,29:231-236
    [10]Lindquist S. The heat-shock response. Annu. Rev. Biochem.,1986,55:1151-1191
    [11]Parsell D A, Lindquist S. The function of heat-shock proteins in stress tolerance:degradation and reactivation of damaged proteins. Annu. Rev. Genet.,1993,27:437-496
    [12]Morimoto R I. Regulation of the heat shock transcriptional response:cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes. Dev.,1998,12:3788-3796
    [13]Ellis R J. Stress proteins as molecular chaperones. In:Van Eden W, Young D B, eds. Stress Proteins in Medicine. New York:Marcel Dekker, Inc.,1996a
    [14]Ellis R J. The Chaperonins. New York:Academic Press,1996b
    [15]Feige V, Morimoto R I, Yahara I, et al. Stress Inducible Cellular Responses. Boston: Birkhauser Verlag,1996
    [16]Gethig M J. Molecular chaperones:clasping the prize. Curr. Biol.,1996,6:1573-1576
    [17]Hartl F U. Molecular chaperones in protein folding. Nature,1996,381:571-580
    [18]Frydman J, Hohfeld J. Chaperones get in touch:the hip-hop connection. Trends. Biochem. Sci.,1997,22:87-92
    [19]Parsell D A, Lindquist S. The function of heat-shock proteins in stress tolerance:degradation and reactivation of damaged proteins. Annu. Rev. Genet.,1993,27:437-496
    [20]Geething M J, Sambrook J. Protein folding in the cell. Nature,1992,355:33-45
    [21]Dong Y W, Dong S L, Ji T T. Stress responses to rapid temperature changes of the juvenile sea cucumber (Apostichopus japonicus Selenka). J. Ocean Univ. China (English Edition),2007,6:275-280
    [22]Dong Y W, Dong S L, Ji T T. Effect of different thermal regimes on growth and physiological performance of the sea cucumber Apostichopus japonicus Selenka. Aquaculture,2008a,275:329-334
    [23]Dong Y W, Dong S L, Meng X L. Effects of thermal and osmotic stress on growth, osmoregulation and Hsp70in sea cucumber(Apostichopus japonicus Selenka). Aquaculture,2008b,276:179-186
    [24]Dong Y W, Dong S L. Induced thermotolerance and the expression of heat shock protein70in sea cucumber Apostichopus japonicus Selenka. Fish. Sci.,2008,74:573-578
    [25]Ji T T, Dong Y W, Dong S L. Growth and physiological responses in the sea cucumber, Apostichopus japonicus Selenka:Aestivation and temperature. Aquaculture,2008,283:180-187
    [26]吴卓智.次溴酸盐氧化法测定水中NH4-N的改进方法.海洋环境科学,2007,26(1):84~87
    [27]Baker S C, Heidinger R C. Upper lethal temperature tolerance of fingerling black crappie. J. Fish. Biol.,1996,48:1123-1129
    [28]Buckley B A, Owen M, Hoffman G. Adjusting the thermostat:the threshold induction temperature for the heat-shock response in intertidal mussels (genus Mytilus) changes as a function of thermal history. J. Exp. Biol.,2001,204:3571-3579
    [29]Morimoto R I, Tissieres A, Georgopoulos C. Stress Proteins in Biology and Medicine. New York:Cold Spring Harbor Laboratory Press,1990
    [30]Feder M E, Hofmann G E. Heat shock proteins, molecular chaperones, and the stress response:evolutionary and ecological physiology. Annu. Rev. Physiol.,1999,61:243-282
    [31]Hamdoun A M, Cheney D P, Cherr G N. Phenotypic plasticity of Hsp70and Hsp70gene expression in the Pacific oyster (Crassostrea gigas):Implications for thermal limits and induction of thermal tolerance. Biol. Bull.,2003,205:160-169
    [32]Somero G N. Linking biogeography to physiology:evolutionary and acclimatory adjustments of thermal limits. Front. Zool.,2005,2:1-9
    [33]Tomanek L, Somero G N. Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (genus Teguld) from different thermal habitats: Implications for limits of thermotolerance and biogeography. J. Exp. Biol.,1999,202:2925-2936
    [34]Huey R B, Bennett A F. Physiological adjustments to fluctuating thermal environments:an ecological and evolutionary perspective. In:Morimoto R I, Tissieres A, Georgopoulos C, eds. Stress Proteins in Biology and Medicine. New York:Cold Spring Harbor Laboratory Press,1990.37-59
    [35]Dietz T J, Somero G N. The threshold induction temperature of the90-kDa heat shock protein is subject to acclimatization in eurythermal goby fishes (genus Gillichthys). Proc. Natl. Acad. Sci.,1992,89:3389-3393
    [36]Hofmann G E, Somero G N. Evidence for protein damage at environmental temperatures: seasonal changes in levels of ubiquitin conjugates and Hsp70in the intertidal mussel Mytilus trossulus. J. Exp. Biol.,1995,198:1509-1518
    [37]Tomanek L, Somero G N. Time course and magnitude of synthesis of heat-shock proteins in congeneric marine snails (genus Teguld) from different tidal heights. Physiol. Biochem. Zool.,2000,73:249-256
    [38]Dietz T J. Acclimation of the threshold induction temperatures for70-kDa and90-kDa heat shock proteins in the fish Gillichthys mirabilis. J. Exp. Biol.,1994,188:333-338
    [39]Krebs R A, Loeschcke V. Effects of exposure to short-term heat stress on fitness components in Drosophila melanogaster. J. evolut. Biol.,1994,7:39-49
    [40]Somero G N. Thermal physiology and vertical zonation in intertidal animals:optima, limits, and costs of living. Integr. Comp. Biol.,2002,42:780-789
    [41]Tadashi K, Takao K, Hiroshi A, et al. Mild heat shock induces autophagic growth arrest, but not apoptosis in U251-MG and U87-MG human malignant glioma cells. J. Neuro-Oncol.,2004,68(2):101-111
    [1]Sloan N A. Echinoderm fisheries of the world:A review. In:Echinodermata (Proceedings of the Fifth International Echinoderm Conference), Keegan B F,O'Connor B D S, eds. Rotterdam:A. A. Balkema Publishers,1984.109-124
    [2]廖玉麟.中国动物志,棘皮动物门,海参纲.北京:科学出版社,1997.334
    [3]李宝泉,杨红生,张涛,等.温度和体重对刺参呼吸和排泄的影响.海洋与湖沼,2002,33:182~187
    [4]Dong Y W, Dong S L. Growth and oxygen consumption of the juvenile sea cucumber Apostichopus japonicus (Selenka) at constant and fluctuating water temperatures. Aquaculture Research,2006,37(13):1327-1333
    [5]Dong Y W, Dong S L, Tian X L, et al. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture,2006,255(1-4):514-521
    [6]Wang Q L, Dong Y W, Dong S L, et al. Effects of heat-shock selection during pelagic stages on thermal sensitivity of juvenile sea cucumber, Apostichopus japonicus Selenka. Aquaculture International,2010,19:1165-1175
    [7]An Z H, Dong Y W, Dong S L. Temperature effects on growth-ration relationships of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture,2007,272:644-648
    [8]刘永宏,李馥馨,宋本祥,等.刺参(Apostichopus japonicus)夏眠习性研究Ⅰ—夏眠生态特点的研究.中国水产科学,1996,3(2):41~48
    [9]Yang H, Zhou Y, Zhang T, et al. Metabolic characteristics of sea cucumber Apostichopus japonicus (Selenka) during aestivation. J. Exp. Mar. Biol. Ecol.,2006,330:505-510
    [10]Meng X L, Ji T T, Dong Y W, et al. Thermal resistance in sea cucumbers(Apostichopus japonicus) with differing thermal history:The role of Hsp70. Aquaculture,2009,294:314-318
    [11]Dong Y W, Ji T T, Meng X L, et al. Difference in Thermotolerance between Red and Green Color Variants of the Japanese Sea Cucumber, Apostichopus japonicus Selenka:Hsp70and Heat Hardening Effect. Biol. Bull,2010,218:87-94
    [12]Cox D K. Effects of three heating rates on the critical thermal maximum of bluegill. In: Gibbons J W, Sharitz R R, eds. Thermal Ecology. Virginia:Nat. Tech. Inf. Sen., Springfield,1974.158-163
    [13]Becker D C, Genoway R G. Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Environmental Biology of Fishes,1979,4(3):245-256
    [14]Kilgour D M, McCauley R W. Reconciling the two methods of measuring upper lethal temperatures in fishes. Environmental Biology of Fishes1986,17(4):281-290
    [15]Das T, Pala A K, Chakrabortyb S K, et al. Thermal tolerance and oxygen consumption of Indian major carps acclimated to four temperatures. J. Therm. Biol.,2004,29:157-163
    [16]Selvakumar S, Geraldine P. Heat shock protein induction in the freshwater prawn Macrobrachium malcolmsonii:Acclimation-influenced variations in the induction temperatures for Hsp70. Comp. Biochem. Phys. A,2005,140:209-215
    [17]Frydman J, Hoheld J. Chaperones get in touch:the hip-hop connection. Trends in biochemical science,1997,22,87-92
    [18]Morimoto R I. Regulation of the heat shock transcriptional response:cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes&development,1998,12:3788-3796
    [19]Feder M E, Hofmann G E. Heat-shock proteins, molecular chaperones, and the stress responses. Annu Rev Physiol.,1999,61:243-282
    [20]Picard D. Heat-shock protein90, a chaperone for folding and regulation. Cellular and Molecular Life Science,2002,59(10):1640-1648
    [21]Tomanek L, Somero G N. Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine (genus Tegula) from different thermal habitats:implications for limits of thermotolerance and biogeography. Journal of Experimental Biology,1999,202(1):2925-2936
    [22]Hochachka P W, Somero G N. Biochemical Adaptation. New York:Oxford University Press,2002
    [23]Dong Y W, Dong S L, Ji T T. Stress responses to rapid temperature changes of the juvenile sea cucumber(Apostichopus japonicus Selenka). Journal of Ocean University of China (English Edition),2007,6(3):275-280
    [24]Dong Y W, Dong S L, Ji T T. Effect of different thermal regimes on growth and physiological performance of the sea cucumber Apostichopus japonicus Selenka. Aquaculture,2008a,275(1-4):329-334
    [25]Dong Y W, Dong S L, Meng X L. Effects of thermal and osmotic stress on growth, osmoregulation and Hsp70in sea cucumber(Apostichopus japonicus Selenka). Aquaculture,2008b,276(1-4):179-186
    [26]Dong Y W, Dong S L. Induced thermotolerance and expression of heat shock protein70in sea cucumber Apostichopus japonicus. Fish Sci.,2008,74:573-578
    [27]Ji T T, Dong Y W, Dong S L. Growth and physiological responses in the sea cucumber, Apostichopus japonicus Selenka:aestivation and temperature.2008, Aquaculture,283(1-4):180-187
    [28]吴卓智.次溴酸盐氧化法测定水中NH4-N的改进方法.海洋环境科学,2007,26(1):84~87
    [29]Wang F, Dong S L, Huang G Q, et al. The effect of light color on the growth of Chinese shrimp Fenneropenaeus chinensis. Aquaculture,2003,228(1-4):351-360
    [30]Paladino F V, Spotila J R, Schubauer J P, et al. The critical thermal maximum:a technique used to elucidate physiological stress and adaptation in fishes. Revue Canadienne de Biologie,1980,39(2):115-122
    [31]Beitinger T L, Bennett W A, McCauley R W. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environmental Biology of Fishes,2000,58(3):237-275
    [32]Dong Y W, Yu S S, Wang Q L, et al. Physiological responses in a variable environment: relationships between metabolism, hsp and thermotolerance in an intertidal-subtidal species. Plos one,2011,6(10):1-6
    [33]Forseth T, Jonsson B. The growth and food ration of piscivorous brown trout{Salmon trutta). Functioal Ecology,1994,8:171-177
    [34]Lawrence J M, Lane J M. The utilization of nutrients by postmetamorphic echinoderms. in: Jangoux M, Lawrence J M, eds. Echinoderm Nutrition,1982.368-371
    [35]Hernandez M, Buckle F, Guisado C, et al. Critical thermal maximum and osmotic pressure of the red sea urchin Strongylocentrotus franciscanus acclimated at different temperatures. Journal of Thermal Biology,2004,29:231-236
    [36]Lindquist S. The heat-shock response. Annual Review of Biochemistry,1986,55:1151-1191
    [37]Portner H O. Climate variations and the physiological basis of temperature dependent biogeography:systemic to molecular hierarchy of thermal tolerance in animals. Comparative Biochemistry and Physiology,2002,132(4):739-761
    [38]Somero G N. Thermal physiology and vertical zonation of interidal animals:optima, limits, and costs of living. Integr Comp Biol.,2002,42:780-789
    [39]Tadashi K, Takao K, Hiroshi A, et al. Mild heat shock induces autophagic growth arrest, but not apoptosis in U251-MG and U87-MG human malignant glioma cells. Journal of Neuro-Oncology,2004,68(2):101-111
    [1]Sloan N A. Echinoderm fisheries of the world:A review. In:Echinodermata (Proceedings of the Fifth International Echinoderm Conference), Keegan B F,O'Connor B D S, eds. Rotterdam:A. A. Balkema Publishers,1984.109-124
    [2]董云伟,董双林,田相利,等.不同温度对刺参幼参生长、耗氧率及体组成的影响.中国水产科学,2005,12(1):33~37
    [3]Dong Y W, Dong S L, Tian X L, et al. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture,2006,255:514-521
    [4]Dong Y W, Dong S L, Ji T T. Stress responses to rapid temperature changes of the juvenile sea cucumber(Apostichopus japonicus Selenka). Ocean Univ. China (Engl. Ed.),2007,6:275-280
    [5]Dong Y W, Dong S L. Induced thermotolerance and expression of heat shock protein70in sea cucumber Apostichopus japonicus. Fish Sci.,2008,74:573-578
    [6]Dong Y W, Dong S L, Meng X L. Effects of thermal and osmotic stress on growth, osmoregulation and Hsp70in sea cucumber(Apostichopus japonicus Selenka). Aquaculture,2008a,276:179-186
    [7]Dong Y W, Dong S L, Ji T T. Effect of different thermal regimes on growth and physiological performance of the sea cucumber Apostichopus japonicus Selenka. Aquaculture,2008b,275:329-334
    [8]Diele K, Simith D J B. Salinity tolerance of northern Brazilian mangrove crab larvae, Ucides cordatus (Ocypodidae):Necessity for larval export? Estuar. Coastal Shelf S.,2006,68:600-608
    [9]Rhodes-Ondi S E, Turner R L. Salinity tolerance and osmotic response of the estuarine hermit crab Pagurus maclaughlinae in the Indian River Lagoon, Florida. Coastal and Shelf Science,2009,86:189-196
    [10]包杰.环境因子对青刺参和红刺参(Apostichopus japonicus)代谢与生长及其机制的影响:[博士学位论文].青岛:中国海洋大学,2008
    [11]李莉.中国青刺参和日本红刺参苗种培育的生物学研究:[博士学位论文].青岛:中国海洋大学,2009
    [12]Lagerspetz K Y H. What is thermal acclimation? Journal of Thermal Biology,2006,31:332-336
    [13]Meng X L, Ji T T, Dong Y W, et al. Thermal resistance in sea cucumbers(Apostichopus japonicus) with differing thermal history:The role of Hsp70. Aquaculture,2009,294:314-318
    [14]Wang Q L, Dong Y W, Dong S L, et al. Effects of heat-shock selection during pelagic stages on thermal sensitivity of juvenile sea cucumber, Apostichopus japonicus Selenka. Aquaculture International,2011,19:1165-1175
    [15]Hu M Y, L Q, L L. Effect of salinity and temperature on salinity tolerance of the sea cucumber Apostichopus japonicus. Fish Sci.,2010,76:267-273
    [16]Dong Y W, Ji T T, Meng X L, et al. Difference in Thermotolerance between Red and Green Color Variants of the Japanese Sea Cucumber, Apostichopus japonicus Selenka:Hsp70and Heat Hardening Effect. Biol Bull,2010,218:87-94
    [17]Meng X L, Dong Y W, Dong S L, et al. Mortality of the sea cucumber, Apostichopus japonicus Selenka, exposed to acute salinity decrease and related physiological responses: Osmoregulation and heat shock protein expression. Aquaculture,2011,316:88-92
    [18]吴卓智.次溴酸盐氧化法测定水中NH4N的改进方法.海洋环境科学,2007,26(1):84~87
    [19]Chen J X. Present status and prospects of sea cucumber industry in China. In:Lovatelli A, Conand C, Purcell S, et al., eds. Rome:FAO,2004:25-38
    [20]宋希和,柳振东.刺参池塘养殖技术.水产科技情报,2005,32(1):27~29
    [21]Re A D, Diaz F, Sierra E, et al. Effect of salinity and temperature on thermal tolerance of brown shrimp Farfantepenaeus aztecus (Ives)(Crustacea, Penaeidae). J. Therm. Biol.,2005,30:618-622
    [22]周维武.暴雨对海参养殖环境的影响与应急对策.科学养鱼,2006,(3):11
    [23]Lindquist S. The heat-shock response. Annual Review of Biochemistry,1986,55:1151-1191
    [24]Parsell D A, Lindquist S. The function of heat-shock proteins in stress tolerance:degradation and reactivation of damaged proteins. Annu. Rev. Genet.,1993,27:437-496
    [25]Huey R B, Bennett A F. Physiological adjustments to fluctuating thermal environments:an ecological and evolutionary perspective. In:Morimoto R I, Tissieres A, Georgopoulos C, eds. Stress Proteins in Biology and Medicine. New York:Cold Spring Harbor Laboratory Press,1990.37-59
    [26]Dietz T J, Somero G N. The threshold induction temperature of the90-kDa heat shock protein is subject to acclimatization in eurythermal goby fishes (genus Gillichthys). Proc. Natl. Acad. Sci.,1992,89:3389-3393
    [27]Hofmann G E, Somero G N. Evidence for protein damage at environmental temperatures: seasonal changes in levels of ubiquitin conjugates and Hsp70in the intertidal mussel Mytilus trossulus. J. Exp. Biol.,1995,198:1509-1518
    [28]Tomanek L, Somero G N. Time course and magnitude of synthesis of heat-shock proteins in congeneric marine snails (genus Teguld) from different tidal heights. Physiol. Biochem. Zool.,2000,73:249-256
    [29]Tomanek L, Somero G N. Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: Implications for limits of thermotolerance and biogeography. J. Exp. Biol.,1999,202:2925-2936
    [30]Tomanek L, Somero G N. Time course and magnitude of synthesis of heat-shock proteins in congeneric marine snails (genus Tegula) from different tidal heights. Physiol. Biochem. Zool.,2000,73:249-256
    [31]Buckley B A, Hofmann G E. Thermal acclimation changes DNA-binding activity of heat shock factor1(HSF1) in the goby Gillichthys mirabilis:implications for plasticity in the heat shock response in natural populations. J Exp Biol.,2002,205:3231-3240
    [32]Berger M S, Emlet R B. Heat-shock response of the upper intertidal barnacle balanus glandula:thermal stress and acclimation. Bio Bull,2007,212:232-241
    [33]Tadashi K, Takao K, Hiroshi A, et al. Mild heat shock induces autophagic growth arrest, but not apoptosis in U251-MG and U87-MG human malignant glioma cells. J. Neuro-Oncol.,2004,68(2):101-111
    [1]Dubeau S F, Pan F, Tremblay G C, et al. Thermal shock of salmon in vivo induces the heat shock protein hsp70and confers protection against osmotic shock. Aquaculture,1998,168:311-323
    [2]Tedengren M, Olsson B, Reimer O, et al. Heat pretreatment increases cadmium resistance and HSP70levels in Baltic Sea mussels. Aquat Toxicol,1999,48:1-12
    [3]张其中,邱马银,吴信忠,等.热休克诱导近江牡蛎对高温的耐受性.生态科学,2005,24(1):35~37
    [4]Dong Y W, Dong S L. Induced thermotolerance and expression of heat shock protein70in sea cucumber Apostichopus japonicus. Fish Sci.,2008,74:573-578
    [5]Feder M E, Hofmann G E. Heat-shock proteins, molecular chaperones, and the stress responses. Annu Rev Physiol.,1999,61:243-282
    [6]Parsell D A, Lindquist S. The function of heat-shock proteins in stress tolerance:degradation and reactivation of damaged proteins. Annu Rev Genet,1993,27:437-496
    [7]Rutherford S L, Lindquist S. Hsp90as a capacitor for morphological evolution. Nature,1998, 396:336-342
    [8]S(?)rensen J G, Loeschcke V. Larval crowding in Drosophila melanogaster induces Hsp70expression, and leads to increased adult longevity and adult thermal stress resistance. J Insect Physiol.,2001,47:1301-1307
    [9]Queitsch C, Sangster T A, Lindquist S. Hsp90as a capacitor of phenotypic variation. Nature,2002,417:618-624
    [10]Tomanek L. The heat-shock response:its variation, regulation and ecological importance in intertidal gastropods (genus Tegula). Integr Comp Biol.,2002,42:797-807
    [11]Rutherford S L. Between genotype and phenotype:Protein chaperones and evolvability. Nat Rew Genet,2003,4:263-274
    [12]Dong Y W, Dong S L, Meng X L. Effects of thermal and osmotic stress on growth, osmoregulation and Hsp70in sea cucumber(Apostichopus japonicus Selenka). Aquaculture,2008a,276:179-186
    [13]Dong Y W, Ji T T, Meng X L, et al. Difference in Thermotolerance between Red and Green Color Variants of the Japanese Sea Cucumber, Apostichopus japonicus Selenka:Hsp70and Heat Hardening Effect. Biol. Bull,2010,218:87-94
    [14]Meng X L, Ji T T, Dong Y W, et al. Thermal resistance in sea cucumbers(Apostichopus japonicus) with differing thermal history:The role of Hsp70. Aquaculture,2009,294:314-318
    [15]Moseley P L. Heat shock proteins and heat adaptation of the whole organism. J Applied Physiology,1997,83:1413-1417
    [16]Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the Forlin phenol reagent. Biol. Chem.,1951,193:265-275
    [17]Dong Y W, Dong S L, Ji T T. Effect of different thermal regimes on growth and physiological performance of the sea cucumber Apostichopus japonicus Selenka. Aquaculture,2008b,275:329-334
    [18]Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature,1970,227:680-685
    [19]Kyhse-Andersen J. Electroblotting of multiple gels:a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. Biochem Biophys
    [20]Kashenko S D. Effect of desalination on development of far eastern trepang. Russian Journal of Marine Biology,1992,18(3-4):43-52
    [21]隋锡林.刺参人工育苗及增养殖技术.水产科学,2004,22(6):53
    [22]Liu X Y, Zhu G H, Zhao Q, et al. Studies on hatchery techniques of the sea cucumber, Apostichopus japonicus. FAO, Fisheries and Aquaculture Department,2005
    [23]常亚青,丁君,宋坚,等.海参海胆生物学研究与养殖.北京:海洋出版社,2004
    [24]Chen X J. Overview of sea cucumber farming and sea ranching practices in China. SPC Beche-de-mer Information Bulletin,2003,18:18-22
    [25]刘广斌.刺参tpostichopus japonicus耐高温品系选育的基础研究:[博士学位论文].青岛:中国科学院海洋研究所,2008
    [26]Hochachka P W, Somero G N. Biochemical Adaptation. New York:Oxford University Press,2002
    [27]Dong Y W, Dong S L, Ji T T. Stress responses to rapid temperature changes of the juvenile sea cucumber(Apostichopus japonicus Selenka). Ocean Univ. China (Engl. Ed.),2007,6:275-280
    [28]Dong Y W, Miller L P, Sanders J G, et al. Heat-shock protein70(Hsp70) expressions in four limpets of the genus Lottis:interspecific variation in constitutive and inducible synthesis correlates with in situ exposure to heat stress. Biol. Bull,2008c,215:173-181
    [29]Nakano K, Iwama G K. The70-kDa heat shock protein response in two intertidal sculpins, Oligocottus maculosus and O. snyderi:relationship of Hsp70and thermal tolerance. Comp Biochem Phy,2002,133A:79-94
    [30]Giudice G, Roccheri M C, Bernardo M G. Synthesis of heat shock proteins in sea urchin embryos. Cell Biol. Int. Rep,1980,4:69-74
    [31]Roccheri M C, Di Bernardo M G, Giudice G. Synthesis of heat shock proteins in developing sea urchins. Dev Biol.,1981,83:173-177
    [32]Maglott D R. Heat shock response in the Atlantic sea urchin Arbacia punctulata. Experentia,1982,39:268-270
    [33]Howlett S, Miller J, Schultz G. Induction of heat shock proteins in early embryos of Arbacia punctulata. Biol. Bull,1983,165:500
    [34]Giudice G. Heat shock proteins in sea urchin development. In:Atkinson B G, Walden D B, eds. Changes in Eukaryotic Gene Expression in Response to Environmental Stress. New York: Academic Press,1985.115-133
    [35]Infante A A, Akhayat D, Rimland J, et al. Characterization of the prosome and a cytoplasmic particle containing a21kD heat shock protein in sea urchin embryos. Acta Embryol Morphol Exp,1985,6:151-152
    [36]Bedard P A, Brandhorst B P. Translational activation of maternal mRNA encoding the heat-shock proteins hsp90during sea urchin embryogenesis. Dev Biol.,1986,117:286-293
    [37]Roccheri M C, Sconzo G, La Rosa M, et al. Response to heat shock of different sea urchin species. Cell Differ,1986,18:131-135
    [1]Levin V S. Japanese sea cucumber. Academy of Sciences, Vladivostok:Union of Soviet Socialist Republics,1982.191
    [2]Sloan N A. Echinoderm fisheries of the world:A review. In:Echinodermata (Proceedings of the Fifth International Echinoderm Conference), Keegan B F,O'Connor B D S, eds. Rotterdam:A. A. Balkema Publishers,1984.109-124
    [3]廖玉麟.中国动物志,棘皮动物门,海参纲.北京:科学出版社,1997.334
    [4]隋锡林,廖玉麟.海参增养殖.北京:中国农业出版社,1988.50~100
    [5]李馥馨,刘永宏,宋本祥,等.刺参(Apostichopus japonicus Selenka)夏眠习性研究Ⅱ——夏眠致因的探讨.中国水产科学,1996,3(2):49~57
    [6]Yang H, Zhou Y, Zhang T, et al. Metabolic characteristics of sea cucumber Apostichopus japonicus (Selenka) during aestivation. J. Exp. Mar. Biol. Ecol.,2006,330:505-510
    [7]Ji T T, Dong Y W, Dong S L. Growth and physiological responses in the sea cucumber, Apostichopus japonicus Selenka:aestivation and temperature. Aquaculture,2008,283:180-187
    [8]Piano A, Asirelli C, Caselli F. HSP70expression in thermally stressed Ostrea edulis, a commercially important oyster in Europe. Cell stress chaperon,2002,7(3):250-257
    [9]张其中,邱马银,吴信忠,等.热休克诱导近江牡蛎对高温的耐受性.生态科学,2005,24(1):35~37
    [10]Dong Y W, Dong S L. Induced thermotolerance and expression of heat shock protein70in sea cucumber Apostichopus japonicus. Fisheries Science,2008,74:573-578
    [11]Meng X L, Ji T T, Dong Y W, et al. Thermal resistance in sea cucumbers(Apostichopus japonicus) with differing thermal history:The role of Hsp70. Aquaculture,2009,294:314-318
    [12]Dong Y W, Ji T T, Meng X L, et al. Difference in Thermotolerance between Red and Green Color Variants of the Japanese Sea Cucumber, Apostichopus japonicus Selenka:Hsp70and Heat Hardening Effect. Biol. Bull,2010,218:87-94
    [13]Molony B W, Church A R, Maguire G B. A comparison of the heat tolerance and growth of a selected and non-selected line of rainbow trout, Oncorhynchus mykiss, in Western Australia. Aquaculture,2004,241:655-665
    [14]Banat I M, Nigam P, Marchant R. Isolation of thermotolerant, fermentative yeasts growing at52℃and producing ethanol at45℃and50℃. World J Microbiol Biotechnol,1992,8:259-263
    [15]Chen Y F, Wang Z X, Wang C X, et al. Preliminary study on isolation, identification and ethanol fermentation of thermotolerant yeast. Microbiology,2003,30:24-27
    [16]Liu H C, Ran G Q, Zhang X, et al. Breeding of alcohol yeast strains of high-temperature tolerance and high-alcoholicity endurance from distiller's grains. Liq-making Sci. Technol.,2007,5:28-31
    [17]Laxminarayana A. Induced spawning and larval rearing of the sea cucumbers, Bohadschia marmorata and Holothuria atra in Mauritius. SPC Beche-de-mer Inform Bull,2005,22:48-51
    [18]隋锡林.刺参人工育苗及增养殖技术.水产科学,2004,23(2):45
    [19]吴卓智.次溴酸盐氧化法测定水中NH4-N的改进方法.海洋环境科学,2007,26(1):84~87
    [20]Dong Y W, Dong S L, Tian X L, et al. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture,2006,255:514-521
    [21]Kashenko S D. Effect of desalination on development of far eastern trepang. Russ J Mar Bio,1992,18(3-4):43-52
    [22]Liu X Y, Zhu G H, Zhao Q, et al. Studies on hatchery techniques of the sea cucumber, Apostichopus japonicus. FAO Fisheries and Aquaculture Department,2005
    [23]Chen X J. Overview of sea cucumber farming and sea ranching practices in China. SPC Beche-de-mer Inform Bull,2003,18:18-22
    [24]董云伟,董双林,田相利,等.不同温度对刺参幼参生长、耗氧率及体组成的影响.中国水产科学,2005,12(1):33~37
    [25]Das T, Pala A K, Chakrabortyb S K, et al. Thermal tolerance and oxygen consumption of Indian major carps acclimated to four temperatures. J Therm. Bio,2004,29:157-163
    [26]Hernandez M. Critical thermal maximum and osmotic pressure of the red sea urchin Strongylocentrotus franciscanus acclimated at different temperatures. J Therm. Bio,2004,29:231-236
    [27]Lohr S C, Byorth P A, Kaya C M, et al. High temperature tolerances of fluvial Arctic grayling and comparisons with summer river temperatures of the Big Hole River, Montana. Trans Am Fisheries Soc,1996,125:933-939
    [28]Selvakumar S, Geraldine P. Heat shock protein induction in the freshwater prawn Macrobrachium malcolmsonii:Acclimation-influenced variations in the induction temperatures for Hsp70. Comp Biochem Physiol.,2005,140A:209-215
    [29]Strange K T, Vokoun J C, Noltie D B. Thermal tolerance and growth differences in orangethroat darter(Etheostoma spectabile) from thermally contrasting adjoining streams. Am. Midl Nat,2002,148:120-128
    [30]Parsell D A, Lindquist S. Heat shock proteins and stress tolerance. In:The Biology of Heat Shock Proteins and Molecular Chaperones. New York:Cold Spring Harbor Laboratory Press, 1994.457-494
    [31]Moseley P L. Heat shock proteins and heat adaptation of the whole organism. J Appl. Phys,1997,83:1413-1417
    [32]Francoise A. Adjuvants for vaccines, a quest. Int. Immunopharmaco,2003,3(8):1187-1193
    [33]刘广斌.刺参Apostichopus japonicus耐高温品系选育的基础研究:[博士学位论文].青岛:中国科学院海洋研究所,2008
    [1]廖玉麟.中国动物志,棘皮动物门,海参纲.北京:科学出版社,1997.334
    [2]李馥馨,刘永宏,宋本祥,等.刺参(Apostichopus japonicus Selenka)夏眠习性研究Ⅱ—夏眠致因的探讨.中国水产科学,1996,2:41~48
    [3]Yang H, Zhou Y, Zhang T, et al. Metabolic characteristics of sea cucumber Apostichopus stichopus (Selenka) during aestivation. J. Exp. Mar. Biol. Ecol.,2006,330:505-510
    [4]Ji T T, Dong Y W, Dong S L. Growth and physiological responses in the sea cucumber, Apostichopus japonicus Selenka:aestivation and temperature.2008, Aquaculture,283(1-4):180-187
    [5]董云伟,董双林,田相利,等.不同温度对刺参幼参生长、耗氧率及体组成的影响.中国水产科学,2005,12(1):33-37
    [6]农业部渔业局.中国渔业年鉴2010.北京:中国农业出版社,2010
    [7]纪婷婷.刺参Apostichopus japonicus (Selenka)对温度变化的生理生态学响应机制:[博士学位论文].青岛:中国海洋大学,2009
    [8]Heise K, Puntarulo S, Portner H O, et al. Production of reactive oxygen species by isolated mitochondria of the Antarctic bivalve Laternula elliptica (King and Broderip) under heat stress. Comp Biochem Physiol,2003,134C,79-90
    [9]王吉桥,苏久旺,姜玉声,等.不同剂型和剂量的维生素C对幼刺参生长的影响.海 洋科学,2009,33(12):56~63
    [10]王开来.维生素C对刺参生长和非特异性免疫的影响:[硕士学位论文].大连:大连理工大学,2009
    [11]张琴.刺参Apostichopus japonicus (Selenka)高效免疫增强剂的筛选与应用:[博士学位论文].青岛:中国海洋大学,2010
    [12]Hutchison V H. Factors influencing thermal tolerance of individual organisms. In:Esch G W, McFarlane R W, eds. Thermal ecology II, U.S. Nat. Tech. Inf. Serv., Springfield,1976.10-26
    [13]Lohr S C, Byorth P A, Kaya C M, et al. High temperature tolerances of fluvial Arctic grayling and comparisons with summer river temperatures of the Big Hole River, Montana. Trans. Am. Fish. Soc.,1996,125:933-939
    [14]Strange K T, Vokoun J C, Noltie D B. Thermal tolerance and growth differences in orange throat darter (Etheostoma spectabile) from thermally contrasting adjoing streams. Am. Midl. Nat.,2002,148:120-128
    [15]Selvakumar S, Geraldine P. Heat shock protein induction in the freshwater prawn Macrobrachium malcolmsonii:Acclimation-influenced variations in the induction temperatures for Hsp70. Comp. Biochem. Phys. A,2005,140:209-215
    [16]Das T, Pala A K, Chakrabortyb S K, et al. Thermal tolerance and oxygen consumption of Indian major carps acclimated to four temperatures. J. Therm. Biol.,2004,29:157-163
    [17]Hernandez M. Critical thermal maximum and osmotic pressure of the red sea urchin Strongylocentrotus franciscanus acclimated at different temperatures. J. Therm. Biol.,2004,29:231-236
    [18]刘广斌.刺参Apostichopus japonicus耐高温品系选育的基础研究:[博士学位论文].青岛:中国科学院海洋研究所,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700